Pub Date : 2024-07-14DOI: 10.1038/s41699-024-00482-9
Luca Panarella, Ben Kaczer, Quentin Smets, Stanislav Tyaginov, Pablo Saraza Canflanca, Andrea Vici, Devin Verreck, Tom Schram, Dennis Lin, Theresia Knobloch, Tibor Grasser, César Lockhart de la Rosa, Gouri S. Kar, Valeri Afanas’ev
Evidence of microscopic inhomogeneities of the side source/drain contacts in 300 mm wafer integrated MoS2 field-effect transistors is presented. In particular, the presence of a limited number of low Schottky barrier spots through which channel carriers are predominantly injected is demonstrated by the dramatic current changes induced by individual charge traps located near the source contact. Two distinct types of “contact-impacting traps” are identified. Type-1 trap is adjacent to the contact interface and exchanges carriers with the metal. Its impact is only observable when the adjacent contact is the reverse-biased FET source and limits the channel current. Type-2 trap is located in the AlOx gate oxide interlayer, near the source contact, and exchanges carriers with the channel. Its capture/emission time constants exhibit both a gate and drain bias dependence due to the high sensitivity of the contact regions to the applied lateral and vertical fields. Unlike typical channel-impacting oxide traps, both types of reported defects affect the Schottky barrier height and width rather than the threshold voltage and result in giant random telegraph noise (RTN). These observations indicate that the contact quality and geometry play a fundamental role in the ultimate scaling of 2D FETs.
{"title":"Evidence of contact-induced variability in industrially-fabricated highly-scaled MoS2 FETs","authors":"Luca Panarella, Ben Kaczer, Quentin Smets, Stanislav Tyaginov, Pablo Saraza Canflanca, Andrea Vici, Devin Verreck, Tom Schram, Dennis Lin, Theresia Knobloch, Tibor Grasser, César Lockhart de la Rosa, Gouri S. Kar, Valeri Afanas’ev","doi":"10.1038/s41699-024-00482-9","DOIUrl":"10.1038/s41699-024-00482-9","url":null,"abstract":"Evidence of microscopic inhomogeneities of the side source/drain contacts in 300 mm wafer integrated MoS2 field-effect transistors is presented. In particular, the presence of a limited number of low Schottky barrier spots through which channel carriers are predominantly injected is demonstrated by the dramatic current changes induced by individual charge traps located near the source contact. Two distinct types of “contact-impacting traps” are identified. Type-1 trap is adjacent to the contact interface and exchanges carriers with the metal. Its impact is only observable when the adjacent contact is the reverse-biased FET source and limits the channel current. Type-2 trap is located in the AlOx gate oxide interlayer, near the source contact, and exchanges carriers with the channel. Its capture/emission time constants exhibit both a gate and drain bias dependence due to the high sensitivity of the contact regions to the applied lateral and vertical fields. Unlike typical channel-impacting oxide traps, both types of reported defects affect the Schottky barrier height and width rather than the threshold voltage and result in giant random telegraph noise (RTN). These observations indicate that the contact quality and geometry play a fundamental role in the ultimate scaling of 2D FETs.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00482-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1038/s41699-024-00477-6
Wei Li, Thomas Brumme, Thomas Heine
While moiré structures in twisted bilayer transition metal dichalcogenides (TMDCs) have been studied for over a decade, the importance of lattice relaxation effects was pointed out only in 2021 by DiAngelo and MacDonald1, who reported the emergence of a Dirac cone upon relaxation. TMDCs of group 6 transition metals MX2 (M = Mo, W, X = S, Se) share layered structures with pronounced interlayer interactions, exhibiting a direct band gap when exfoliated to a two-dimensional (2D) monolayer. As their heterolayers are incommensurable, moiré structures are present in the bilayers even if stacked without a twist angle. This study addresses the challenge of accurately modeling and understanding the structural relaxation in twisted TMDC heterobilayers. We show that the typical experimental situation of finite-size flakes stacked upon larger flakes can reliably be modeled by fully periodic commensurate models. Our findings reveal significant lattice reconstruction in TMDC heterobilayers, which strongly depend on the twist angle. We can categorize the results in two principal cases: at or near the untwisted configurations of 0° and 60°, domains with matching lattice constants form and the two constituting layers exhibit significant in-phase corrugation—their out-of-plane displacements are oriented towards the same direction in all local stackings—while at large twist angles—deviating from the 0° and 60°—the two layers show an out-of-phase corrugation. In particular, we reveal that the lattice reconstruction results from the competition between the strain energy cost and the van der Waals energy gain. Additionally, our systematical study highlights structural disparities between heterostructures composed of different or identical chalcogen atoms. Our research not only confirms the reliability of using periodic commensurate models to predict heterostructure behavior but also enriches the understanding of TMDC bilayer heterostructures.
{"title":"Relaxation effects in transition metal dichalcogenide bilayer heterostructures","authors":"Wei Li, Thomas Brumme, Thomas Heine","doi":"10.1038/s41699-024-00477-6","DOIUrl":"10.1038/s41699-024-00477-6","url":null,"abstract":"While moiré structures in twisted bilayer transition metal dichalcogenides (TMDCs) have been studied for over a decade, the importance of lattice relaxation effects was pointed out only in 2021 by DiAngelo and MacDonald1, who reported the emergence of a Dirac cone upon relaxation. TMDCs of group 6 transition metals MX2 (M = Mo, W, X = S, Se) share layered structures with pronounced interlayer interactions, exhibiting a direct band gap when exfoliated to a two-dimensional (2D) monolayer. As their heterolayers are incommensurable, moiré structures are present in the bilayers even if stacked without a twist angle. This study addresses the challenge of accurately modeling and understanding the structural relaxation in twisted TMDC heterobilayers. We show that the typical experimental situation of finite-size flakes stacked upon larger flakes can reliably be modeled by fully periodic commensurate models. Our findings reveal significant lattice reconstruction in TMDC heterobilayers, which strongly depend on the twist angle. We can categorize the results in two principal cases: at or near the untwisted configurations of 0° and 60°, domains with matching lattice constants form and the two constituting layers exhibit significant in-phase corrugation—their out-of-plane displacements are oriented towards the same direction in all local stackings—while at large twist angles—deviating from the 0° and 60°—the two layers show an out-of-phase corrugation. In particular, we reveal that the lattice reconstruction results from the competition between the strain energy cost and the van der Waals energy gain. Additionally, our systematical study highlights structural disparities between heterostructures composed of different or identical chalcogen atoms. Our research not only confirms the reliability of using periodic commensurate models to predict heterostructure behavior but also enriches the understanding of TMDC bilayer heterostructures.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00477-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1038/s41699-024-00479-4
Yiming Pan, Fabio Caruso
We report a theoretical investigation of the ultrafast dynamics of electrons and phonons in strained monolayer WS2 following photoexcitation. We show that strain substantially modifies the phase space for electron-phonon scattering, unlocking relaxation pathways that are unavailable in the pristine monolayer. In particular, strain triggers a transition between distinct dynamical regimes of the non-equilibrium lattice dynamics characterized by the emission of chiral phonons under high strain and linearly-polarized phonons under low strain. For valley-polarized electronic excitations, this mechanism can be exploited to selectively activate the emission of chiral phonons – phonons carrying a net angular momentum. Our simulations are based on state-of-the-art ab-initio methods and focus exclusively on realistic excitation and strain conditions that have already been achieved in recent experimental studies. Overall, strain emerges as a powerful tool for controlling chiral phonons emission and relaxation pathways in multivalley quantum materials.
{"title":"Strain-induced activation of chiral-phonon emission in monolayer WS2","authors":"Yiming Pan, Fabio Caruso","doi":"10.1038/s41699-024-00479-4","DOIUrl":"10.1038/s41699-024-00479-4","url":null,"abstract":"We report a theoretical investigation of the ultrafast dynamics of electrons and phonons in strained monolayer WS2 following photoexcitation. We show that strain substantially modifies the phase space for electron-phonon scattering, unlocking relaxation pathways that are unavailable in the pristine monolayer. In particular, strain triggers a transition between distinct dynamical regimes of the non-equilibrium lattice dynamics characterized by the emission of chiral phonons under high strain and linearly-polarized phonons under low strain. For valley-polarized electronic excitations, this mechanism can be exploited to selectively activate the emission of chiral phonons – phonons carrying a net angular momentum. Our simulations are based on state-of-the-art ab-initio methods and focus exclusively on realistic excitation and strain conditions that have already been achieved in recent experimental studies. Overall, strain emerges as a powerful tool for controlling chiral phonons emission and relaxation pathways in multivalley quantum materials.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00479-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-29DOI: 10.1038/s41699-024-00478-5
Patricio Vergara, Guidobeth Sáez, Mario Castro, Sebastián Allende, Álvaro S. Núñez
We introduce a two-dimensional dimerized lattice model that reveals a remarkable feature: the emergence of a complex, non-trivial topological multiferroic phase marked by zero Berry curvature and a significant Berry connection that influences the model’s bulk topology. This model extends the one-dimensional Rice-Mele Hamiltonian model to explore polarization-dependent topological properties in a 2D Su-Schrieffer-Heeger lattice, providing a detailed framework for studying the impact of symmetry-breaking and spatially varying potentials on electronic and spin properties. The findings are particularly relevant for spintronics, offering a foundation for topologically robust and electrically controlled spin-conducting edge states, with implications for developing advanced spin-dependent transport devices.
{"title":"Emerging topological multiferroics from the 2D Rice-Mele model","authors":"Patricio Vergara, Guidobeth Sáez, Mario Castro, Sebastián Allende, Álvaro S. Núñez","doi":"10.1038/s41699-024-00478-5","DOIUrl":"10.1038/s41699-024-00478-5","url":null,"abstract":"We introduce a two-dimensional dimerized lattice model that reveals a remarkable feature: the emergence of a complex, non-trivial topological multiferroic phase marked by zero Berry curvature and a significant Berry connection that influences the model’s bulk topology. This model extends the one-dimensional Rice-Mele Hamiltonian model to explore polarization-dependent topological properties in a 2D Su-Schrieffer-Heeger lattice, providing a detailed framework for studying the impact of symmetry-breaking and spatially varying potentials on electronic and spin properties. The findings are particularly relevant for spintronics, offering a foundation for topologically robust and electrically controlled spin-conducting edge states, with implications for developing advanced spin-dependent transport devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00478-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1038/s41699-024-00474-9
Enrico Perfetto, Kai Wu, Gianluca Stefanucci
The interaction of excitons with lattice vibrations underlies the scattering from bright to dark excitons as well as the coherent modulation of the exciton energy. Unlike the former mechanism, which involves phonons with finite momentum, the latter can be exclusively attributed to coherent phonons with zero momentum. We here lay down the microscopic theory of coherent phonons interacting with resonantly pumped bright excitons and provide the explicit expression of the corresponding coupling. The coupling notably resembles the exciton-phonon one, but with a crucial distinction: it contains the bare electron-phonon matrix elements rather than the screened ones. Our theory predicts that the exciton energy features a polaronic-like red-shift and monochromatic oscillations or beatings, depending on the number of coupled optical modes. Both the red-shift and the amplitude of the oscillations are proportional to the excitation density and to the square of the exciton-coherent-phonon coupling. We validate our analytical findings through comparisons with numerical simulations of time-resolved optical absorbance in resonantly pumped MoS2 monolayers.
{"title":"Theory of coherent phonons coupled to excitons","authors":"Enrico Perfetto, Kai Wu, Gianluca Stefanucci","doi":"10.1038/s41699-024-00474-9","DOIUrl":"10.1038/s41699-024-00474-9","url":null,"abstract":"The interaction of excitons with lattice vibrations underlies the scattering from bright to dark excitons as well as the coherent modulation of the exciton energy. Unlike the former mechanism, which involves phonons with finite momentum, the latter can be exclusively attributed to coherent phonons with zero momentum. We here lay down the microscopic theory of coherent phonons interacting with resonantly pumped bright excitons and provide the explicit expression of the corresponding coupling. The coupling notably resembles the exciton-phonon one, but with a crucial distinction: it contains the bare electron-phonon matrix elements rather than the screened ones. Our theory predicts that the exciton energy features a polaronic-like red-shift and monochromatic oscillations or beatings, depending on the number of coupled optical modes. Both the red-shift and the amplitude of the oscillations are proportional to the excitation density and to the square of the exciton-coherent-phonon coupling. We validate our analytical findings through comparisons with numerical simulations of time-resolved optical absorbance in resonantly pumped MoS2 monolayers.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00474-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1038/s41699-024-00475-8
Seong-Yeon Lee, Soungmin Bae, Seonyeong Kim, Suyong Jung, Kenji Watanabe, Takashi Taniguchi, Hannes Raebiger, Ki-Ju Yee
Phonon dispersion in crystals determines many important material properties, but its measurement usually requires large-scale facilities and is limited to bulk samples. Here, we demonstrate the measurement of full phonon dispersion along the stacking direction in nanoscale systems by using picosecond acoustics. A heterostructure sample was prepared consisting of layers of hexagonal boron nitride (hBN) sandwiching a thin layer of black phosphorus (BP), within which a strain pulse was generated by photoexcitation and observed with an optical probe in the BP layer. The strain pulse traverses to the few nanometer thick hBN layers, where it propagates to the edge and echoes back, like acoustic waves in Newton’s cradle. The echoes returning to the BP layer provide information on the frequency-dependent time-of-flight and group velocity dispersion of the sample system. The microscopic origin of the photoinduced strain pulse generation and its propagation is revealed from first principles. Phonon frequency combs observed in the Fourier transform spectrum confirm the strain wave round trips and demonstrate the feasibility of determining group velocity dispersion through photoacoustics.
晶体中的声子色散决定了许多重要的材料特性,但其测量通常需要大型设备,且仅限于块状样品。在这里,我们展示了利用皮秒声学测量纳米级系统中沿堆叠方向的全声子色散。制备的异质结构样品由六方氮化硼(hBN)层和一薄层黑磷(BP)层组成,在黑磷层中通过光激发产生应变脉冲,并用光学探针在黑磷层中进行观测。应变脉冲穿过几纳米厚的 hBN 层,在边缘传播并回波,就像牛顿摇篮中的声波一样。返回 BP 层的回波提供了样品系统频率相关的飞行时间和群速度色散信息。从第一原理揭示了光诱导应变脉冲产生及其传播的微观起源。在傅立叶变换频谱中观察到的声子频率梳确认了应变波的往返,并证明了通过光声学确定群速度频散的可行性。
{"title":"Full phonon dispersion along the stacking direction in nanoscale van der Waals materials by picosecond acoustics","authors":"Seong-Yeon Lee, Soungmin Bae, Seonyeong Kim, Suyong Jung, Kenji Watanabe, Takashi Taniguchi, Hannes Raebiger, Ki-Ju Yee","doi":"10.1038/s41699-024-00475-8","DOIUrl":"10.1038/s41699-024-00475-8","url":null,"abstract":"Phonon dispersion in crystals determines many important material properties, but its measurement usually requires large-scale facilities and is limited to bulk samples. Here, we demonstrate the measurement of full phonon dispersion along the stacking direction in nanoscale systems by using picosecond acoustics. A heterostructure sample was prepared consisting of layers of hexagonal boron nitride (hBN) sandwiching a thin layer of black phosphorus (BP), within which a strain pulse was generated by photoexcitation and observed with an optical probe in the BP layer. The strain pulse traverses to the few nanometer thick hBN layers, where it propagates to the edge and echoes back, like acoustic waves in Newton’s cradle. The echoes returning to the BP layer provide information on the frequency-dependent time-of-flight and group velocity dispersion of the sample system. The microscopic origin of the photoinduced strain pulse generation and its propagation is revealed from first principles. Phonon frequency combs observed in the Fourier transform spectrum confirm the strain wave round trips and demonstrate the feasibility of determining group velocity dispersion through photoacoustics.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00475-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-08DOI: 10.1038/s41699-024-00476-7
Purevlkham Myagmarsereejid, Selengesuren Suragtkhuu, Quang Thang Trinh, Tim Gould, Nam‐Trung Nguyen, Munkhjargal Bat-Erdene, Eric Campbell, Minh Tam Hoang, Wei-Hsun Chiu, Qin Li, Hongxia Wang, Yu Lin Zhong, Munkhbayar Batmunkh
Carbon-based perovskite solar cells (c-PSCs) have attracted increasing attention due to their numerous advantages including ease of fabrication, the potential of assembling flexible devices, low manufacturing costs as well as large-scale production. However, c-PSCs suffer from the limited hole extraction and high charge carrier recombination due to the inadequate interface contact between the carbon electrode and perovskite film. Herein, we report the fabrication of planar c-PSCs with high efficiency and excellent stability by employing electrochemically produced large-area phosphorene flakes as a hole-transporting layer (HTL). Large-area phosphorene shows well-aligned band energy levels with the perovskite, and thus led to the efficient hole extraction and the reduced hysteresis behaviour. Consequently, while exhibiting excellent stability under various harsh testing conditions, the devices with phosphorene HTL delivered a power conversion efficiency of over 15% with an open-circuit voltage of 1.082 V, which is the highest reported value for c-PSCs without traditional hole transporting materials to date.
{"title":"Large-area phosphorene for stable carbon-based perovskite solar cells","authors":"Purevlkham Myagmarsereejid, Selengesuren Suragtkhuu, Quang Thang Trinh, Tim Gould, Nam‐Trung Nguyen, Munkhjargal Bat-Erdene, Eric Campbell, Minh Tam Hoang, Wei-Hsun Chiu, Qin Li, Hongxia Wang, Yu Lin Zhong, Munkhbayar Batmunkh","doi":"10.1038/s41699-024-00476-7","DOIUrl":"10.1038/s41699-024-00476-7","url":null,"abstract":"Carbon-based perovskite solar cells (c-PSCs) have attracted increasing attention due to their numerous advantages including ease of fabrication, the potential of assembling flexible devices, low manufacturing costs as well as large-scale production. However, c-PSCs suffer from the limited hole extraction and high charge carrier recombination due to the inadequate interface contact between the carbon electrode and perovskite film. Herein, we report the fabrication of planar c-PSCs with high efficiency and excellent stability by employing electrochemically produced large-area phosphorene flakes as a hole-transporting layer (HTL). Large-area phosphorene shows well-aligned band energy levels with the perovskite, and thus led to the efficient hole extraction and the reduced hysteresis behaviour. Consequently, while exhibiting excellent stability under various harsh testing conditions, the devices with phosphorene HTL delivered a power conversion efficiency of over 15% with an open-circuit voltage of 1.082 V, which is the highest reported value for c-PSCs without traditional hole transporting materials to date.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.7,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00476-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1038/s41699-024-00469-6
Neven Golenić, Stefano de Gironcoli, Vito Despoja
Surface plasmon polaritons (SPPs), which are electromagnetic modes representing collective oscillations of charge density coupled with photons, have been extensively studied in graphene. This has provided a solid foundation for understanding SPPs in 2D materials. However, the emergence of wafer-transfer techniques has led to the creation of various quasi-2D van der Waals heterostructures, highlighting certain gaps in our understanding of their optical properties in relation to SPPs. To address this, we analyzed electromagnetic modes in graphene/hexagonal-boron-nitride/graphene heterostructures on a dielectric Al2O3 substrate using the full ab initio RPA optical conductivity tensor. Our theoretical model was validated through comparison with recent experiments measuring evanescent in-phase Dirac and out-of-phase acoustic SPP branches. Furthermore, we investigate how the number of plasmon branches and their dispersion are sensitive to variables such as layer count and charge doping. Notably, we demonstrate that patterning of the topmost graphene into nanoribbons provides efficient Umklapp scattering of the bottommost Dirac plasmon polariton (DP) into the radiative region, resulting in the conversion of the DP into a robust infrared-active plasmon. Additionally, we show that the optical activity of the DP and its hybridization with inherent plasmon resonances in graphene nanoribbons are highly sensitive to the doping of both the topmost and bottommost graphene layers. By elucidating these optical characteristics, we aspire to catalyze further advancements and create new opportunities for innovative applications in photonics and optoelectronic integration.
石墨烯中的表面等离子体极化子(SPPs)是一种电磁模式,代表了电荷密度与光子耦合的集体振荡。这为了解二维材料中的 SPPs 奠定了坚实的基础。然而,晶圆转移技术的出现导致了各种准二维范德瓦尔斯异质结构的产生,凸显了我们对其与 SPPs 相关的光学特性认识上的某些差距。为了解决这个问题,我们使用全 ab initio RPA 光传导张量分析了电介质 Al2O3 衬底上的石墨烯/六方硼氮化物/石墨烯异质结构中的电磁模式。我们的理论模型与最近测量蒸发相内狄拉克和相外声波 SPP 分支的实验进行了比较验证。此外,我们还研究了等离子体分支的数量及其分散如何对层数和电荷掺杂等变量敏感。值得注意的是,我们证明了将最顶层的石墨烯图案化为纳米带可将最底层的狄拉克等离子体极化子(DP)有效地散射到辐射区域,从而将 DP 转换为强大的红外活性等离子体。此外,我们还证明了 DP 的光学活性及其与石墨烯纳米带中固有等离子体共振的杂化对最顶层和最底层石墨烯层的掺杂高度敏感。通过阐明这些光学特性,我们希望推动进一步的进步,并为光子学和光电集成的创新应用创造新的机遇。
{"title":"Tailored plasmon polariton landscape in graphene/boron nitride patterned heterostructures","authors":"Neven Golenić, Stefano de Gironcoli, Vito Despoja","doi":"10.1038/s41699-024-00469-6","DOIUrl":"10.1038/s41699-024-00469-6","url":null,"abstract":"Surface plasmon polaritons (SPPs), which are electromagnetic modes representing collective oscillations of charge density coupled with photons, have been extensively studied in graphene. This has provided a solid foundation for understanding SPPs in 2D materials. However, the emergence of wafer-transfer techniques has led to the creation of various quasi-2D van der Waals heterostructures, highlighting certain gaps in our understanding of their optical properties in relation to SPPs. To address this, we analyzed electromagnetic modes in graphene/hexagonal-boron-nitride/graphene heterostructures on a dielectric Al2O3 substrate using the full ab initio RPA optical conductivity tensor. Our theoretical model was validated through comparison with recent experiments measuring evanescent in-phase Dirac and out-of-phase acoustic SPP branches. Furthermore, we investigate how the number of plasmon branches and their dispersion are sensitive to variables such as layer count and charge doping. Notably, we demonstrate that patterning of the topmost graphene into nanoribbons provides efficient Umklapp scattering of the bottommost Dirac plasmon polariton (DP) into the radiative region, resulting in the conversion of the DP into a robust infrared-active plasmon. Additionally, we show that the optical activity of the DP and its hybridization with inherent plasmon resonances in graphene nanoribbons are highly sensitive to the doping of both the topmost and bottommost graphene layers. By elucidating these optical characteristics, we aspire to catalyze further advancements and create new opportunities for innovative applications in photonics and optoelectronic integration.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-13"},"PeriodicalIF":9.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00469-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1038/s41699-024-00473-w
Myeongjin Jang, Minseol Kim, Sol Lee, Minseok Kwon, Hani Kang, Kihyun Lee, Jinsub Park, Anh Tuan Hoang, Jong-Hyun Ahn, Yangjin Lee, Kwanpyo Kim
Mixed-dimensional van der Waals (vdW) heterostructures offer promising platforms for exploring interesting phenomena and functionalities. To exploit their full potential, precise epitaxial processes and well-defined heterointerfaces between different components are essential. Here, we control the growth of one-dimensional (1D) vdW microwires on hexagonal crystals via plasma treatment of the growth templates. AgCN serves as a model 1D system for examining the dependence of the nucleation and growth parameters on the surface treatment conditions and substrate types. The oxygen-plasma-treated transition metal dichalcogenides form step edges mediated by formation of surface metal oxides, leading to robust AgCN epitaxy with an enhanced nucleation density and low horizontal growth rates. Monte Carlo simulations reproduce the experimentally observed growth behaviors and unveil the crucial growth parameters, such as surface diffusivity. The plasma treatment results in distinct effects on graphite and hexagonal boron nitride templates, which undergo plasma-induced amorphization and deactivation of the AgCN vdW epitaxy. We achieve the selective growth of AgCN microwires on graphite using the deactivated vdW epitaxy. This study offers significant insights into the impact of surface treatment on 1D vdW epitaxy, opening avenues for controlled fabrication of mixed-dimensional vdW heterostructures.
{"title":"Controlled epitaxy and patterned growth of one-dimensional crystals via surface treatment of two-dimensional templates","authors":"Myeongjin Jang, Minseol Kim, Sol Lee, Minseok Kwon, Hani Kang, Kihyun Lee, Jinsub Park, Anh Tuan Hoang, Jong-Hyun Ahn, Yangjin Lee, Kwanpyo Kim","doi":"10.1038/s41699-024-00473-w","DOIUrl":"10.1038/s41699-024-00473-w","url":null,"abstract":"Mixed-dimensional van der Waals (vdW) heterostructures offer promising platforms for exploring interesting phenomena and functionalities. To exploit their full potential, precise epitaxial processes and well-defined heterointerfaces between different components are essential. Here, we control the growth of one-dimensional (1D) vdW microwires on hexagonal crystals via plasma treatment of the growth templates. AgCN serves as a model 1D system for examining the dependence of the nucleation and growth parameters on the surface treatment conditions and substrate types. The oxygen-plasma-treated transition metal dichalcogenides form step edges mediated by formation of surface metal oxides, leading to robust AgCN epitaxy with an enhanced nucleation density and low horizontal growth rates. Monte Carlo simulations reproduce the experimentally observed growth behaviors and unveil the crucial growth parameters, such as surface diffusivity. The plasma treatment results in distinct effects on graphite and hexagonal boron nitride templates, which undergo plasma-induced amorphization and deactivation of the AgCN vdW epitaxy. We achieve the selective growth of AgCN microwires on graphite using the deactivated vdW epitaxy. This study offers significant insights into the impact of surface treatment on 1D vdW epitaxy, opening avenues for controlled fabrication of mixed-dimensional vdW heterostructures.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00473-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1038/s41699-024-00471-y
Daniel S. Schneider, Leonardo Lucchesi, Eros Reato, Zhenyu Wang, Agata Piacentini, Jens Bolten, Damiano Marian, Enrique G. Marin, Aleksandra Radenovic, Zhenxing Wang, Gianluca Fiori, Andras Kis, Giuseppe Iannaccone, Daniel Neumaier, Max C. Lemme
Intensive research has been carried out on two-dimensional materials, in particular molybdenum disulfide, towards high-performance field effect transistors for integrated circuits1. Fabricating transistors with ohmic contacts is a challenging task due to the formation of a high Schottky barrier that severely limits the performance of the transistors for real-world applications. Graphene-based heterostructures can be used in addition to, or as a substitute for unsuitable metals. In this paper, we present lateral heterostructure transistors made of scalable chemical vapor-deposited molybdenum disulfide and chemical vapor-deposited graphene achieving a low contact resistances of about 9 kΩ·µm and high on/off current ratios of 108. Furthermore, we also present a theoretical model calibrated on our experiments showing further potential for scaling transistors and contact areas into the few nanometers range and the possibility of a substantial performance enhancement by means of layer optimizations that would make transistors promising for use in future logic integrated circuits.
{"title":"CVD graphene contacts for lateral heterostructure MoS2 field effect transistors","authors":"Daniel S. Schneider, Leonardo Lucchesi, Eros Reato, Zhenyu Wang, Agata Piacentini, Jens Bolten, Damiano Marian, Enrique G. Marin, Aleksandra Radenovic, Zhenxing Wang, Gianluca Fiori, Andras Kis, Giuseppe Iannaccone, Daniel Neumaier, Max C. Lemme","doi":"10.1038/s41699-024-00471-y","DOIUrl":"10.1038/s41699-024-00471-y","url":null,"abstract":"Intensive research has been carried out on two-dimensional materials, in particular molybdenum disulfide, towards high-performance field effect transistors for integrated circuits1. Fabricating transistors with ohmic contacts is a challenging task due to the formation of a high Schottky barrier that severely limits the performance of the transistors for real-world applications. Graphene-based heterostructures can be used in addition to, or as a substitute for unsuitable metals. In this paper, we present lateral heterostructure transistors made of scalable chemical vapor-deposited molybdenum disulfide and chemical vapor-deposited graphene achieving a low contact resistances of about 9 kΩ·µm and high on/off current ratios of 108. Furthermore, we also present a theoretical model calibrated on our experiments showing further potential for scaling transistors and contact areas into the few nanometers range and the possibility of a substantial performance enhancement by means of layer optimizations that would make transistors promising for use in future logic integrated circuits.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-6"},"PeriodicalIF":9.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00471-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}