Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-24-0698
Wei Wang, Rahul Chaudhary, Justin Szpendyk, Lamyae El Khalki, Neelum Aziz Yousafzai, Ricky Chan, Amar Desai, Khalid Sossey-Alaoui
Triple-negative breast cancer (TNBC) presents significant clinical challenges because of its limited treatment options and aggressive behavior, often associated with poor prognosis. This study focuses on kindlin-2, an adapter protein, and its role in TNBC progression, particularly in hematopoiesis-mediated immune evasion. TNBC tumors expressing high levels of kindlin-2 induce a notable reshaping of hematopoiesis, promoting the expansion of myeloid cells in the bone marrow and spleen. This shift correlated with increased levels of neutrophils and monocytes in tumor-bearing mice over time. Conversely, genetic knockout (KO) of kindlin-2 mitigated this myeloid bias and fostered T-cell infiltration within the tumor microenvironment, indicating the pivotal role of kindlin-2 in immune modulation. Further investigations revealed that kindlin-2 deficiency led to reduced expression of PD-L1, a critical immune checkpoint inhibitor, in TNBC tumors. This molecular change sensitized kindlin-2-deficient tumors to host antitumor immune responses, resulting in enhanced tumor suppression in immunocompetent mouse models. Single-cell RNA sequencing, bulk RNA sequencing, and IHC data supported these findings by highlighting enriched immune-related pathways and increased infiltration of immune cells in kindlin-2-deficient tumors. Therapeutically, targeting PD-L1 in kindlin-2-expressing TNBC tumors effectively inhibited tumor growth, akin to the effects observed with genetic kindlin-2 KO or PD-L1 KO. Our data underscore kindlin-2 as a promising therapeutic target in combination with immune checkpoint blockade to bolster antitumor immunity and counteract resistance mechanisms typical of TNBC and other immune-evasive solid tumors. Implications: Kindlin-2 regulates tumor immune evasion through the systemic modulation of hematopoiesis and PD-L1 expression, which warrants therapeutic targeting of kindlin-2 in patients with TNBC.
{"title":"Kindlin-2-Mediated Hematopoiesis Remodeling Regulates Triple-Negative Breast Cancer Immune Evasion.","authors":"Wei Wang, Rahul Chaudhary, Justin Szpendyk, Lamyae El Khalki, Neelum Aziz Yousafzai, Ricky Chan, Amar Desai, Khalid Sossey-Alaoui","doi":"10.1158/1541-7786.MCR-24-0698","DOIUrl":"10.1158/1541-7786.MCR-24-0698","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) presents significant clinical challenges because of its limited treatment options and aggressive behavior, often associated with poor prognosis. This study focuses on kindlin-2, an adapter protein, and its role in TNBC progression, particularly in hematopoiesis-mediated immune evasion. TNBC tumors expressing high levels of kindlin-2 induce a notable reshaping of hematopoiesis, promoting the expansion of myeloid cells in the bone marrow and spleen. This shift correlated with increased levels of neutrophils and monocytes in tumor-bearing mice over time. Conversely, genetic knockout (KO) of kindlin-2 mitigated this myeloid bias and fostered T-cell infiltration within the tumor microenvironment, indicating the pivotal role of kindlin-2 in immune modulation. Further investigations revealed that kindlin-2 deficiency led to reduced expression of PD-L1, a critical immune checkpoint inhibitor, in TNBC tumors. This molecular change sensitized kindlin-2-deficient tumors to host antitumor immune responses, resulting in enhanced tumor suppression in immunocompetent mouse models. Single-cell RNA sequencing, bulk RNA sequencing, and IHC data supported these findings by highlighting enriched immune-related pathways and increased infiltration of immune cells in kindlin-2-deficient tumors. Therapeutically, targeting PD-L1 in kindlin-2-expressing TNBC tumors effectively inhibited tumor growth, akin to the effects observed with genetic kindlin-2 KO or PD-L1 KO. Our data underscore kindlin-2 as a promising therapeutic target in combination with immune checkpoint blockade to bolster antitumor immunity and counteract resistance mechanisms typical of TNBC and other immune-evasive solid tumors. Implications: Kindlin-2 regulates tumor immune evasion through the systemic modulation of hematopoiesis and PD-L1 expression, which warrants therapeutic targeting of kindlin-2 in patients with TNBC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"450-462"},"PeriodicalIF":4.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-24-0331
Daniela Araiza-Olivera, Tatiana Y Prudnikova, Cristina Uribe-Alvarez, Kathy Q Cai, Janusz Franco-Barraza, Jesus M Dones, Ronald T Raines, Jonathan Chernoff
Breast cancers of the Integrative Cluster 2 (IntClust-2) type, characterized by amplification of a small portion of chromosome 11, have a median survival of only 5 years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study, we used a gene editing method to knock out, one by one, each of the 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells. In addition to well-known drivers such as CCND1 and PAK1, we identified two different genes (SERPINH1 and P4HA3) that encode proteins involved in collagen synthesis and organization. Using both in vitro and in vivo functional analyses, we determined that P4HA3 and/or SERPINH1 provide a critical driver function for IntClust-2 basic processes, such as viability, proliferation, and migration. Inhibiting these enzymes via genetic or pharmacologic means reduced collagen synthesis and impeded oncogenic signaling transduction in cell culture models, and a small-molecule inhibitor of P4HA3 was effective in treating 11q13 tumor growth in an animal model. As collagen has a well-known association with tissue stiffness and aggressive forms of breast cancer, we believe that the two genes we identified provide an opportunity for a new therapeutic strategy in IntClust-2 breast cancers. Implications: Breast cancers with 11q13/14 chromosomal amplifications may be vulnerable to inhibitors of collagen synthesis.
{"title":"Identifying and Targeting Key Driver Genes for Collagen Production within the 11q13/14 Breast Cancer Amplicon.","authors":"Daniela Araiza-Olivera, Tatiana Y Prudnikova, Cristina Uribe-Alvarez, Kathy Q Cai, Janusz Franco-Barraza, Jesus M Dones, Ronald T Raines, Jonathan Chernoff","doi":"10.1158/1541-7786.MCR-24-0331","DOIUrl":"10.1158/1541-7786.MCR-24-0331","url":null,"abstract":"<p><p>Breast cancers of the Integrative Cluster 2 (IntClust-2) type, characterized by amplification of a small portion of chromosome 11, have a median survival of only 5 years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study, we used a gene editing method to knock out, one by one, each of the 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells. In addition to well-known drivers such as CCND1 and PAK1, we identified two different genes (SERPINH1 and P4HA3) that encode proteins involved in collagen synthesis and organization. Using both in vitro and in vivo functional analyses, we determined that P4HA3 and/or SERPINH1 provide a critical driver function for IntClust-2 basic processes, such as viability, proliferation, and migration. Inhibiting these enzymes via genetic or pharmacologic means reduced collagen synthesis and impeded oncogenic signaling transduction in cell culture models, and a small-molecule inhibitor of P4HA3 was effective in treating 11q13 tumor growth in an animal model. As collagen has a well-known association with tissue stiffness and aggressive forms of breast cancer, we believe that the two genes we identified provide an opportunity for a new therapeutic strategy in IntClust-2 breast cancers. Implications: Breast cancers with 11q13/14 chromosomal amplifications may be vulnerable to inhibitors of collagen synthesis.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"405-415"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-24-0309
Leslie Cuellar-Vite, Elyse M Donaubauer, Kristen L Weber-Bonk, Jessica R Bobbitt, Natasha N Ingles, Taylor L Brzozowski, Fadi W Abdul-Karim, Christine N Booth, Ruth A Keri
EGFR is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors (EGFRi) is limited to cancers that harbor sensitizing mutations in the EGFR gene because of dose-limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wild-type (WT) or mutant EGFR. We found that YES1 is highly expressed in triple-negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels. Mechanistically, YES1 stimulates EGFR expression by signaling to JNK and stabilizing the AP-1 transcription factor c-Jun. This effect extends beyond TNBC as YES1 also sustains EGFR expression in non-small cell lung cancer cells, including those that harbor the EGFR gatekeeper mutation T790M. The novel ability of YES1 to regulate the expression of WT and mutant EGFR mRNA and protein provides a potential therapeutic opportunity of utilizing YES1 blockade to broadly increase the efficacy of EGFR inhibitors. Indeed, we observed synergy within in vitro and in vivo models of TNBC and non-small cell lung cancer, even in the absence of EGFR-activating mutations. Together, these data provide a rationale for blocking YES1 activity as an approach for improving the efficacy of EGFR-targeting drugs in cancers that have generally been refractory to such inhibitors. Implications: YES1 sustains EGFR expression, revealing a therapeutic vulnerability for increasing the efficacy of EGFR inhibitors by lowering the threshold for efficacy in tumors driven by the WT or mutant receptor.
{"title":"Exploiting YES1-Driven EGFR Expression Improves the Efficacy of EGFR Inhibitors.","authors":"Leslie Cuellar-Vite, Elyse M Donaubauer, Kristen L Weber-Bonk, Jessica R Bobbitt, Natasha N Ingles, Taylor L Brzozowski, Fadi W Abdul-Karim, Christine N Booth, Ruth A Keri","doi":"10.1158/1541-7786.MCR-24-0309","DOIUrl":"10.1158/1541-7786.MCR-24-0309","url":null,"abstract":"<p><p>EGFR is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors (EGFRi) is limited to cancers that harbor sensitizing mutations in the EGFR gene because of dose-limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wild-type (WT) or mutant EGFR. We found that YES1 is highly expressed in triple-negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels. Mechanistically, YES1 stimulates EGFR expression by signaling to JNK and stabilizing the AP-1 transcription factor c-Jun. This effect extends beyond TNBC as YES1 also sustains EGFR expression in non-small cell lung cancer cells, including those that harbor the EGFR gatekeeper mutation T790M. The novel ability of YES1 to regulate the expression of WT and mutant EGFR mRNA and protein provides a potential therapeutic opportunity of utilizing YES1 blockade to broadly increase the efficacy of EGFR inhibitors. Indeed, we observed synergy within in vitro and in vivo models of TNBC and non-small cell lung cancer, even in the absence of EGFR-activating mutations. Together, these data provide a rationale for blocking YES1 activity as an approach for improving the efficacy of EGFR-targeting drugs in cancers that have generally been refractory to such inhibitors. Implications: YES1 sustains EGFR expression, revealing a therapeutic vulnerability for increasing the efficacy of EGFR inhibitors by lowering the threshold for efficacy in tumors driven by the WT or mutant receptor.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"391-404"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-24-0373
Warren Phipps, Bhavneet Bhinder, Andrea Towlerton, Peter Mooka, James Kafeero, Matt Fitzgibbon, Olivier Elemento, Ethel Cesarman
Kaposi sarcoma is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus. People with immunodeficiencies, including human immunodeficiency virus (HIV), are at increased risk for developing Kaposi sarcoma, but our understanding of the contributions of the cellular genome to Kaposi sarcoma pathogenesis remains limited. To determine if there are cellular genetic alterations in Kaposi sarcoma that might provide biological or therapeutic insights, we performed whole-exome sequencing on 78 Kaposi sarcoma tumors and matched normal control skin from 59 adults with Kaposi sarcoma (46 with HIV-associated Kaposi sarcoma and 13 with HIV-negative Kaposi sarcoma) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda. We found a very low mutational burden in all but one specimen (median = 11 mutations), which is the lowest number of mutations among all 33 tumor types in The Cancer Genome Atlas. No recurrent mutations were seen, and the most commonly affected oncogenic pathway was RTK/RAS. Mutational signatures included defective DNA mismatch repair and smoking. There was no evidence suggesting that multiple tumors from the same patient originated from the same original clone. The number of genome copy alterations per genome was higher in tumors from those without HIV infection and in tumors from participants with advanced stage disease, suggesting that lesions that take longer to develop may accumulate more alterations, although the number of alterations remains low compared with other cancers. Implications: Our findings indicate that the pathogenesis of Kaposi sarcoma differs from other malignancies and that the primary driver of carcinogenesis is Kaposi sarcoma-associated herpesvirus infection and expression of viral oncogenes, rather than clonal oncogenic transformation.
卡波西肉瘤(KS)是由卡波西肉瘤疱疹病毒(KSHV/HHV-8)引起的一种常见侵袭性恶性肿瘤。免疫缺陷患者(包括艾滋病病毒感染者)罹患卡波西肉瘤的风险更高,但我们对细胞基因组对卡波西肉瘤发病机制的贡献的了解仍然有限。为了确定 KS 中是否存在可提供生物学或治疗见解的细胞基因改变,我们在乌干达坎帕拉的乌干达癌症研究所(Uganda Cancer Institute)对接受治疗的 59 名成年 KS 患者(46 名 HIV 相关 KS 患者和 13 名 HIV 阴性 KS 患者)的 78 例 KS 肿瘤和匹配的正常对照皮肤进行了全外显子组测序。我们发现,除一份标本外,所有标本的突变负荷都很低(中位数=11个突变),是《癌症基因组图谱》(TCGA)中所有33种肿瘤类型中突变数量最低的。没有发现复发性突变,最常受影响的致癌途径是 RTK/RAS。突变特征包括DNA错配修复缺陷和吸烟。没有证据表明同一患者的多个肿瘤源自同一个原始克隆。在未感染艾滋病毒的患者和晚期患者的肿瘤中,每个基因组拷贝的改变数量较高,这表明病变发展时间较长的肿瘤可能会积累更多的改变,尽管与其他癌症相比,改变的数量仍然较低。影响:我们的研究结果表明,KS 的发病机制不同于其他恶性肿瘤,致癌的主要驱动因素是 KSHV 病毒感染和病毒致癌基因的表达,而不是克隆致癌转化。
{"title":"Exome Sequencing Reveals a Sparse Genomic Landscape in Kaposi Sarcoma.","authors":"Warren Phipps, Bhavneet Bhinder, Andrea Towlerton, Peter Mooka, James Kafeero, Matt Fitzgibbon, Olivier Elemento, Ethel Cesarman","doi":"10.1158/1541-7786.MCR-24-0373","DOIUrl":"10.1158/1541-7786.MCR-24-0373","url":null,"abstract":"<p><p>Kaposi sarcoma is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus. People with immunodeficiencies, including human immunodeficiency virus (HIV), are at increased risk for developing Kaposi sarcoma, but our understanding of the contributions of the cellular genome to Kaposi sarcoma pathogenesis remains limited. To determine if there are cellular genetic alterations in Kaposi sarcoma that might provide biological or therapeutic insights, we performed whole-exome sequencing on 78 Kaposi sarcoma tumors and matched normal control skin from 59 adults with Kaposi sarcoma (46 with HIV-associated Kaposi sarcoma and 13 with HIV-negative Kaposi sarcoma) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda. We found a very low mutational burden in all but one specimen (median = 11 mutations), which is the lowest number of mutations among all 33 tumor types in The Cancer Genome Atlas. No recurrent mutations were seen, and the most commonly affected oncogenic pathway was RTK/RAS. Mutational signatures included defective DNA mismatch repair and smoking. There was no evidence suggesting that multiple tumors from the same patient originated from the same original clone. The number of genome copy alterations per genome was higher in tumors from those without HIV infection and in tumors from participants with advanced stage disease, suggesting that lesions that take longer to develop may accumulate more alterations, although the number of alterations remains low compared with other cancers. Implications: Our findings indicate that the pathogenesis of Kaposi sarcoma differs from other malignancies and that the primary driver of carcinogenesis is Kaposi sarcoma-associated herpesvirus infection and expression of viral oncogenes, rather than clonal oncogenic transformation.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"438-449"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-24-0544
Anindita Dutta, Antonio Rodriguez-Calero, Kacey Ronaldson-Bouchard, Anne Offermann, Daoud Rahman, Twinkle Bapuji Vhatkar, Dan Hasson, Mohammed Alshalalfa, Elai Davicioni, R Jeffrey Karnes, Mark A Rubin, Gordana Vunjak-Novakovic, Cory Abate-Shen, Juan Martin Arriaga
Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATPase family AAA domain containing 2 (ATAD2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here, we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared with primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in reducing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.
{"title":"ATAD2 Drives Prostate Cancer Progression to Metastasis.","authors":"Anindita Dutta, Antonio Rodriguez-Calero, Kacey Ronaldson-Bouchard, Anne Offermann, Daoud Rahman, Twinkle Bapuji Vhatkar, Dan Hasson, Mohammed Alshalalfa, Elai Davicioni, R Jeffrey Karnes, Mark A Rubin, Gordana Vunjak-Novakovic, Cory Abate-Shen, Juan Martin Arriaga","doi":"10.1158/1541-7786.MCR-24-0544","DOIUrl":"10.1158/1541-7786.MCR-24-0544","url":null,"abstract":"<p><p>Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATPase family AAA domain containing 2 (ATAD2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here, we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared with primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in reducing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"379-390"},"PeriodicalIF":4.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1158/1541-7786.MCR-25-0265
Sarah Fogarty, Fiona A Ross, Diana Vara Ciruelos, Alexander Gray, Graeme J Gowans, D Grahame Hardie
{"title":"Editor's Note: AMPK Causes Cell Cycle Arrest in LKB1-Deficient Cells via Activation of CAMKK2.","authors":"Sarah Fogarty, Fiona A Ross, Diana Vara Ciruelos, Alexander Gray, Graeme J Gowans, D Grahame Hardie","doi":"10.1158/1541-7786.MCR-25-0265","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-25-0265","url":null,"abstract":"","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":"23 5","pages":"477"},"PeriodicalIF":4.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malignant neoplasms arise within a region of chronic inflammation, which is a key factor in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. IL-1 plays critical functions in tumor development by influencing the tumor microenvironment and promoting cancer progression. However, the mechanism of continuous activation of the IL-1-mediated inflammatory pathway in tumors has not been fully elucidated. This study provides a novel mechanism of the autocrine activation of IL-1 signaling in squamous cell carcinoma (SCC) through a novel oncoprotein, TSC-22 homologous gene-1 (THG-1, also known as TSC22D4). The RNA sequencing analysis revealed that THG-1 overexpression enhances the transcription of NF-κB targets including IL1A, IL1B, TNFA, and IL8. Furthermore, THG-1 knockdown reduced the responsiveness to IL-1 through the suppression of NF-κB nuclear translocation. To elucidate the mechanism, we focused on a THG-1 interacting protein, NRBP1. We found that NRBP1 facilitates the degradation of TNF receptor-associated factor 6 (TRAF6) through its E3 ubiquitin ligase activity. THG-1 bound to NRBP1 and suppressed the degradation of TRAF6. Furthermore, THG-1 knockdown reduced TRAF6 abundance and NF-κB activity in SCC cells. Public database analyses of head and neck SCC revealed that high expression of THG-1 is associated with the activation of the IL-1 and TNF pathways, which share TRAF6 in the signal transductions. Finally, THG-1 abundance in laryngeal SCC specimens is elevated in patients with recurrence. These results indicated that THG-1 drives the self-sufficiency of IL-1-mediated inflammatory pathway, which could contribute to the future diagnosis and immunotherapy of SCCs. Implications: An oncoprotein, THG-1/TSC22D4 activates the IL-1-mediated inflammatory pathway through the suppression of TRAF6 degradation, which mediates the continuous inflammation in tumors.
{"title":"THG-1/TSC22D4 Promotes IL-1 Signaling through Stabilization of TRAF6 in Squamous Cell Carcinoma.","authors":"Yasuhito Okano, Hiroyuki Suzuki, Yukihide Watanabe, Mohammed Abdelaziz, Lev Manevich, Kunio Kawanishi, Haruka Ozaki, Ryota Ishii, Shin Matsumoto, Nohara Goto, Ling Zheng, Yukari Okita, Jongchan Hwang, Masahiro Nakayama, Yoshihide Shima, Noriaki Sakamoto, Masayuki Noguchi, Keiji Tabuchi, Mitsuyasu Kato","doi":"10.1158/1541-7786.MCR-24-0120","DOIUrl":"10.1158/1541-7786.MCR-24-0120","url":null,"abstract":"<p><p>Malignant neoplasms arise within a region of chronic inflammation, which is a key factor in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. IL-1 plays critical functions in tumor development by influencing the tumor microenvironment and promoting cancer progression. However, the mechanism of continuous activation of the IL-1-mediated inflammatory pathway in tumors has not been fully elucidated. This study provides a novel mechanism of the autocrine activation of IL-1 signaling in squamous cell carcinoma (SCC) through a novel oncoprotein, TSC-22 homologous gene-1 (THG-1, also known as TSC22D4). The RNA sequencing analysis revealed that THG-1 overexpression enhances the transcription of NF-κB targets including IL1A, IL1B, TNFA, and IL8. Furthermore, THG-1 knockdown reduced the responsiveness to IL-1 through the suppression of NF-κB nuclear translocation. To elucidate the mechanism, we focused on a THG-1 interacting protein, NRBP1. We found that NRBP1 facilitates the degradation of TNF receptor-associated factor 6 (TRAF6) through its E3 ubiquitin ligase activity. THG-1 bound to NRBP1 and suppressed the degradation of TRAF6. Furthermore, THG-1 knockdown reduced TRAF6 abundance and NF-κB activity in SCC cells. Public database analyses of head and neck SCC revealed that high expression of THG-1 is associated with the activation of the IL-1 and TNF pathways, which share TRAF6 in the signal transductions. Finally, THG-1 abundance in laryngeal SCC specimens is elevated in patients with recurrence. These results indicated that THG-1 drives the self-sufficiency of IL-1-mediated inflammatory pathway, which could contribute to the future diagnosis and immunotherapy of SCCs. Implications: An oncoprotein, THG-1/TSC22D4 activates the IL-1-mediated inflammatory pathway through the suppression of TRAF6 degradation, which mediates the continuous inflammation in tumors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"463-476"},"PeriodicalIF":4.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1158/1541-7786.MCR-24-0508
Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin
Few treatment options are available for patients with metastatic uveal melanoma. Although the bispecific tebentafusp is FDA approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of uveal melanoma. Treatment options that improve the recognition of uveal melanoma by the immune system may be key to reducing disease burden. We investigated whether uveal melanoma has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that uveal melanoma expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8, and ninjurin-1. We induced cleavage of GSDMs in uveal melanoma cell lines treated with metabolic inhibitors. In particular, the carnitine palmitoyltransferase 1 (CPT1) inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage, and the release of HMGB1 and IL-1β, indicating that the observed cleavage of GSDMs led to pyroptosis. Importantly, a gene signature reflecting CPT1A activity correlated with poor prognosis in patients with uveal melanoma and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was dependent on GSDME but not on GSDMD, and a pyroptosis gene signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of patients with uveal melanoma. Together, these data show that metabolic inhibitors can induce pyroptosis in uveal melanoma cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in patients with metastatic uveal melanoma. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.
{"title":"Metabolic Inhibition Induces Pyroptosis in Uveal Melanoma.","authors":"Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin","doi":"10.1158/1541-7786.MCR-24-0508","DOIUrl":"10.1158/1541-7786.MCR-24-0508","url":null,"abstract":"<p><p>Few treatment options are available for patients with metastatic uveal melanoma. Although the bispecific tebentafusp is FDA approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of uveal melanoma. Treatment options that improve the recognition of uveal melanoma by the immune system may be key to reducing disease burden. We investigated whether uveal melanoma has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that uveal melanoma expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8, and ninjurin-1. We induced cleavage of GSDMs in uveal melanoma cell lines treated with metabolic inhibitors. In particular, the carnitine palmitoyltransferase 1 (CPT1) inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage, and the release of HMGB1 and IL-1β, indicating that the observed cleavage of GSDMs led to pyroptosis. Importantly, a gene signature reflecting CPT1A activity correlated with poor prognosis in patients with uveal melanoma and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was dependent on GSDME but not on GSDMD, and a pyroptosis gene signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of patients with uveal melanoma. Together, these data show that metabolic inhibitors can induce pyroptosis in uveal melanoma cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in patients with metastatic uveal melanoma. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"350-362"},"PeriodicalIF":4.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1158/1541-7786.MCR-24-0533
Hyung Bum Kim, W Lee Kraus
Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations is not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon the removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. Although circulating E2 is sequestered by sex hormone binding globulin, the potential mechanisms of intracellular E2 retention are poorly understood. We found that mislocalization of a steroid-binding GRAM domain-containing protein, ASTER-B, to the nucleus, which is observed in a subset of patients with breast cancer, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2 and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. Implications: Mislocalized nuclear ASTER-B, which binds estradiol to support the functions of ER, can provide an alternate means of enhancing the biological effects of E2 in breast cancers and may be a potential therapeutic target that addresses multiple aspects of estrogen bioavailability.
{"title":"Intracellular Retention of Estradiol Is Mediated by GRAM Domain-Containing Protein ASTER-B in Breast Cancer Cells.","authors":"Hyung Bum Kim, W Lee Kraus","doi":"10.1158/1541-7786.MCR-24-0533","DOIUrl":"10.1158/1541-7786.MCR-24-0533","url":null,"abstract":"<p><p>Elevated blood levels of estrogens have been associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating hormone levels in the blood and intracellular hormone concentrations is not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon the removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal. Although circulating E2 is sequestered by sex hormone binding globulin, the potential mechanisms of intracellular E2 retention are poorly understood. We found that mislocalization of a steroid-binding GRAM domain-containing protein, ASTER-B, to the nucleus, which is observed in a subset of patients with breast cancer, is associated with higher cellular E2 retention. Accumulation and retention of E2 are related to the steroidal properties of E2 and require nuclear localization and steroid binding by ASTER-B, as shown using a panel of mutant ASTER-B proteins. Finally, we observed that nuclear ASTER-B-mediated E2 retention is required for sustained hormone-induced ERα chromatin occupancy at enhancers and gene expression, as well as subsequent cell growth responses. Our results add intracellular hormone retention as a mechanism controlling E2-dependent gene expression and downstream biological outcomes. Implications: Mislocalized nuclear ASTER-B, which binds estradiol to support the functions of ER, can provide an alternate means of enhancing the biological effects of E2 in breast cancers and may be a potential therapeutic target that addresses multiple aspects of estrogen bioavailability.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"313-326"},"PeriodicalIF":4.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1158/1541-7786.MCR-24-0464
Connor E Woolley, Enric Domingo, Juan Fernandez-Tajes, Kathryn A F Pennel, Patricia Roxburgh, Joanne Edwards, Susan D Richman, Tim S Maughan, David J Kerr, Ignacio Soriano, Ian P M Tomlinson
BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.
{"title":"Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis.","authors":"Connor E Woolley, Enric Domingo, Juan Fernandez-Tajes, Kathryn A F Pennel, Patricia Roxburgh, Joanne Edwards, Susan D Richman, Tim S Maughan, David J Kerr, Ignacio Soriano, Ian P M Tomlinson","doi":"10.1158/1541-7786.MCR-24-0464","DOIUrl":"10.1158/1541-7786.MCR-24-0464","url":null,"abstract":"<p><p>BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"300-312"},"PeriodicalIF":4.1,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}