Face recognition is an important aspect of human non-verbal communication. Event-related potentials or magnetic fields, such as the N170/M170 component, are considered essential neural markers of face processing. Compared to upright human faces, inverted human faces and upright but not inverted animal faces cause longer latencies and larger amplitudes of these components. However, the mechanisms underlying this factor remain unclear. To elucidate the spatiotemporal dynamics of the processing of inverted human and animal faces, we recorded face-selective responses (M170) to upright and inverted human and monkey faces using a 306-channel whole-head magnetoencephalography. Sensor analysis showed an increased M170 latency and amplitude for inverted human and upright animal faces. However, in the source analysis, the observed modulations of the estimated spatiotemporal dynamics were different from the sensor results: irrespective of species, upright faces activated wider areas in the ventral and dorsal visual regions compared with inverted faces. Additionally, face orientation differentially modulated the anterior region of the fusiform gyrus (FG) in both face categories. These results suggest that spatiotemporal dynamics differ in face orientation regardless of category and that the FG contributes little or nothing to the M170 modulation recorded in the scalp sensor. Furthermore, we demonstrated that inverted human and animal faces are processed via different mechanisms.
Exercise-induced fatigue (EF) is characterized by a decline in maximal voluntary muscle force following prolonged physical activity, influenced by both peripheral and central factors. Central fatigue involves complex interactions within the central nervous system (CNS), where astrocytes play a crucial role. This study explores the impact of astrocytic calcium signals on EF. We used adeno-associated viruses to express GCaMP7b in astrocytes of the dorsal striatum in mice, allowing us to monitor calcium dynamics. Our findings reveal that EF significantly increases the frequency of spontaneous astrocytic calcium signals. Utilizing genetic tools to either enhance or reduce astrocytic calcium signaling, we observed corresponding decreases and increases in exercise-induced fatigue time, respectively. Furthermore, modulation of astrocytic calcium signals influenced corticostriatal synaptic plasticity, with increased signals impairing and decreased signals ameliorating long-term depression (LTD). These results highlight the pivotal role of astrocytic calcium signaling in the regulation of exercise-induced fatigue and synaptic plasticity in the striatum.
Background: The recent emergence of updated drugs for the treatment of Alzheimer's disease (AD) has produced encouraging cognitive and clinical results in clinical trials, but there is still controversy over how to choose effective treatment options among these numerous drugs. The purpose of this network meta-analysis (NMA) is to compare and rank these drugs based on their efficacy.
Methods: We systematically searched in PubMed, Web of Science databases and Cochrane LIbrary, gov for randomized controlled trials for data from 2020 to 2024, and then performed a random-effect network meta-analysis.
Results: Our NMA results showed that in several main indicators ADAS-cog, CDR-SB and ADCS-ADL. GV-971 (MD -2.36, 95 % CI -5.08, 0.35), Lecanemab (MD -2.00, 95 % CI -5.25, 1.26), Donanemab (MD -1.45, 95 % CI -4.70, 1.81), Masupirdine (MD -0.83, 95 % CI -3.49, 1.84) were more effective than placebo in improving ADAS-cog. In terms of CDR-SB, Lecanemab (MD -3.11,95 % CI -5.23, -0.99) was more effective. Compared with placebo, Donanemab was more effective in ADCS-ADL (MD 3.26,95 % CI 1.48,5.05). SUCRA values showed that GV-971 (76.1 % and 68.7 %) could achieve better therapeutic effects in ADAS-cog) and NPI, and Lecanema (98.1 %) was more effective in improving CDR-SB scores than other drugs. Donanemab (99.8 %) may be the most promising way to slow down the decline in ADCS-ADL scores. The effect of Masupirdine (80.7 %) on MMSE was significantly better than that of several other drugs.
Conclusion: Donanemab and Lecanemab showed good efficacy in ADCS-ADL and CDR-SB, respectively. GV-971 is the best choice to improve ADAS cogs and NPI.