首页 > 最新文献

Nature Biomedical Engineering最新文献

英文 中文
Deep profiling of gene expression across 18 human cancers 对 18 种人类癌症的基因表达进行深度剖析
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-17 DOI: 10.1038/s41551-024-01290-8
Wei Qiu, Ayse B. Dincer, Joseph D. Janizek, Safiye Celik, Mikael J. Pittet, Kamila Naxerova, Su-In Lee

Clinical and biological information in large datasets of gene expression across cancers could be tapped with unsupervised deep learning. However, difficulties associated with biological interpretability and methodological robustness have made this impractical. Here we describe an unsupervised deep-learning framework for the generation of low-dimensional latent spaces for gene-expression data from 50,211 transcriptomes across 18 human cancers. The framework, which we named DeepProfile, outperformed dimensionality-reduction methods with respect to biological interpretability and allowed us to unveil that genes that are universally important in defining latent spaces across cancer types control immune cell activation, whereas cancer-type-specific genes and pathways define molecular disease subtypes. By linking latent variables in DeepProfile to secondary characteristics of tumours, we discovered that mutation burden is closely associated with the expression of cell-cycle-related genes, and that the activity of biological pathways for DNA-mismatch repair and MHC class II antigen presentation are consistently associated with patient survival. We also found that tumour-associated macrophages are a source of survival-correlated MHC class II transcripts. Unsupervised learning can facilitate the discovery of biological insight from gene-expression data.

通过无监督深度学习,可以挖掘大型癌症基因表达数据集中的临床和生物学信息。然而,与生物学可解释性和方法论稳健性相关的困难使得这种方法不切实际。在这里,我们描述了一种无监督深度学习框架,用于为来自 18 种人类癌症的 50,211 个转录组的基因表达数据生成低维潜在空间。我们将这一框架命名为 DeepProfile,它在生物可解释性方面优于降维方法,并使我们得以揭示,在定义不同癌症类型的潜空间时,普遍重要的基因控制着免疫细胞的激活,而癌症类型特异性基因和通路则定义了分子疾病亚型。通过将 DeepProfile 中的潜变量与肿瘤的次要特征联系起来,我们发现突变负荷与细胞周期相关基因的表达密切相关,而 DNA 错配修复和 MHC II 类抗原呈递生物通路的活性与患者的存活率始终相关。我们还发现,肿瘤相关巨噬细胞是与生存相关的 MHC II 类转录本的来源。无监督学习有助于从基因表达数据中发现生物学见解。
{"title":"Deep profiling of gene expression across 18 human cancers","authors":"Wei Qiu, Ayse B. Dincer, Joseph D. Janizek, Safiye Celik, Mikael J. Pittet, Kamila Naxerova, Su-In Lee","doi":"10.1038/s41551-024-01290-8","DOIUrl":"https://doi.org/10.1038/s41551-024-01290-8","url":null,"abstract":"<p>Clinical and biological information in large datasets of gene expression across cancers could be tapped with unsupervised deep learning. However, difficulties associated with biological interpretability and methodological robustness have made this impractical. Here we describe an unsupervised deep-learning framework for the generation of low-dimensional latent spaces for gene-expression data from 50,211 transcriptomes across 18 human cancers. The framework, which we named DeepProfile, outperformed dimensionality-reduction methods with respect to biological interpretability and allowed us to unveil that genes that are universally important in defining latent spaces across cancer types control immune cell activation, whereas cancer-type-specific genes and pathways define molecular disease subtypes. By linking latent variables in DeepProfile to secondary characteristics of tumours, we discovered that mutation burden is closely associated with the expression of cell-cycle-related genes, and that the activity of biological pathways for DNA-mismatch repair and MHC class II antigen presentation are consistently associated with patient survival. We also found that tumour-associated macrophages are a source of survival-correlated MHC class II transcripts. Unsupervised learning can facilitate the discovery of biological insight from gene-expression data.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"10 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient production of non-immunogenic, long circular RNAs for high protein yield 高效生产非免疫原性长环状 RNA,提高蛋白质产量
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-17 DOI: 10.1038/s41551-024-01307-2
Using trans-ribozyme-mediated circularization, we have produced circular RNAs that are not limited by RNA sequence or length and that allow for modifications. The synthesized RNAs increase protein expression more than 7,000-fold.
利用反式核酸酶介导的环化技术,我们制备出了不受核糖核酸序列或长度限制并可进行修饰的环状核糖核酸。合成的 RNA 可使蛋白质表达量提高 7000 倍以上。
{"title":"Efficient production of non-immunogenic, long circular RNAs for high protein yield","authors":"","doi":"10.1038/s41551-024-01307-2","DOIUrl":"https://doi.org/10.1038/s41551-024-01307-2","url":null,"abstract":"Using trans-ribozyme-mediated circularization, we have produced circular RNAs that are not limited by RNA sequence or length and that allow for modifications. The synthesized RNAs increase protein expression more than 7,000-fold.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"4 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent spaces for tumour transcriptomes 肿瘤转录组的潜伏空间
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-17 DOI: 10.1038/s41551-024-01322-3
Adriana Ivich, Casey S. Greene
Generating low-dimensional latent spaces for gene-expression data via unsupervised deep learning can unveil biological insight across cancers.
通过无监督深度学习为基因表达数据生成低维潜在空间,可以揭示癌症的生物学特征。
{"title":"Latent spaces for tumour transcriptomes","authors":"Adriana Ivich, Casey S. Greene","doi":"10.1038/s41551-024-01322-3","DOIUrl":"https://doi.org/10.1038/s41551-024-01322-3","url":null,"abstract":"Generating low-dimensional latent spaces for gene-expression data via unsupervised deep learning can unveil biological insight across cancers.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"254 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolving virus-like particles 进化的病毒样颗粒
IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-16 DOI: 10.1038/s41551-024-01330-3
Alessandra Griffo
Virus-like particles can be evolved to enhance the delivery of ribonucleoproteins and to increase particle production.
病毒样颗粒可以进化以增强核糖核蛋白的传递并增加颗粒的产生。
{"title":"Evolving virus-like particles","authors":"Alessandra Griffo","doi":"10.1038/s41551-024-01330-3","DOIUrl":"10.1038/s41551-024-01330-3","url":null,"abstract":"Virus-like particles can be evolved to enhance the delivery of ribonucleoproteins and to increase particle production.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 12","pages":"1512-1512"},"PeriodicalIF":26.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scouring for essential non-coding RNAs 寻找重要的非编码 RNA
IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-16 DOI: 10.1038/s41551-024-01328-x
Pep Pàmies
RNA-targeting CRISPR screens reveal hundreds of functional long non-coding RNAs that are crucial for cell survival and implicated in cancer progression.
RNA 靶向 CRISPR 筛选发现了数百种功能性长非编码 RNA,它们对细胞存活至关重要,并与癌症进展有牵连。
{"title":"Scouring for essential non-coding RNAs","authors":"Pep Pàmies","doi":"10.1038/s41551-024-01328-x","DOIUrl":"10.1038/s41551-024-01328-x","url":null,"abstract":"RNA-targeting CRISPR screens reveal hundreds of functional long non-coding RNAs that are crucial for cell survival and implicated in cancer progression.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 12","pages":"1514-1514"},"PeriodicalIF":26.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A learned writing assistant for radiologists 放射科医生博学的写作助理
IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-16 DOI: 10.1038/s41551-024-01327-y
Pep Pàmies
A large vision–language model trained to generate chest X-ray reports shows promise as an assistive tool for radiologists, particularly for typical cases in outpatient settings.
一种用于生成胸部x光报告的大型视觉语言模型有望成为放射科医生的辅助工具,特别是在门诊环境中的典型病例。
{"title":"A learned writing assistant for radiologists","authors":"Pep Pàmies","doi":"10.1038/s41551-024-01327-y","DOIUrl":"10.1038/s41551-024-01327-y","url":null,"abstract":"A large vision–language model trained to generate chest X-ray reports shows promise as an assistive tool for radiologists, particularly for typical cases in outpatient settings.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 12","pages":"1508-1508"},"PeriodicalIF":26.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient circular RNA synthesis for potent rolling circle translation 有效的环状RNA合成,有效的滚动环翻译
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-13 DOI: 10.1038/s41551-024-01306-3
Yifei Du, Philipp Konrad Zuber, Huajuan Xiao, Xueyan Li, Yuliya Gordiyenko, V. Ramakrishnan

Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron–exon method and allow for the incorporation of RNA modifications. The resulting unmodified circRNAs, which incorporate sequences from human 28S ribosomal RNA, display low immunogenicity and are translated more efficiently than permuted intron–exon-derived circRNAs. Additionally, by using viral internal ribosomal entry sites for rolling circle translation, we show that ribosomes can efficiently read through highly structured internal ribosomal entry sites, enhancing the efficiency of rolling circle translation by over 7,000-fold with respect to previous constructs. The efficient and reliable production of circRNA may facilitate its therapeutic use.

环状RNA (circRNA)由于其显著的稳定性而成为下一代信使RNA治疗的候选药物。在这里,我们描述了基于反式剪接的方法,用于合成超过8000个核苷酸的环状rna。该方法独立于细菌序列,优于排列内含子-外显子方法,并允许结合RNA修饰。由此产生的未经修饰的环状RNA,包含来自人类28S核糖体RNA的序列,显示出低免疫原性,并且比排列内含子-外显子来源的环状RNA更有效地翻译。此外,通过使用病毒内部核糖体进入位点进行滚环翻译,我们发现核糖体可以有效地读取高度结构化的内部核糖体进入位点,将滚环翻译的效率提高了7000多倍。circRNA的高效和可靠的生产可能促进其治疗用途。
{"title":"Efficient circular RNA synthesis for potent rolling circle translation","authors":"Yifei Du, Philipp Konrad Zuber, Huajuan Xiao, Xueyan Li, Yuliya Gordiyenko, V. Ramakrishnan","doi":"10.1038/s41551-024-01306-3","DOIUrl":"https://doi.org/10.1038/s41551-024-01306-3","url":null,"abstract":"<p>Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe <i>trans</i>-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron–exon method and allow for the incorporation of RNA modifications. The resulting unmodified circRNAs, which incorporate sequences from human 28S ribosomal RNA, display low immunogenicity and are translated more efficiently than permuted intron–exon-derived circRNAs. Additionally, by using viral internal ribosomal entry sites for rolling circle translation, we show that ribosomes can efficiently read through highly structured internal ribosomal entry sites, enhancing the efficiency of rolling circle translation by over 7,000-fold with respect to previous constructs. The efficient and reliable production of circRNA may facilitate its therapeutic use.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"29 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Targeting overexpressed antigens in glioblastoma via CAR T cells with computationally designed high-affinity protein binders 出版者更正:利用计算设计的高亲和力蛋白结合物,通过CAR - T细胞靶向胶质母细胞瘤中过表达的抗原
IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-11 DOI: 10.1038/s41551-024-01338-9
Zhen Xia, Qihan Jin, Zhilin Long, Yexuan He, Fuyi Liu, Chengfang Sun, Jinyang Liao, Chun Wang, Chentong Wang, Jian Zheng, Weixi Zhao, Tianxin Zhang, Jeremy N. Rich, Yongdeng Zhang, Longxing Cao, Qi Xie
{"title":"Publisher Correction: Targeting overexpressed antigens in glioblastoma via CAR T cells with computationally designed high-affinity protein binders","authors":"Zhen Xia,&nbsp;Qihan Jin,&nbsp;Zhilin Long,&nbsp;Yexuan He,&nbsp;Fuyi Liu,&nbsp;Chengfang Sun,&nbsp;Jinyang Liao,&nbsp;Chun Wang,&nbsp;Chentong Wang,&nbsp;Jian Zheng,&nbsp;Weixi Zhao,&nbsp;Tianxin Zhang,&nbsp;Jeremy N. Rich,&nbsp;Yongdeng Zhang,&nbsp;Longxing Cao,&nbsp;Qi Xie","doi":"10.1038/s41551-024-01338-9","DOIUrl":"10.1038/s41551-024-01338-9","url":null,"abstract":"","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 12","pages":"1744-1744"},"PeriodicalIF":26.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41551-024-01338-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma 胰腺导管腺癌分支类器官模型异质性驱动的表型可塑性和治疗反应
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-10 DOI: 10.1038/s41551-024-01273-9
Aristeidis Papargyriou, Mulham Najajreh, David P. Cook, Carlo H. Maurer, Stefanie Bärthel, Hendrik A. Messal, Sakthi K. Ravichandran, Till Richter, Moritz Knolle, Thomas Metzler, Akul R. Shastri, Rupert Öllinger, Jacob Jasper, Laura Schmidleitner, Surui Wang, Christian Schneeweis, Hellen Ishikawa-Ankerhold, Thomas Engleitner, Laura Mataite, Mariia Semina, Hussein Trabulssi, Sebastian Lange, Aashreya Ravichandra, Maximilian Schuster, Sebastian Mueller, Katja Peschke, Arlett Schäfer, Sophie Dobiasch, Stephanie E. Combs, Roland M. Schmid, Andreas R. Bausch, Rickmer Braren, Irina Heid, Christina H. Scheel, Günter Schneider, Anja Zeigerer, Malte D. Luecken, Katja Steiger, Georgios Kaissis, Jacco van Rheenen, Fabian J. Theis, Dieter Saur, Roland Rad, Maximilian Reichert

In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.

在胰腺导管腺癌(PDAC)患者中,肿瘤内和肿瘤间的异质性增加了化疗耐药性和死亡率。然而,这种形态和表型多样性通常不会被PDAC的类器官模型所捕获。本研究表明,嵌入胶原凝胶中的分支类器官可以概括小鼠和人类PDAC的表型景观,类器官在肿瘤内和肿瘤间的显著分子和形态学异质性受定义的转录程序(特别是上皮-间质可塑性)的控制,不同的类器官表型代表了体内具有独特生物学特征的不同肿瘤细胞状态。我们还表明,表型特异性治疗脆弱性和治疗诱导的表型重编程模式可以在表型异质性图中捕获。我们的方法和PDAC中肿瘤细胞异质性的分析可以指导表型靶向治疗策略的发展。
{"title":"Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma","authors":"Aristeidis Papargyriou, Mulham Najajreh, David P. Cook, Carlo H. Maurer, Stefanie Bärthel, Hendrik A. Messal, Sakthi K. Ravichandran, Till Richter, Moritz Knolle, Thomas Metzler, Akul R. Shastri, Rupert Öllinger, Jacob Jasper, Laura Schmidleitner, Surui Wang, Christian Schneeweis, Hellen Ishikawa-Ankerhold, Thomas Engleitner, Laura Mataite, Mariia Semina, Hussein Trabulssi, Sebastian Lange, Aashreya Ravichandra, Maximilian Schuster, Sebastian Mueller, Katja Peschke, Arlett Schäfer, Sophie Dobiasch, Stephanie E. Combs, Roland M. Schmid, Andreas R. Bausch, Rickmer Braren, Irina Heid, Christina H. Scheel, Günter Schneider, Anja Zeigerer, Malte D. Luecken, Katja Steiger, Georgios Kaissis, Jacco van Rheenen, Fabian J. Theis, Dieter Saur, Roland Rad, Maximilian Reichert","doi":"10.1038/s41551-024-01273-9","DOIUrl":"https://doi.org/10.1038/s41551-024-01273-9","url":null,"abstract":"<p>In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"19 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced control of a brain–computer interface by tetraplegic participants via neural-network-mediated feature extraction 通过神经网络介导的特征提取增强四肢瘫痪参与者脑机接口的控制
IF 28.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-06 DOI: 10.1038/s41551-024-01297-1
Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami

To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.

为了推断意图,脑机接口必须提取出能够准确估计神经活动的特征。然而,随着时间的推移,信号质量的退化阻碍了特征工程技术的使用,以恢复功能信息。通过使用植入三名受试者大脑皮层的电极阵列记录的神经数据,我们证明了在所有电极必须使用相同的神经网络参数的约束下,卷积神经网络可以通过联合优化特征提取和解码来将电信号映射到神经特征。在所有三个参与者中,神经网络在所有指标的光标控制任务中导致离线和在线性能改进,优于阈值交叉率和宽带神经数据的小波分解(以及其他特征提取技术)。我们还表明,训练后的神经网络可以在不修改的情况下用于新的数据集、大脑区域和参与者。
{"title":"Enhanced control of a brain–computer interface by tetraplegic participants via neural-network-mediated feature extraction","authors":"Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami","doi":"10.1038/s41551-024-01297-1","DOIUrl":"https://doi.org/10.1038/s41551-024-01297-1","url":null,"abstract":"<p>To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"13 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Biomedical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1