Pub Date : 2025-02-11DOI: 10.1038/s43016-025-01122-1
Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong
The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO2 emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO2 emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.
{"title":"System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China","authors":"Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong","doi":"10.1038/s43016-025-01122-1","DOIUrl":"https://doi.org/10.1038/s43016-025-01122-1","url":null,"abstract":"<p>The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO<sub>2</sub> emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO<sub>2</sub> emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1038/s43016-024-01113-8
Yujing Gao, Jinglan Cui, Xiuming Zhang, Gerrit Hoogenboom, Daniel Wallach, Yuqi Huang, Stefan Reis, Tao Lin, Baojing Gu
Rice is a major source of greenhouse gas (GHG) and nitrogen pollution. While best management practices have been developed to enhance the sustainability of rice production under current climates, their adaptability and efficacy under future climate scenarios remain uncertain. Here we evaluated 49 best management practices across global grid cells of rice-producing areas in terms of increasing rice production, reducing GHG emissions and minimizing nitrogen pollution under future climate conditions. Optimal climate adaptation measures were assigned to each grid cell. We show that implementing the proposed adaptation strategy could increase global rice production by 36% while reducing GHG emissions and nitrogen losses by 23% and 32%, respectively. This approach could lead to a global benefit of US$117 billion for food supply, resource saving, climate mitigation and environmental protection, with total implementation costs of US$13 billion. Establishing practical and cost-effective adaptation strategies is critical for the sustainable development of the global agricultural system in the face of climate challenges.
{"title":"Cost-effective adaptations increase rice production while reducing pollution under climate change","authors":"Yujing Gao, Jinglan Cui, Xiuming Zhang, Gerrit Hoogenboom, Daniel Wallach, Yuqi Huang, Stefan Reis, Tao Lin, Baojing Gu","doi":"10.1038/s43016-024-01113-8","DOIUrl":"https://doi.org/10.1038/s43016-024-01113-8","url":null,"abstract":"<p>Rice is a major source of greenhouse gas (GHG) and nitrogen pollution. While best management practices have been developed to enhance the sustainability of rice production under current climates, their adaptability and efficacy under future climate scenarios remain uncertain. Here we evaluated 49 best management practices across global grid cells of rice-producing areas in terms of increasing rice production, reducing GHG emissions and minimizing nitrogen pollution under future climate conditions. Optimal climate adaptation measures were assigned to each grid cell. We show that implementing the proposed adaptation strategy could increase global rice production by 36% while reducing GHG emissions and nitrogen losses by 23% and 32%, respectively. This approach could lead to a global benefit of US$117 billion for food supply, resource saving, climate mitigation and environmental protection, with total implementation costs of US$13 billion. Establishing practical and cost-effective adaptation strategies is critical for the sustainable development of the global agricultural system in the face of climate challenges.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1038/s43016-024-01112-9
David J. Eldridge, Tadeo Sáez-Sandino, Fernando T. Maestre, Jingyi Ding, Emilio Guirado, Manuel Delgado-Baquerizo
Dryland grazing sustains millions of people worldwide but, when poorly managed, threatens food security. Here we combine livestock and wild herbivore dung mass data from surveys at 760 dryland sites worldwide, representing independent measurements of herbivory, to generate high-resolution maps. We show that livestock and wild herbivore grazing is globally disconnected, and identify hotspots of herbivore activity across Africa, the Eurasian grasslands, India, Australia and the United States. Wild herbivore dung mass was negatively correlated with total organic nitrogen, yet strong site-level correlations exist between our livestock dung estimates and total soil organic nitrogen. Using dung mass as a proxy of herbivore abundance enables standardized, field-based measures of grazing pressure that account for different herbivore types. This can improve herbivore density modelling and guide better management practices for populations that rely on dryland-grazing livestock for food.
{"title":"Dung predicts the global distribution of herbivore grazing pressure in drylands","authors":"David J. Eldridge, Tadeo Sáez-Sandino, Fernando T. Maestre, Jingyi Ding, Emilio Guirado, Manuel Delgado-Baquerizo","doi":"10.1038/s43016-024-01112-9","DOIUrl":"https://doi.org/10.1038/s43016-024-01112-9","url":null,"abstract":"<p>Dryland grazing sustains millions of people worldwide but, when poorly managed, threatens food security. Here we combine livestock and wild herbivore dung mass data from surveys at 760 dryland sites worldwide, representing independent measurements of herbivory, to generate high-resolution maps. We show that livestock and wild herbivore grazing is globally disconnected, and identify hotspots of herbivore activity across Africa, the Eurasian grasslands, India, Australia and the United States. Wild herbivore dung mass was negatively correlated with total organic nitrogen, yet strong site-level correlations exist between our livestock dung estimates and total soil organic nitrogen. Using dung mass as a proxy of herbivore abundance enables standardized, field-based measures of grazing pressure that account for different herbivore types. This can improve herbivore density modelling and guide better management practices for populations that rely on dryland-grazing livestock for food.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1038/s43016-024-01095-7
Babak Ravandi, Gordana Ispirova, Michael Sebek, Peter Mehler, Albert-László Barabási, Giulia Menichetti
The offering of grocery stores is a strong driver of consumer decisions. While highly processed foods such as packaged products, processed meat and sweetened soft drinks have been increasingly associated with unhealthy diets, information on the degree of processing characterizing an item in a store is not straightforward to obtain, limiting the ability of individuals to make informed choices. GroceryDB, a database with over 50,000 food items sold by Walmart, Target and Whole Foods, shows the degree of processing of food items and potential alternatives in the surrounding food environment. The extensive data gathered on ingredient lists and nutrition facts enables a large-scale analysis of ingredient patterns and degrees of processing, categorized by store, food category and price range. Furthermore, it allows the quantification of the individual contribution of over 1,000 ingredients to ultra-processing. GroceryDB makes this information accessible, guiding consumers toward less processed food choices.
{"title":"Prevalence of processed foods in major US grocery stores","authors":"Babak Ravandi, Gordana Ispirova, Michael Sebek, Peter Mehler, Albert-László Barabási, Giulia Menichetti","doi":"10.1038/s43016-024-01095-7","DOIUrl":"https://doi.org/10.1038/s43016-024-01095-7","url":null,"abstract":"<p>The offering of grocery stores is a strong driver of consumer decisions. While highly processed foods such as packaged products, processed meat and sweetened soft drinks have been increasingly associated with unhealthy diets, information on the degree of processing characterizing an item in a store is not straightforward to obtain, limiting the ability of individuals to make informed choices. GroceryDB, a database with over 50,000 food items sold by Walmart, Target and Whole Foods, shows the degree of processing of food items and potential alternatives in the surrounding food environment. The extensive data gathered on ingredient lists and nutrition facts enables a large-scale analysis of ingredient patterns and degrees of processing, categorized by store, food category and price range. Furthermore, it allows the quantification of the individual contribution of over 1,000 ingredients to ultra-processing. GroceryDB makes this information accessible, guiding consumers toward less processed food choices.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1038/s43016-024-01101-y
Tanita Northcott, Mark Lawrence, Christine Parker, Belinda Reeve, Phillip Baker
Growing evidence suggests that diets high in ultra-processed foods (UPFs) are harming human and planetary health. UPFs therefore pose a complex regulatory challenge, yet, to date, little research has systematically assessed how governments have responded to UPFs in national food policies. Here we analyse data from the NOURISHING database to assess the scope and strength of UPF-related regulatory interventions worldwide, using three frameworks—namely, NOURISHING, the Nuffield Ladder and the Modalities of Control framework. Of the 417 UPF-related measures identified, most imply food processing or mention UPF examples rather than refer to processing or UPFs specifically. The scope of action is narrow; 85.9% of interventions change the food environment, largely represented by nutrition labelling. The strength of action is limited; interventions are skewed towards informational measures to influence consumer choice, and 47.1% of measures use consensus to shape food business conduct. These findings highlight an opportunity to broaden the scope and strength of UPF-related regulation.
{"title":"Regulatory responses to ultra-processed foods are skewed towards behaviour change and not food system transformation","authors":"Tanita Northcott, Mark Lawrence, Christine Parker, Belinda Reeve, Phillip Baker","doi":"10.1038/s43016-024-01101-y","DOIUrl":"https://doi.org/10.1038/s43016-024-01101-y","url":null,"abstract":"<p>Growing evidence suggests that diets high in ultra-processed foods (UPFs) are harming human and planetary health. UPFs therefore pose a complex regulatory challenge, yet, to date, little research has systematically assessed how governments have responded to UPFs in national food policies. Here we analyse data from the NOURISHING database to assess the scope and strength of UPF-related regulatory interventions worldwide, using three frameworks—namely, NOURISHING, the Nuffield Ladder and the Modalities of Control framework. Of the 417 UPF-related measures identified, most imply food processing or mention UPF examples rather than refer to processing or UPFs specifically. The scope of action is narrow; 85.9% of interventions change the food environment, largely represented by nutrition labelling. The strength of action is limited; interventions are skewed towards informational measures to influence consumer choice, and 47.1% of measures use consensus to shape food business conduct. These findings highlight an opportunity to broaden the scope and strength of UPF-related regulation.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08DOI: 10.1038/s43016-024-01107-6
Chenchen Ren, Liyin He, Lorenzo Rosa
Climate change poses substantial challenges to agriculture and crop production, but the combined role of nitrogen and water inputs in adaptation has been largely overlooked. Here, by developing regression models using US county-level data (2008–2020), we demonstrate that integrated optimization of irrigation and nitrogen inputs represents the most resource-efficient strategy to offset the climate-related yield losses. Under the 1.5 °C (3 °C) warming scenario, this approach involves increasing irrigation water withdrawals for maize by 62% (67%) and reducing it for soybean by 65% (58%), while increasing nitrogen inputs for maize by 4% (13%) and for soybean by 10% (130%) annually. This strategy reduces unsustainable irrigation water withdrawals by 73% (56%) for maize and 26% (28%) for soybean, enhancing water sustainability. Cost–benefit analysis indicates this optimization is cost-effective for over 80% of US maize and soybean productions, underscoring its critical role for climate change adaptation.
{"title":"Integrated irrigation and nitrogen optimization is a resource-efficient adaptation strategy for US maize and soybean production","authors":"Chenchen Ren, Liyin He, Lorenzo Rosa","doi":"10.1038/s43016-024-01107-6","DOIUrl":"https://doi.org/10.1038/s43016-024-01107-6","url":null,"abstract":"<p>Climate change poses substantial challenges to agriculture and crop production, but the combined role of nitrogen and water inputs in adaptation has been largely overlooked. Here, by developing regression models using US county-level data (2008–2020), we demonstrate that integrated optimization of irrigation and nitrogen inputs represents the most resource-efficient strategy to offset the climate-related yield losses. Under the 1.5 °C (3 °C) warming scenario, this approach involves increasing irrigation water withdrawals for maize by 62% (67%) and reducing it for soybean by 65% (58%), while increasing nitrogen inputs for maize by 4% (13%) and for soybean by 10% (130%) annually. This strategy reduces unsustainable irrigation water withdrawals by 73% (56%) for maize and 26% (28%) for soybean, enhancing water sustainability. Cost–benefit analysis indicates this optimization is cost-effective for over 80% of US maize and soybean productions, underscoring its critical role for climate change adaptation.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1038/s43016-024-01106-7
Ziheng Peng, Marcel G. A. van der Heijden, Yu Liu, Xiaomeng Li, Haibo Pan, Yining An, Hang Gao, Jiejun Qi, Jiamin Gao, Xun Qian, James M. Tiedje, Gehong Wei, Shuo Jiao
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change. Here we conducted a microcosm experiment to determine whether subsoils were more sensitive to global changes across 40 agricultural ecosystems in China, in combination with a multiple global change factor experiment and an in situ field study. We found that subsoils exhibited greater fluctuation in species diversity, community composition, and complexity of microbial networks and ecosystem functions than topsoils, indicating lower resistance to global changes. Soil biodiversity was a major driver of ecosystem resistance, surpassing climate and soil parameters. A reciprocal microorganism transplant experiment showed that microorganisms isolated from the topsoil are more resistant to global changes than those from subsoil. Our study emphasizes that subsoil ecosystems are sensitive to global changes, underscoring the importance of including subsoils in predictions of agricultural sustainability and crop productivity under changing environmental conditions.
{"title":"Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems","authors":"Ziheng Peng, Marcel G. A. van der Heijden, Yu Liu, Xiaomeng Li, Haibo Pan, Yining An, Hang Gao, Jiejun Qi, Jiamin Gao, Xun Qian, James M. Tiedje, Gehong Wei, Shuo Jiao","doi":"10.1038/s43016-024-01106-7","DOIUrl":"https://doi.org/10.1038/s43016-024-01106-7","url":null,"abstract":"<p>Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change. Here we conducted a microcosm experiment to determine whether subsoils were more sensitive to global changes across 40 agricultural ecosystems in China, in combination with a multiple global change factor experiment and an in situ field study. We found that subsoils exhibited greater fluctuation in species diversity, community composition, and complexity of microbial networks and ecosystem functions than topsoils, indicating lower resistance to global changes. Soil biodiversity was a major driver of ecosystem resistance, surpassing climate and soil parameters. A reciprocal microorganism transplant experiment showed that microorganisms isolated from the topsoil are more resistant to global changes than those from subsoil. Our study emphasizes that subsoil ecosystems are sensitive to global changes, underscoring the importance of including subsoils in predictions of agricultural sustainability and crop productivity under changing environmental conditions.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1038/s43016-024-01102-x
Anneli Löfstedt, Bernhard Scheliga, Magaly Aceves-Martins, Baukje de Roos
Seafood can contribute towards healthy and sustainable food systems by improving public health and helping achieve net zero carbon emissions. Here, we provide a high-resolution perspective on UK seafood supplies and nutrient flows at the species level. We mapped seafood production (capture and aquaculture), trade (imports and exports), purchases (within and out of home) and seafood consumption between 2009 and 2020. UK dietary recommendations for finfish consumption were not achieved by domestic production nor national supplies. Mapping dietary nutrient flows revealed that the UK undergoes substantial losses of omega-3 fatty acids, vitamin B12 and vitamin D, which could contribute 73%, 46% and 7% towards UK-recommended nutrient intakes, respectively, through exports of oily fish such as salmon, herring and mackerel. Policies should consider promoting greater consumption of locally produced oily fish species to improve public health and seafood system resilience.
{"title":"Seafood supply mapping reveals production and consumption mismatches and large dietary nutrient losses through exports in the United Kingdom","authors":"Anneli Löfstedt, Bernhard Scheliga, Magaly Aceves-Martins, Baukje de Roos","doi":"10.1038/s43016-024-01102-x","DOIUrl":"https://doi.org/10.1038/s43016-024-01102-x","url":null,"abstract":"<p>Seafood can contribute towards healthy and sustainable food systems by improving public health and helping achieve net zero carbon emissions. Here, we provide a high-resolution perspective on UK seafood supplies and nutrient flows at the species level. We mapped seafood production (capture and aquaculture), trade (imports and exports), purchases (within and out of home) and seafood consumption between 2009 and 2020. UK dietary recommendations for finfish consumption were not achieved by domestic production nor national supplies. Mapping dietary nutrient flows revealed that the UK undergoes substantial losses of omega-3 fatty acids, vitamin B<sub>12</sub> and vitamin D, which could contribute 73%, 46% and 7% towards UK-recommended nutrient intakes, respectively, through exports of oily fish such as salmon, herring and mackerel. Policies should consider promoting greater consumption of locally produced oily fish species to improve public health and seafood system resilience.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}