Background: Recent studies confirm the involvement of activated immune-inflammatory responses and increased oxidative and nitrosative stress in Long COVID (LC) disease. However, the influence of these pathways on the metabolism of tryptophan (TRP) through the TRP catabolite (TRYCAT) pathway and their mediating effects on LC pathophysiology, has not been fully explored.
Objective: This meta-analysis investigates peripheral TRP and TRYCAT levels and the TRYCAT pathway in patients with LC disease.
Method: This review utilized systematic searches of PubMed, Google Scholar, and SciFinder, including 14 full-text articles and 1,167 participants, consisting of 480 patients with LC and 687 normal controls.
Results: The results indicated a significant increase in the kynurenine (KYN)/TRP ratio, with a large effect size (standardized mean difference, SMD = 0.755; confidence intervals, CI: 0.119;1.392), in LC patients compared to normal controls. Additionally, LC patients exhibited a significant decrease in TRP levels (SMD = -0.520, CI: -0.793; -0.246) and an increase in KYN levels after imputing missing studies (SMD = 1.176, CI: 0.474; 1.877), suggesting activation of the Indoleamine 2,3-dioxygenase (IDO) enzyme and upregulation of the TRYCAT pathway. No significant elevation in TRYCAT-related neurotoxicity, kynurenic acid (KA)/KYN and 3-hydroxykynurenine (3-HK)/KYN ratios were observed in LC patients compared to normal controls.
Conclusion: The current findings indicate that an activated TRYCAT pathway, characterized by decreased TRP levels and maybe elevated KYN levels, plays a significant role in the pathophysiology of LC.
Epilepsy is a pathophysiological condition displaying a highly diverse phenotype. Consequently, comprehending the mechanisms underlying seizures necessitates moving beyond a simplistic model focused on the imbalance between the classical excitatory and inhibitory neurotransmitter systems. Nitric oxide (NO), a nonclassical and multifunctional gaseous neurotransmitter, has the potential to exert a profound influence on epileptic reactivity. Unfortunately, numerous studies have not provided clear answers about its involvement in the pathophysiology of epilepsy. The objective of our study was to delineate the temporal dynamics of alterations in nitrergic system activation after experimentally induced seizures. Seizures were induced in 2-month-old male Wistar rats by an administration of pilocarpine. Over a 6-hour observation period, seizure behaviour intensity was continuously evaluated using a modified Racine scale. At intervals of 6, 12, 24, 48, or 96 h post-chemoconvulsant administration, NO spin trapping was conducted with ferrous-diethyldithiocarbamate complexes (Fe(DETC)2). Electron paramagnetic resonance (EPR) spectroscopy was employed to quantify mononitrosyl iron complexes (NO-Fe(DETC)2) in the brain. The temporal kinetic of NO release after seizures revealed a rise in NO synthesis during the initial 12 h. Subsequently, a sharp decline occurred, returning to baseline 96 h after pilocarpine injection. Notably, our research suggests that the level of NO synthesis does not interfere with the severity of the epileptic seizures that occur. In light of this, we propose that the nitrergic system is quickly activated in the epileptic brain as a compensatory mechanism of the central nervous system. However, under usual conditions, this activation is insufficient to effectively attenuate seizures.