首页 > 最新文献

Nature neuroscience最新文献

英文 中文
Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice 小鼠星形胶质细胞需要神经元周围网来维持突触平衡
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-17 DOI: 10.1038/s41593-024-01714-3
Bhanu P. Tewari, AnnaLin M. Woo, Courtney E. Prim, Lata Chaunsali, Dipan C. Patel, Ian F. Kimbrough, Kaliroi Engel, Jack L. Browning, Susan L. Campbell, Harald Sontheimer
Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex. Approximately 95% of holes in the PNNs contain synapses and astrocytic processes expressing Kir4.1, glutamate and GABA transporters. Hence, holes in the PNNs contain tripartite synapses. In the adult mouse brain, PNN degradation causes an expanded astrocytic coverage of the neuronal somata without altering the axon terminals. The loss of PNNs impairs astrocytic transmitter and potassium uptake, resulting in the spillage of glutamate into the extrasynaptic space. Our data show that PNNs and astrocytes cooperate to contain synaptically released signals in physiological conditions. Their combined action is altered in mouse models of Alzheimer’s disease and epilepsy where PNNs are disrupted. Perineuronal nets stabilize synapses inhibiting synaptic plasticity. Here, the authors show that perineuronal nets act as a diffusion barrier facilitating astrocytic clearance of synaptically released ions and neurotransmitters.
神经元周围网(PNN)是覆盖快速尖峰抑制性神经元细胞体的密集细胞外基质。PNN 可稳定突触,抑制突触可塑性。我们在这里发现,在成年小鼠的躯体感觉皮层中,快速尖峰中间神经元的突触末梢会定位到 PNN 中的孔上。大约 95% 的 PNN 孔含有突触和表达 Kir4.1、谷氨酸和 GABA 转运体的星形胶质细胞过程。因此,PNN 中的孔包含三方突触。在成年小鼠大脑中,PNN 降解会导致神经元体部的星形胶质细胞覆盖范围扩大,而轴突末端却不会发生改变。PNN 的缺失会影响星形胶质细胞对递质和钾的吸收,导致谷氨酸溢出到突触外空间。我们的数据显示,在生理条件下,PNNs 和星形胶质细胞合作控制突触释放的信号。在阿尔茨海默病和癫痫的小鼠模型中,PNN受到破坏,它们的联合作用也随之改变。
{"title":"Astrocytes require perineuronal nets to maintain synaptic homeostasis in mice","authors":"Bhanu P. Tewari, AnnaLin M. Woo, Courtney E. Prim, Lata Chaunsali, Dipan C. Patel, Ian F. Kimbrough, Kaliroi Engel, Jack L. Browning, Susan L. Campbell, Harald Sontheimer","doi":"10.1038/s41593-024-01714-3","DOIUrl":"10.1038/s41593-024-01714-3","url":null,"abstract":"Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex. Approximately 95% of holes in the PNNs contain synapses and astrocytic processes expressing Kir4.1, glutamate and GABA transporters. Hence, holes in the PNNs contain tripartite synapses. In the adult mouse brain, PNN degradation causes an expanded astrocytic coverage of the neuronal somata without altering the axon terminals. The loss of PNNs impairs astrocytic transmitter and potassium uptake, resulting in the spillage of glutamate into the extrasynaptic space. Our data show that PNNs and astrocytes cooperate to contain synaptically released signals in physiological conditions. Their combined action is altered in mouse models of Alzheimer’s disease and epilepsy where PNNs are disrupted. Perineuronal nets stabilize synapses inhibiting synaptic plasticity. Here, the authors show that perineuronal nets act as a diffusion barrier facilitating astrocytic clearance of synaptically released ions and neurotransmitters.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01714-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nonoscillatory, millisecond-scale embedding of brain state provides insight into behavior 非振荡、毫秒级的大脑状态嵌入可洞察行为
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-15 DOI: 10.1038/s41593-024-01715-2
David F. Parks, Aidan M. Schneider, Yifan Xu, Samuel J. Brunwasser, Samuel Funderburk, Danilo Thurber, Tim Blanche, Eva L. Dyer, David Haussler, Keith B. Hengen
The most robust and reliable signatures of brain states are enriched in rhythms between 0.1 and 20 Hz. Here we address the possibility that the fundamental unit of brain state could be at the scale of milliseconds and micrometers. By analyzing high-resolution neural activity recorded in ten mouse brain regions over 24 h, we reveal that brain states are reliably identifiable (embedded) in fast, nonoscillatory activity. Sleep and wake states could be classified from 100 to 101 ms of neuronal activity sampled from 100 µm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high-frequency embedding is robust to substates, sharp-wave ripples and cortical on/off states. Individual regions intermittently switched states independently of the rest of the brain, and such brief state discontinuities coincided with brief behavioral discontinuities. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation. Parks, Schneider et al. show that brain states like sleep and wake can be reliably detected from milliseconds of neural activity in local regions in mice. Regions can briefly switch states independently, coinciding with fleeting behavioral changes.
0.1到20赫兹之间的节律富含最稳健可靠的大脑状态特征。在这里,我们探讨了大脑状态的基本单位可能是毫秒级和微米级的可能性。通过分析记录在十个小鼠脑区 24 小时内的高分辨率神经活动,我们发现大脑状态可以可靠地识别(嵌入)在快速、非振荡的活动中。从 100 微米的脑组织中采样的 100 到 101 毫秒的神经元活动可对睡眠和觉醒状态进行分类。与典型节律不同的是,这种嵌入持续时间超过 1000 赫兹。这种高频嵌入对子态、锐波涟漪和皮层开/关状态都很稳健。单个区域间歇性地切换状态,不受大脑其他部分的影响,这种短暂的状态不连续性与短暂的行为不连续性相吻合。我们的研究结果表明,大脑状态的基本单位与神经元计算的空间和时间尺度是一致的。
{"title":"A nonoscillatory, millisecond-scale embedding of brain state provides insight into behavior","authors":"David F. Parks, Aidan M. Schneider, Yifan Xu, Samuel J. Brunwasser, Samuel Funderburk, Danilo Thurber, Tim Blanche, Eva L. Dyer, David Haussler, Keith B. Hengen","doi":"10.1038/s41593-024-01715-2","DOIUrl":"10.1038/s41593-024-01715-2","url":null,"abstract":"The most robust and reliable signatures of brain states are enriched in rhythms between 0.1 and 20 Hz. Here we address the possibility that the fundamental unit of brain state could be at the scale of milliseconds and micrometers. By analyzing high-resolution neural activity recorded in ten mouse brain regions over 24 h, we reveal that brain states are reliably identifiable (embedded) in fast, nonoscillatory activity. Sleep and wake states could be classified from 100 to 101 ms of neuronal activity sampled from 100 µm of brain tissue. In contrast to canonical rhythms, this embedding persists above 1,000 Hz. This high-frequency embedding is robust to substates, sharp-wave ripples and cortical on/off states. Individual regions intermittently switched states independently of the rest of the brain, and such brief state discontinuities coincided with brief behavioral discontinuities. Our results suggest that the fundamental unit of state in the brain is consistent with the spatial and temporal scale of neuronal computation. Parks, Schneider et al. show that brain states like sleep and wake can be reliably detected from milliseconds of neural activity in local regions in mice. Regions can briefly switch states independently, coinciding with fleeting behavioral changes.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking opioid neuropeptide dynamics with genetically encoded biosensors 利用基因编码生物传感器揭示阿片类神经肽的动态变化
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-15 DOI: 10.1038/s41593-024-01697-1
Chunyang Dong, Raajaram Gowrishankar, Yihan Jin, Xinyi Jenny He, Achla Gupta, Huikun Wang, Nilüfer Sayar-Atasoy, Rodolfo J. Flores, Karan Mahe, Nikki Tjahjono, Ruqiang Liang, Aaron Marley, Grace Or Mizuno, Darren K. Lo, Qingtao Sun, Jennifer L. Whistler, Bo Li, Ivone Gomes, Mark Von Zastrow, Hugo A. Tejeda, Deniz Atasoy, Lakshmi A. Devi, Michael R. Bruchas, Matthew R. Banghart, Lin Tian
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions. Dong et al. developed and validated κLight, δLight and µLight, a suite of genetically encoded opioid peptide sensors for probing opioid drugs and brain-region/circuit-specific opioid release in behaving animals.
神经肽在神经系统中无处不在。对神经肽的研究一直受限于缺乏实验工具,无法以特定回路的方式精确剖析神经肽复杂多样的动态变化。阿片肽能调节疼痛、奖赏和厌恶,因此具有很高的临床意义。为了阐明内源性阿片信号在大脑中的时空动态,我们开发了一类基于 kappa、delta 和 mu 阿片受体的基因编码荧光传感器:它们分别是κLight、δLight 和 µLight。我们确定了这些传感器在哺乳动物细胞和离体神经元中的药理学特征。我们利用κLight确定了触发内源性阿片类物质释放的电刺激参数,以及脑切片中达莫啡肽体积传递的时空尺度。通过在小鼠体内使用纤维光度计,我们证明了这些传感器在检测光遗传驱动的阿片类物质释放方面的实用性,并观察到了阿片类物质在恐惧和奖励条件下的不同释放动态。
{"title":"Unlocking opioid neuropeptide dynamics with genetically encoded biosensors","authors":"Chunyang Dong, Raajaram Gowrishankar, Yihan Jin, Xinyi Jenny He, Achla Gupta, Huikun Wang, Nilüfer Sayar-Atasoy, Rodolfo J. Flores, Karan Mahe, Nikki Tjahjono, Ruqiang Liang, Aaron Marley, Grace Or Mizuno, Darren K. Lo, Qingtao Sun, Jennifer L. Whistler, Bo Li, Ivone Gomes, Mark Von Zastrow, Hugo A. Tejeda, Deniz Atasoy, Lakshmi A. Devi, Michael R. Bruchas, Matthew R. Banghart, Lin Tian","doi":"10.1038/s41593-024-01697-1","DOIUrl":"10.1038/s41593-024-01697-1","url":null,"abstract":"Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions. Dong et al. developed and validated κLight, δLight and µLight, a suite of genetically encoded opioid peptide sensors for probing opioid drugs and brain-region/circuit-specific opioid release in behaving animals.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01697-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebellar Purkinje neurons enhance thirst via asprosin–PTPRD signaling 小脑浦肯野神经元通过天冬氨肽-PTPRD 信号传导增强口渴感。
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-11 DOI: 10.1038/s41593-024-01725-0
Independent of its appetite- and body weight-modulating effects, the hormone asprosin activates its receptor PTPRD at cerebellar Purkinje neurons to enhance thirst and maintain fluid homeostasis. Surprisingly, this has no effect whatsoever on Purkinje neuron-mediated motor coordination and learning.
除了调节食欲和体重的作用外,阿司匹林激素还能激活小脑浦肯野神经元的受体 PTPRD,从而增强口渴感和维持体液平衡。令人惊讶的是,这对小脑浦肯野神经元介导的运动协调和学习没有任何影响。
{"title":"Cerebellar Purkinje neurons enhance thirst via asprosin–PTPRD signaling","authors":"","doi":"10.1038/s41593-024-01725-0","DOIUrl":"10.1038/s41593-024-01725-0","url":null,"abstract":"Independent of its appetite- and body weight-modulating effects, the hormone asprosin activates its receptor PTPRD at cerebellar Purkinje neurons to enhance thirst and maintain fluid homeostasis. Surprisingly, this has no effect whatsoever on Purkinje neuron-mediated motor coordination and learning.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cerebellum modulates thirst 小脑调节口渴
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-10 DOI: 10.1038/s41593-024-01700-9
Ila Mishra, Bing Feng, Bijoya Basu, Amanda M. Brown, Linda H. Kim, Tao Lin, Mir Abbas Raza, Amelia Moore, Abigayle Hahn, Samantha Bailey, Alaina Sharp, Juan C. Bournat, Claire Poulton, Brian Kim, Amos Langsner, Aaron Sathyanesan, Roy V. Sillitoe, Yanlin He, Atul R. Chopra
The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin’s dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin–Ptprd signaling may be a potential therapeutic target for the management of thirst disorders. Chopra and colleagues show that the hormone asprosin, independent of its effects on hypothalamic AgRP neurons, activates its cell surface receptor Ptprd on cerebellar Purkinje neurons to enhance thirst for maintenance of fluid homeostasis.
小脑是一个系统发育古老的脑区,长期以来一直被认为是严格意义上的运动控制结构。最近的研究表明,小脑与认知、感觉、情绪和自主神经功能有关,因此成为进一步研究的重要目标。在这里,我们发现小鼠的小脑浦肯野神经元会被阿司匹林激素激活,导致渴感增强,并且浦肯野神经元的光遗传学或化学遗传学激活会诱导快速表现出饮水。Purkinje神经元特异性asprosin受体(Ptprd)缺失会导致水摄入量减少,但不影响食物摄入量,并且会取消asprosin的致渴性效应。Purkinje神经元介导的运动学习和协调不受这些操作的影响,表明Purkinje神经元对两种不同功能的独立控制。我们的研究结果表明,小脑是一个调节口渴的脑区,阿司匹林-Ptprd 信号转导可能是治疗口渴症的潜在治疗靶点。
{"title":"The cerebellum modulates thirst","authors":"Ila Mishra, Bing Feng, Bijoya Basu, Amanda M. Brown, Linda H. Kim, Tao Lin, Mir Abbas Raza, Amelia Moore, Abigayle Hahn, Samantha Bailey, Alaina Sharp, Juan C. Bournat, Claire Poulton, Brian Kim, Amos Langsner, Aaron Sathyanesan, Roy V. Sillitoe, Yanlin He, Atul R. Chopra","doi":"10.1038/s41593-024-01700-9","DOIUrl":"10.1038/s41593-024-01700-9","url":null,"abstract":"The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin’s dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin–Ptprd signaling may be a potential therapeutic target for the management of thirst disorders. Chopra and colleagues show that the hormone asprosin, independent of its effects on hypothalamic AgRP neurons, activates its cell surface receptor Ptprd on cerebellar Purkinje neurons to enhance thirst for maintenance of fluid homeostasis.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real control in virtual rats 虚拟老鼠的真实控制
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-09 DOI: 10.1038/s41593-024-01708-1
Luis A. Mejia
{"title":"Real control in virtual rats","authors":"Luis A. Mejia","doi":"10.1038/s41593-024-01708-1","DOIUrl":"10.1038/s41593-024-01708-1","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible multitask computation in recurrent networks utilizes shared dynamical motifs 利用共享动态图案在递归网络中进行灵活的多任务计算
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-09 DOI: 10.1038/s41593-024-01668-6
Laura N. Driscoll, Krishna Shenoy, David Sussillo
Flexible computation is a hallmark of intelligent behavior. However, little is known about how neural networks contextually reconfigure for different computations. In the present work, we identified an algorithmic neural substrate for modular computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses revealed learned computational strategies mirroring the modular subtask structure of the training task set. Dynamical motifs, which are recurring patterns of neural activity that implement specific computations through dynamics, such as attractors, decision boundaries and rotations, were reused across tasks. For example, tasks requiring memory of a continuous circular variable repurposed the same ring attractor. We showed that dynamical motifs were implemented by clusters of units when the unit activation function was restricted to be positive. Cluster lesions caused modular performance deficits. Motifs were reconfigured for fast transfer learning after an initial phase of learning. This work establishes dynamical motifs as a fundamental unit of compositional computation, intermediate between neuron and network. As whole-brain studies simultaneously record activity from multiple specialized systems, the dynamical motif framework will guide questions about specialization and generalization. The authors identify reusable ‘dynamical motifs’ in artificial neural networks. These motifs enable flexible recombination of previously learned capabilities, promoting modular, compositional computation and rapid transfer learning. This discovery sheds light on the fundamental building blocks of intelligent behavior.
灵活计算是智能行为的标志。然而,人们对神经网络如何针对不同计算进行上下文重组知之甚少。在本研究中,我们通过对多任务人工递归神经网络的研究,确定了模块化计算的算法神经基底。动态系统分析显示,学习到的计算策略反映了训练任务集的模块化子任务结构。动态图案是神经活动的重复模式,通过吸引子、决策边界和旋转等动力学实现特定计算,这些图案在不同任务中被重复使用。例如,需要记忆连续循环变量的任务会重复使用相同的环形吸引子。我们的研究表明,当单元激活函数被限制为正值时,动态图案是由单元集群实现的。集群病变会导致模块表现缺陷。在经过初始学习阶段后,动机被重新配置以实现快速迁移学习。这项研究确立了动态图案是介于神经元和网络之间的基本组成计算单元。随着全脑研究同时记录来自多个特化系统的活动,动态图案框架将为有关特化和泛化的问题提供指导。
{"title":"Flexible multitask computation in recurrent networks utilizes shared dynamical motifs","authors":"Laura N. Driscoll, Krishna Shenoy, David Sussillo","doi":"10.1038/s41593-024-01668-6","DOIUrl":"10.1038/s41593-024-01668-6","url":null,"abstract":"Flexible computation is a hallmark of intelligent behavior. However, little is known about how neural networks contextually reconfigure for different computations. In the present work, we identified an algorithmic neural substrate for modular computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses revealed learned computational strategies mirroring the modular subtask structure of the training task set. Dynamical motifs, which are recurring patterns of neural activity that implement specific computations through dynamics, such as attractors, decision boundaries and rotations, were reused across tasks. For example, tasks requiring memory of a continuous circular variable repurposed the same ring attractor. We showed that dynamical motifs were implemented by clusters of units when the unit activation function was restricted to be positive. Cluster lesions caused modular performance deficits. Motifs were reconfigured for fast transfer learning after an initial phase of learning. This work establishes dynamical motifs as a fundamental unit of compositional computation, intermediate between neuron and network. As whole-brain studies simultaneously record activity from multiple specialized systems, the dynamical motif framework will guide questions about specialization and generalization. The authors identify reusable ‘dynamical motifs’ in artificial neural networks. These motifs enable flexible recombination of previously learned capabilities, promoting modular, compositional computation and rapid transfer learning. This discovery sheds light on the fundamental building blocks of intelligent behavior.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01668-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New datasets from PsychENCODE 来自 PsychENCODE 的新数据集。
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-09 DOI: 10.1038/s41593-024-01710-7
Shari Wiseman
{"title":"New datasets from PsychENCODE","authors":"Shari Wiseman","doi":"10.1038/s41593-024-01710-7","DOIUrl":"10.1038/s41593-024-01710-7","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphine maladaptively modulates myelination 吗啡会不适应地调节髓鞘化。
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-09 DOI: 10.1038/s41593-024-01709-0
Leonie Welberg
{"title":"Morphine maladaptively modulates myelination","authors":"Leonie Welberg","doi":"10.1038/s41593-024-01709-0","DOIUrl":"10.1038/s41593-024-01709-0","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia are dispensable for experience-dependent refinement of mouse visual circuitry 小胶质细胞对小鼠视觉回路的经验依赖性完善是不可或缺的
IF 21.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-07-08 DOI: 10.1038/s41593-024-01706-3
Thomas C. Brown, Emily C. Crouse, Cecilia A. Attaway, Dana K. Oakes, Sarah W. Minton, Bart G. Borghuis, Aaron W. McGee
To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits. The authors test the model that microglia are crucial for the developmental refinement of neural circuitry by depleting them with PLX5622. Microglia prove dispensable for the experience-dependent maturation of visual circuitry during development.
为了验证小胶质细胞在神经回路发育完善过程中的关键作用,我们用 PLX5622 清除了雌雄小鼠的小胶质细胞,并研究了视觉回路和功能的经验依赖性成熟。我们评估了视网膜功能、视觉皮层神经元的感受野调谐、敏锐度和经验依赖性可塑性。在没有小胶质细胞的情况下,这些测量结果都没有明显的差异,这对小胶质细胞在神经回路形成过程中的作用提出了质疑。
{"title":"Microglia are dispensable for experience-dependent refinement of mouse visual circuitry","authors":"Thomas C. Brown, Emily C. Crouse, Cecilia A. Attaway, Dana K. Oakes, Sarah W. Minton, Bart G. Borghuis, Aaron W. McGee","doi":"10.1038/s41593-024-01706-3","DOIUrl":"10.1038/s41593-024-01706-3","url":null,"abstract":"To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits. The authors test the model that microglia are crucial for the developmental refinement of neural circuitry by depleting them with PLX5622. Microglia prove dispensable for the experience-dependent maturation of visual circuitry during development.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1