Pub Date : 2025-01-26Epub Date: 2024-12-01DOI: 10.1016/j.neuroscience.2024.11.077
Hailong Li, Xiaohui Xie
Loss of language function (aphasia) is a common complication after stroke, and post-stroke recovery remains highly unpredictable due to the absence of reliable neurobiomarkers. Growing evidence points to involvement of the cerebellum in language processing; however, it is unclear if abnormal cerebellar activity and altered functional connectivity (FC) to language-related regions of cerebral cortex are underlying neural mechanisms for subcortical aphasia. In this longitudinal observational study, we used resting-state functional magnetic resonance imaging to examine potential abnormalities in spontaneous cerebellar activity and resting-state (rs)FC with language networks among post-stroke patients with subacute subcortical aphasia (n = 19) compared to healthy controls (HCs, n = 18). In addition, correlations between rsFC variables and language performance metrics were examined at post-stroke baseline and at follow-up. Compared to HCs, patients with subacute subcortical aphasia exhibited significantly reduced fractional amplitude of low frequency fluctuations, a measure of spontaneous activity, in the right cerebellar Crus II (rCrus II) region and reduced rsFC between rCrus II and left inferior frontal gyrus (LIFG), left angular gyrus (LAG), and left middle temporal gyrus (LMTG). Both rCrus II-LAG and rCrus II-LMTG rsFC values were positively correlated with Aphasia Battery of Chinese scores at baseline. Baseline rCrus II-LIFG rsFC was also positively correlated with spontaneous speech and naming scores at follow-up. A stronger baseline rCrus II-LIFG rsFC predicted superior recovery of language function post-stroke. We conclude that the right cerebellum may be an effective therapeutic target for subcortical aphasia.
{"title":"Cerebellar activity and functional connectivity in subacute subcortical aphasia: Association with language recovery.","authors":"Hailong Li, Xiaohui Xie","doi":"10.1016/j.neuroscience.2024.11.077","DOIUrl":"10.1016/j.neuroscience.2024.11.077","url":null,"abstract":"<p><p>Loss of language function (aphasia) is a common complication after stroke, and post-stroke recovery remains highly unpredictable due to the absence of reliable neurobiomarkers. Growing evidence points to involvement of the cerebellum in language processing; however, it is unclear if abnormal cerebellar activity and altered functional connectivity (FC) to language-related regions of cerebral cortex are underlying neural mechanisms for subcortical aphasia. In this longitudinal observational study, we used resting-state functional magnetic resonance imaging to examine potential abnormalities in spontaneous cerebellar activity and resting-state (rs)FC with language networks among post-stroke patients with subacute subcortical aphasia (n = 19) compared to healthy controls (HCs, n = 18). In addition, correlations between rsFC variables and language performance metrics were examined at post-stroke baseline and at follow-up. Compared to HCs, patients with subacute subcortical aphasia exhibited significantly reduced fractional amplitude of low frequency fluctuations, a measure of spontaneous activity, in the right cerebellar Crus II (rCrus II) region and reduced rsFC between rCrus II and left inferior frontal gyrus (LIFG), left angular gyrus (LAG), and left middle temporal gyrus (LMTG). Both rCrus II-LAG and rCrus II-LMTG rsFC values were positively correlated with Aphasia Battery of Chinese scores at baseline. Baseline rCrus II-LIFG rsFC was also positively correlated with spontaneous speech and naming scores at follow-up. A stronger baseline rCrus II-LIFG rsFC predicted superior recovery of language function post-stroke. We conclude that the right cerebellum may be an effective therapeutic target for subcortical aphasia.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"320-326"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-11-28DOI: 10.1016/j.neuroscience.2024.11.065
Zhiyuan Han, Cuicui Zhang, Keling Cheng, Yunfang Chen, Zhiqin Tang, Lewen Chen, Jun Ni, Zhiyong Wang
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.
{"title":"Clinical application of respiratory-gated auricular vagal afferent nerve stimulation.","authors":"Zhiyuan Han, Cuicui Zhang, Keling Cheng, Yunfang Chen, Zhiqin Tang, Lewen Chen, Jun Ni, Zhiyong Wang","doi":"10.1016/j.neuroscience.2024.11.065","DOIUrl":"10.1016/j.neuroscience.2024.11.065","url":null,"abstract":"<p><p>Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"117-123"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-12-07DOI: 10.1016/j.neuroscience.2024.12.010
Dan Chen, Mengna Zhang, Yongtao He, Shuyuan Wu, Junzhe Kuang, Zixin Zhang, Biao Xu, Quan Fang
Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K+-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.
{"title":"The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.","authors":"Dan Chen, Mengna Zhang, Yongtao He, Shuyuan Wu, Junzhe Kuang, Zixin Zhang, Biao Xu, Quan Fang","doi":"10.1016/j.neuroscience.2024.12.010","DOIUrl":"10.1016/j.neuroscience.2024.12.010","url":null,"abstract":"<p><p>Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K<sup>+</sup>-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"247-256"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-12-05DOI: 10.1016/j.neuroscience.2024.11.056
Chang Li, Shike Wang, Yuwei Xia, Feng Shi, Lin Tang, Qingning Yang, Junbang Feng, Chuanming Li
Background: The conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) is related to various factors. The causal relationships among these factors remain unclear. This study aims to investigate pathways of the progression by using causal analysis and build a predictive model with high accuracy.
Methods: 162 MCI patients were recruited from the Alzheimer's Disease Neuroimaging Initiative database. 68 patients progressed to AD. 94 patients did not convert to AD. We captured standard T1-weighted images, processed them for feature extraction, and selected relevant features using mRMR and LASSO to calculate cortical and nuclear scores. The computational causal structure discovery and regression analyses were adopted to analyze the intricate relationships among APOE ε4 alleles, P-tau, Aβ1-42, cortical and nuclear scores. The individualized prediction nomogram was constructed.
Results: Our results indicated that APOE ε4 alleles was the promoter that caused MCI to transform into AD. Three independent pathways were identified, including P-tau, Aβ1-42, and cortical atrophy. P-tau was the cause of nuclear atrophy. The APOE ε4 alleles, P-tau, Aβ1-42, cortical and nuclear scores all had good predictive value for the MCI conversion. The predictive accuracy of the combined model was the highest, with an AUC of 0.918 in the training cohort and 0.908 in the testing cohort. A multi-predictor nomogram was established.
Conclusion: Our study elucidated the initiating factors and three independent pathways involved in the conversion of MCI to AD. The predictive value of each factor was clarified and a multi-predictor nomogram was established with high accuracy.
{"title":"Risk factors and predictive models in the progression from MCI to Alzheimer's disease.","authors":"Chang Li, Shike Wang, Yuwei Xia, Feng Shi, Lin Tang, Qingning Yang, Junbang Feng, Chuanming Li","doi":"10.1016/j.neuroscience.2024.11.056","DOIUrl":"10.1016/j.neuroscience.2024.11.056","url":null,"abstract":"<p><strong>Background: </strong>The conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) is related to various factors. The causal relationships among these factors remain unclear. This study aims to investigate pathways of the progression by using causal analysis and build a predictive model with high accuracy.</p><p><strong>Methods: </strong>162 MCI patients were recruited from the Alzheimer's Disease Neuroimaging Initiative database. 68 patients progressed to AD. 94 patients did not convert to AD. We captured standard T1-weighted images, processed them for feature extraction, and selected relevant features using mRMR and LASSO to calculate cortical and nuclear scores. The computational causal structure discovery and regression analyses were adopted to analyze the intricate relationships among APOE ε4 alleles, P-tau, Aβ1-42, cortical and nuclear scores. The individualized prediction nomogram was constructed.</p><p><strong>Results: </strong>Our results indicated that APOE ε4 alleles was the promoter that caused MCI to transform into AD. Three independent pathways were identified, including P-tau, Aβ1-42, and cortical atrophy. P-tau was the cause of nuclear atrophy. The APOE ε4 alleles, P-tau, Aβ1-42, cortical and nuclear scores all had good predictive value for the MCI conversion. The predictive accuracy of the combined model was the highest, with an AUC of 0.918 in the training cohort and 0.908 in the testing cohort. A multi-predictor nomogram was established.</p><p><strong>Conclusion: </strong>Our study elucidated the initiating factors and three independent pathways involved in the conversion of MCI to AD. The predictive value of each factor was clarified and a multi-predictor nomogram was established with high accuracy.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"312-319"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analytical and experimental investigation of several targets and biomarkers that help in explaining significant cognitive deficits, covering drug development and precision medicine aimed at different chronic neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease, synaptic dysfunction, brain damage from neuronal apoptosis, and other disease pathologies; this served as the foundation for all phase studies. The focus of current therapeutic approaches is on developing humanized antibodies, agonist and antagonist drugs, receptors, signaling molecules, major targeted drug-metabolizing enzymes, and other metabolites to treat neurodegeneration in the AD brain brought on by tau hyperphosphorylation, amyloid plagues, or other cholinergic effects. The five A's-amnesia, agnosia, aphasia, apraxia, and anomia-are the typical symptoms associated with AD. While the main goal of drug therapeutics studies is modified amino acids acting as pro-drugs, pharmacokinetics studies and trends in evaluating drug-drug interactions focus on interactions between drugs and antibodies, drugs and therapeutic biologics like metabolites, herbs, interleukin-based, and gene silencing mechanism-based. Studies on the biotransformation of xenobiotic compounds and the metabolism of exogenous and endogenous substances are conducted under Phase I, Phase II, and Phase III trials because the pivotal pharmacokinetic properties of drugs, such as absorption, distribution, metabolism, and excretion (ADME), aid in understanding variations in the crucial improvement of various target drugs. This review also highlights the developments in soon-to-be genetically created targeted medications that may serve as ground-breaking treatments for cholinergic illnesses in the brains of AD patients and other neurodegenerative conditions.
{"title":"\"Current and emerging drug therapies in Alzheimer's disease: A pathophysiological Perspective\".","authors":"Aparajita Aparajita, Unnati Jain, Priyanka Srivastava","doi":"10.1016/j.neuroscience.2024.11.078","DOIUrl":"10.1016/j.neuroscience.2024.11.078","url":null,"abstract":"<p><p>The analytical and experimental investigation of several targets and biomarkers that help in explaining significant cognitive deficits, covering drug development and precision medicine aimed at different chronic neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease, synaptic dysfunction, brain damage from neuronal apoptosis, and other disease pathologies; this served as the foundation for all phase studies. The focus of current therapeutic approaches is on developing humanized antibodies, agonist and antagonist drugs, receptors, signaling molecules, major targeted drug-metabolizing enzymes, and other metabolites to treat neurodegeneration in the AD brain brought on by tau hyperphosphorylation, amyloid plagues, or other cholinergic effects. The five A's-amnesia, agnosia, aphasia, apraxia, and anomia-are the typical symptoms associated with AD. While the main goal of drug therapeutics studies is modified amino acids acting as pro-drugs, pharmacokinetics studies and trends in evaluating drug-drug interactions focus on interactions between drugs and antibodies, drugs and therapeutic biologics like metabolites, herbs, interleukin-based, and gene silencing mechanism-based. Studies on the biotransformation of xenobiotic compounds and the metabolism of exogenous and endogenous substances are conducted under Phase I, Phase II, and Phase III trials because the pivotal pharmacokinetic properties of drugs, such as absorption, distribution, metabolism, and excretion (ADME), aid in understanding variations in the crucial improvement of various target drugs. This review also highlights the developments in soon-to-be genetically created targeted medications that may serve as ground-breaking treatments for cholinergic illnesses in the brains of AD patients and other neurodegenerative conditions.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"499-518"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-11-22DOI: 10.1016/j.neuroscience.2024.11.037
C A Favoretto, N B Bertagna, A Anjos-Santos, C M Loss, B T Rodolpho, T Righi, F R Bezerra, P C Bianchi, F C Cruz
Clinical and preclinical studies suggest that early life stress can increase the risk of developing ethanol use disorder later in life. Although the endocannabinoid (eCB) system plays a role in stress-related behaviors and ethanol consumption, it remains unclear whether the eCB system is affected in response to a combination of both factors. By using male and female adolescent C57BL/6J mice subjected to a maternal separation (MS) stress paradigm from postnatal day (PND) 1 to 14, we explored (1) the consequences of early life stress experiences on ethanol consumption in adolescent mice and (2) how these events affect the eCB system and neuronal activation in brain regions associated with the reward system. In Experiment 1, we found that MS increased involuntary ethanol consumption specifically during the first exposure to the drug (during a 24 h-long trial on PND 28) and decreased the active/inactive nose poke ratio (discrimination index) specifically when mice were subjected to 1 h-sessions (PND 82-86) in an operant ethanol self-administration paradigm. In Experiment 2, during a two-bottle free choice paradigm, we found that MS increased mice preference for high ethanol concentrations (15 % and 20 %) but not lower ethanol concentrations (5 % and 10 %). Except for Mgll gene expression in the dorsal striatum (DS) in Experiment 2, no statistically significant effects of MS were observed regarding neuronal activation on the prefrontal cortex, DS, globus pallidus, and substantia nigra following a binge operant ethanol self-administration session (Experiment 1) or the eCB system molecules (Cnr1 and Faah gene expression) in the DS (Experiment 2).
{"title":"Impacts of maternal separation stress on ethanol intake and endocannabinoid system in adolescent mice.","authors":"C A Favoretto, N B Bertagna, A Anjos-Santos, C M Loss, B T Rodolpho, T Righi, F R Bezerra, P C Bianchi, F C Cruz","doi":"10.1016/j.neuroscience.2024.11.037","DOIUrl":"10.1016/j.neuroscience.2024.11.037","url":null,"abstract":"<p><p>Clinical and preclinical studies suggest that early life stress can increase the risk of developing ethanol use disorder later in life. Although the endocannabinoid (eCB) system plays a role in stress-related behaviors and ethanol consumption, it remains unclear whether the eCB system is affected in response to a combination of both factors. By using male and female adolescent C57BL/6J mice subjected to a maternal separation (MS) stress paradigm from postnatal day (PND) 1 to 14, we explored (1) the consequences of early life stress experiences on ethanol consumption in adolescent mice and (2) how these events affect the eCB system and neuronal activation in brain regions associated with the reward system. In Experiment 1, we found that MS increased involuntary ethanol consumption specifically during the first exposure to the drug (during a 24 h-long trial on PND 28) and decreased the active/inactive nose poke ratio (discrimination index) specifically when mice were subjected to 1 h-sessions (PND 82-86) in an operant ethanol self-administration paradigm. In Experiment 2, during a two-bottle free choice paradigm, we found that MS increased mice preference for high ethanol concentrations (15 % and 20 %) but not lower ethanol concentrations (5 % and 10 %). Except for Mgll gene expression in the dorsal striatum (DS) in Experiment 2, no statistically significant effects of MS were observed regarding neuronal activation on the prefrontal cortex, DS, globus pallidus, and substantia nigra following a binge operant ethanol self-administration session (Experiment 1) or the eCB system molecules (Cnr1 and Faah gene expression) in the DS (Experiment 2).</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"124-137"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stroke is a serious condition often resulting in mortality or long-term disability, causing cognitive, memory, and motor impairments. A reduction in cerebral blood flow below critical levels defines the ischemic core and penumbra: the core undergoes irreversible damage, while the penumbra remains viable but functionally impaired. This functional impairment activates complex cell signaling pathways that determine cell survival or death, making the penumbra a key target for therapeutic interventions to prevent further damage. The Wnt/β-catenin (WβC) signaling pathway has emerged as a potential neuroprotective mechanism, promoting neurogenesis, angiogenesis, neuronal connectivity, and maintaining blood-brain barrier integrity after stroke. Activation of the WβC pathway also mitigates oxidative stress, inflammation, and apoptosis in ischemic regions, enhancing its neuroprotective effects. However, the overexpression of GSK3β and DKK1, or the presence of their agonists, can counteract these benefits. This review explores the therapeutic potential of WβC signaling, highlighting the effects of pharmacological modulation through antagonists, agonists, synthetic chemicals, natural products, stem cells, and macromolecules in preclinical models of ischemic stroke. While preclinical evidence supports the benefits of WβC activation, its role in human stroke requires further investigation. Additionally, the review discusses the potential adverse effects of prolonged WβC activation and suggests strategies to mitigate them. Overall, WβC signaling holds promise as a therapeutic target, offering insights into stroke pathophysiology and informing the development of novel treatment strategies.
{"title":"Unravelling neuroregenerative and neuroprotective roles of Wnt/β-catenin pathway in ischemic stroke: Insights into molecular mechanisms.","authors":"Srikanth Yadava, Dontiboina Harikrishna Reddy, Venkata Prasuja Nakka, Vinjavarapu Lakshmi Anusha, Naresh Dumala, Matte Kasi Viswanadh, Guntupalli Chakravarthi, Buchi N Nalluri, Kakarla Ramakrishna","doi":"10.1016/j.neuroscience.2024.12.024","DOIUrl":"10.1016/j.neuroscience.2024.12.024","url":null,"abstract":"<p><p>Stroke is a serious condition often resulting in mortality or long-term disability, causing cognitive, memory, and motor impairments. A reduction in cerebral blood flow below critical levels defines the ischemic core and penumbra: the core undergoes irreversible damage, while the penumbra remains viable but functionally impaired. This functional impairment activates complex cell signaling pathways that determine cell survival or death, making the penumbra a key target for therapeutic interventions to prevent further damage. The Wnt/β-catenin (WβC) signaling pathway has emerged as a potential neuroprotective mechanism, promoting neurogenesis, angiogenesis, neuronal connectivity, and maintaining blood-brain barrier integrity after stroke. Activation of the WβC pathway also mitigates oxidative stress, inflammation, and apoptosis in ischemic regions, enhancing its neuroprotective effects. However, the overexpression of GSK3β and DKK1, or the presence of their agonists, can counteract these benefits. This review explores the therapeutic potential of WβC signaling, highlighting the effects of pharmacological modulation through antagonists, agonists, synthetic chemicals, natural products, stem cells, and macromolecules in preclinical models of ischemic stroke. While preclinical evidence supports the benefits of WβC activation, its role in human stroke requires further investigation. Additionally, the review discusses the potential adverse effects of prolonged WβC activation and suggests strategies to mitigate them. Overall, WβC signaling holds promise as a therapeutic target, offering insights into stroke pathophysiology and informing the development of novel treatment strategies.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"527-547"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142838434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-12-07DOI: 10.1016/j.neuroscience.2024.12.012
Xiao-Tong Li, Lei Chen, Xin-Miao Wang, Chun-Cheng Zheng, Xin Huang
Aims: This study was aimed to investigate frequency-specific LFO changes and their correlation with gene pathways in PACG using transcriptome-neuroimaging analysis.
Methods: Resting-state fMRI (Rs-fMRI) data were acquired from individuals with PACG and healthy controls for evaluating the amplitude of low-frequency oscillations (ALFF) across different frequency bands such as the full band, slow-4 band, and slow-5 band. Transcriptome analysis integrated information from the Allen Human Brain Atlas (AHBA) through gene set enrichment analysis, protein-protein interaction network construction, and specific expression analysis, aiming to clarify the link between ALFF patterns and gene expression profiles in PACG. Statistical analyses, including one-sample t-tests and two-sample t-tests, were used to assess ALFF differences between groups, while partial least squares (PLS) regression was applied to explore the associations between ALFF and transcriptome data.
Results: This study identifies significant variations in ALFF values in PACG patients, observed consistently across multiple frequency bands, including slow-4 and slow-5. Enrichment analysis indicates that these genes are primarily involved in cellular components such as the cytosol and cytoplasm, molecular functions like protein binding, and key pathways, including metabolic and circadian rhythms, epithelial signaling in Helicobacter pylori infection, and glutathione metabolism. Protein-protein interaction (PPI) analysis further underscores the role of PACG-related genes in forming a functional network, highlighting hub genes critical for various biological processes.
Conclusion: This study establishes a connection between the molecular mechanisms of PACG and alterations in brain function and gene expression, providing valuable perspectives on the fundamental processes impacting low-frequency oscillations in PACG.
目的:本研究旨在通过转录组-神经影像学分析探讨PACG中频率特异性LFO变化及其与基因通路的相关性。方法:采用静息状态功能磁共振成像(Rs-fMRI)对PACG患者和健康对照进行全频段、慢-4频段和慢-5频段的低频振荡(ALFF)振幅进行评估。转录组分析通过基因集富集分析、蛋白-蛋白相互作用网络构建和特异性表达分析,整合来自Allen Human Brain Atlas (AHBA)的信息,旨在阐明PACG中ALFF模式与基因表达谱之间的联系。统计分析包括单样本t检验和双样本t检验来评估组间ALFF的差异,而偏最小二乘(PLS)回归则用于探索ALFF与转录组数据之间的关联。结果:本研究确定了PACG患者ALFF值的显著变化,在多个频带(包括慢-4和慢-5)中观察到一致。富集分析表明,这些基因主要参与细胞成分,如细胞质和细胞质,分子功能,如蛋白质结合,以及关键途径,包括代谢和昼夜节律,幽门螺杆菌感染的上皮信号传导和谷胱甘肽代谢。蛋白质-蛋白质相互作用(PPI)分析进一步强调了pacg相关基因在形成功能网络中的作用,突出了对各种生物过程至关重要的枢纽基因。结论:本研究建立了PACG的分子机制与脑功能和基因表达改变之间的联系,为研究影响PACG低频振荡的基本过程提供了有价值的视角。
{"title":"Differences in cerebral spontaneous neural activity correlate with gene-specific transcriptional signatures in primary angle-closure glaucoma.","authors":"Xiao-Tong Li, Lei Chen, Xin-Miao Wang, Chun-Cheng Zheng, Xin Huang","doi":"10.1016/j.neuroscience.2024.12.012","DOIUrl":"10.1016/j.neuroscience.2024.12.012","url":null,"abstract":"<p><strong>Aims: </strong>This study was aimed to investigate frequency-specific LFO changes and their correlation with gene pathways in PACG using transcriptome-neuroimaging analysis.</p><p><strong>Methods: </strong>Resting-state fMRI (Rs-fMRI) data were acquired from individuals with PACG and healthy controls for evaluating the amplitude of low-frequency oscillations (ALFF) across different frequency bands such as the full band, slow-4 band, and slow-5 band. Transcriptome analysis integrated information from the Allen Human Brain Atlas (AHBA) through gene set enrichment analysis, protein-protein interaction network construction, and specific expression analysis, aiming to clarify the link between ALFF patterns and gene expression profiles in PACG. Statistical analyses, including one-sample t-tests and two-sample t-tests, were used to assess ALFF differences between groups, while partial least squares (PLS) regression was applied to explore the associations between ALFF and transcriptome data.</p><p><strong>Results: </strong>This study identifies significant variations in ALFF values in PACG patients, observed consistently across multiple frequency bands, including slow-4 and slow-5. Enrichment analysis indicates that these genes are primarily involved in cellular components such as the cytosol and cytoplasm, molecular functions like protein binding, and key pathways, including metabolic and circadian rhythms, epithelial signaling in Helicobacter pylori infection, and glutathione metabolism. Protein-protein interaction (PPI) analysis further underscores the role of PACG-related genes in forming a functional network, highlighting hub genes critical for various biological processes.</p><p><strong>Conclusion: </strong>This study establishes a connection between the molecular mechanisms of PACG and alterations in brain function and gene expression, providing valuable perspectives on the fundamental processes impacting low-frequency oscillations in PACG.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"399-419"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-12-16DOI: 10.1016/j.neuroscience.2024.12.022
Daniel Skak Mazhari-Jensen, Winnie Jensen, Taha Al Muhammadee Janjua, Suzan Meijs, Thomas Gomes Nørgaard Dos Santos Nielsen, Felipe Rettore Andreis
The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.
{"title":"Pigs as a translational animal model for the study of peak alpha frequency.","authors":"Daniel Skak Mazhari-Jensen, Winnie Jensen, Taha Al Muhammadee Janjua, Suzan Meijs, Thomas Gomes Nørgaard Dos Santos Nielsen, Felipe Rettore Andreis","doi":"10.1016/j.neuroscience.2024.12.022","DOIUrl":"10.1016/j.neuroscience.2024.12.022","url":null,"abstract":"<p><p>The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"567-576"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-26Epub Date: 2024-11-30DOI: 10.1016/j.neuroscience.2024.11.070
Nitu L Wankhede, Mayur B Kale, Ashishkumar Kyada, Rekha M M, Kamlesh Chaudhary, K Satyam Naidu, Sandip Rahangdale, Prajwali V Shende, Brijesh G Taksande, Mohammad Khalid, Monica Gulati, Milind J Umekar, Mohammad Fareed, Spandana Rajendra Kopalli, Sushruta Koppula
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
{"title":"Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders.","authors":"Nitu L Wankhede, Mayur B Kale, Ashishkumar Kyada, Rekha M M, Kamlesh Chaudhary, K Satyam Naidu, Sandip Rahangdale, Prajwali V Shende, Brijesh G Taksande, Mohammad Khalid, Monica Gulati, Milind J Umekar, Mohammad Fareed, Spandana Rajendra Kopalli, Sushruta Koppula","doi":"10.1016/j.neuroscience.2024.11.070","DOIUrl":"10.1016/j.neuroscience.2024.11.070","url":null,"abstract":"<p><p>Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"99-116"},"PeriodicalIF":2.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}