Graph representation learning has been leveraged to identify cancer genes from biological networks. However, its applicability is limited by insufficient interpretability and generalizability under integrative network analysis. Here we report the development of an interpretable and generalizable transformer-based model that accurately predicts cancer genes by leveraging graph representation learning and the integration of multi-omics data with the topologies of homogeneous and heterogeneous networks of biological interactions. The model allows for the interpretation of the respective importance of multi-omic and higher-order structural features, achieved state-of-the-art performance in the prediction of cancer genes across biological networks (including networks of interactions between miRNA and proteins, transcription factors and proteins, and transcription factors and miRNA) in pan-cancer and cancer-specific scenarios, and predicted 57 cancer-gene candidates (including three genes that had not been identified by other models) among 4,729 unlabelled genes across 8 pan-cancer datasets. The model’s interpretability and generalization may facilitate the understanding of gene-related regulatory mechanisms and the discovery of new cancer genes.
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases. The model consists of a brain extraction module that provides an initial estimation of the brain tissue on an image, and a registration module that derives a personalized prior from an age-specific atlas. The model is substantially more accurate than state-of-the-art skull-stripping methods, as we show with a large and diverse dataset of 21,334 lifespans acquired from 18 sites with various imaging protocols and scanners, and it generates naturally consistent and seamless lifespan changes in brain volume, faithfully charting the underlying biological processes of brain development and ageing.
Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient’s brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex. Yet capturing those markers requires the placement of cortex-optimized electrodes in addition to standard electrodes for DBS. In this Perspective we argue that the need for cortical biomarkers in adaptive DBS and the unfortunate convergence of regulatory and financial factors underpinning the unavailability of cortical electrodes for chronic uses threatens to slow down or stall research on adaptive DBS and propose public–private partnerships as a potential solution to such a critical technological gap.