首页 > 最新文献

npj 2D Materials and Applications最新文献

英文 中文
Infrared photodetection in graphene-based heterostructures: bolometric and thermoelectric effects at the tunneling barrier 石墨烯基异质结构中的红外光探测:隧道势垒上的测光和热电效应
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-08 DOI: 10.1038/s41699-024-00470-z
Dmitry A. Mylnikov, Mikhail A. Kashchenko, Kirill N. Kapralov, Davit A. Ghazaryan, Evgenii E. Vdovin, Sergey V. Morozov, Kostya S. Novoselov, Denis A. Bandurin, Alexander I. Chernov, Dmitry A. Svintsov
Graphene/hBN/graphene tunnel devices offer promise as sensitive mid-infrared photodetectors but the microscopic origin underlying the photoresponse in them remains elusive. In this work, we investigated the photocurrent generation in graphene/hBN/graphene tunnel structures with localized defect states under mid-IR illumination. We demonstrate that the photocurrent in these devices is proportional to the second derivative of the tunnel current with respect to the bias voltage, peaking during tunneling through the hBN impurity level. We revealed that the origin of the photocurrent generation lies in the change of the tunneling probability upon radiation-induced electron heating in graphene layers, in agreement with the theoretical model that we developed. Finally, we show that at a finite bias voltage, the photocurrent is proportional to either of the graphene layers heating under the illumination, while at zero bias, it is proportional to the heating difference. Thus, the photocurrent in such devices can be used for accurate measurements of the electronic temperature, providing a convenient alternative to Johnson noise thermometry.
石墨烯/高纯比/石墨烯隧道器件有望成为灵敏的中红外光探测器,但其光电响应的微观起源仍然难以捉摸。在这项工作中,我们研究了具有局部缺陷态的石墨烯/hBN/石墨烯隧道结构在中红外光照下产生的光电流。我们证明,这些器件中的光电流与隧道电流相对于偏置电压的二阶导数成正比,并在隧道穿过 hBN 杂质层时达到峰值。我们揭示了光电流产生的根源在于石墨烯层中辐射诱导电子加热时隧道概率的变化,这与我们建立的理论模型一致。最后,我们证明了在有限偏置电压下,光电流与照明下石墨烯层中任何一层的加热程度成正比,而在零偏置下,光电流与加热差成正比。因此,此类器件中的光电流可用于精确测量电子温度,为约翰逊噪声测温法提供了一种便捷的替代方法。
{"title":"Infrared photodetection in graphene-based heterostructures: bolometric and thermoelectric effects at the tunneling barrier","authors":"Dmitry A. Mylnikov, Mikhail A. Kashchenko, Kirill N. Kapralov, Davit A. Ghazaryan, Evgenii E. Vdovin, Sergey V. Morozov, Kostya S. Novoselov, Denis A. Bandurin, Alexander I. Chernov, Dmitry A. Svintsov","doi":"10.1038/s41699-024-00470-z","DOIUrl":"10.1038/s41699-024-00470-z","url":null,"abstract":"Graphene/hBN/graphene tunnel devices offer promise as sensitive mid-infrared photodetectors but the microscopic origin underlying the photoresponse in them remains elusive. In this work, we investigated the photocurrent generation in graphene/hBN/graphene tunnel structures with localized defect states under mid-IR illumination. We demonstrate that the photocurrent in these devices is proportional to the second derivative of the tunnel current with respect to the bias voltage, peaking during tunneling through the hBN impurity level. We revealed that the origin of the photocurrent generation lies in the change of the tunneling probability upon radiation-induced electron heating in graphene layers, in agreement with the theoretical model that we developed. Finally, we show that at a finite bias voltage, the photocurrent is proportional to either of the graphene layers heating under the illumination, while at zero bias, it is proportional to the heating difference. Thus, the photocurrent in such devices can be used for accurate measurements of the electronic temperature, providing a convenient alternative to Johnson noise thermometry.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00470-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-modulated defect engineering of two-dimensional materials 二维材料的应变调制缺陷工程
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-07 DOI: 10.1038/s41699-024-00472-x
Prosun Santra, Sadegh Ghaderzadeh, Mahdi Ghorbani-Asl, Hannu-Pekka Komsa, Elena Besley, Arkady V. Krasheninnikov
Strain- and defect-engineering are two powerful approaches to tailor the opto-electronic properties of two-dimensional (2D) materials, but the relationship between applied mechanical strain and behavior of defects in these systems remains elusive. Using first-principles calculations, we study the response to external strain of h-BN, graphene, MoSe2, and phosphorene, four archetypal 2D materials, which contain substitutional impurities. We find that the formation energy of the defect structures can either increase or decrease with bi-axial strain, tensile or compressive, depending on the atomic radius of the impurity atom, which can be larger or smaller than that of the host atom. Analysis of the strain maps indicates that this behavior is associated with the compressive or tensile local strains produced by the impurities that interfere with the external strain. We further show that the change in the defect formation energy is related to the change in elastic moduli of the 2D materials upon introduction of impurity, which can correspondingly increase or decrease. The discovered trends are consistent across all studied 2D materials and are likely to be general. Our findings open up opportunities for combined strain- and defect-engineering to tailor the opto-electronic properties of 2D materials, and specifically, the location and properties of single-photon emitters.
应变工程和缺陷工程是定制二维(2D)材料光电特性的两种强有力的方法,但这些系统中的外加机械应变与缺陷行为之间的关系仍然难以捉摸。利用第一原理计算,我们研究了 h-BN、石墨烯、MoSe2 和磷烯这四种典型二维材料对外部应变的响应,这些材料都含有取代性杂质。我们发现,缺陷结构的形成能会随着双轴应变(拉伸或压缩)的增加或减少而增加或减少,这取决于杂质原子的原子半径,它可能比主原子的原子半径大,也可能比主原子的原子半径小。应变图分析表明,这种行为与杂质产生的压缩或拉伸局部应变有关,这些应变会干扰外部应变。我们进一步发现,缺陷形成能量的变化与二维材料在引入杂质后弹性模量的变化有关,后者会相应增加或减少。所发现的趋势在所有研究过的二维材料中都是一致的,可能具有普遍性。我们的发现为结合应变和缺陷工程来定制二维材料的光电特性,特别是单光子发射器的位置和特性提供了机会。
{"title":"Strain-modulated defect engineering of two-dimensional materials","authors":"Prosun Santra, Sadegh Ghaderzadeh, Mahdi Ghorbani-Asl, Hannu-Pekka Komsa, Elena Besley, Arkady V. Krasheninnikov","doi":"10.1038/s41699-024-00472-x","DOIUrl":"10.1038/s41699-024-00472-x","url":null,"abstract":"Strain- and defect-engineering are two powerful approaches to tailor the opto-electronic properties of two-dimensional (2D) materials, but the relationship between applied mechanical strain and behavior of defects in these systems remains elusive. Using first-principles calculations, we study the response to external strain of h-BN, graphene, MoSe2, and phosphorene, four archetypal 2D materials, which contain substitutional impurities. We find that the formation energy of the defect structures can either increase or decrease with bi-axial strain, tensile or compressive, depending on the atomic radius of the impurity atom, which can be larger or smaller than that of the host atom. Analysis of the strain maps indicates that this behavior is associated with the compressive or tensile local strains produced by the impurities that interfere with the external strain. We further show that the change in the defect formation energy is related to the change in elastic moduli of the 2D materials upon introduction of impurity, which can correspondingly increase or decrease. The discovered trends are consistent across all studied 2D materials and are likely to be general. Our findings open up opportunities for combined strain- and defect-engineering to tailor the opto-electronic properties of 2D materials, and specifically, the location and properties of single-photon emitters.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00472-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable magnetic confinement effect in a magnetic superlattice of graphene 石墨烯磁性超晶格中的可调磁约束效应
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-11 DOI: 10.1038/s41699-024-00468-7
Onur Tosun, Preetha Sarkar, Chang Qian, Matthew Gilbert, Qian Chen, Nadya Mason
Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.
石墨烯等二维范德华材料为利用定制超晶格电势进行带状结构工程提供了机会。在这项研究中,我们展示了堆叠在单层石墨烯上的磁性氧化铁(Fe3O4)纳米球的自组装如何在石墨烯中产生近距离诱导的磁性超晶格并改变其带状结构。纳米球与石墨烯层之间的相互作用除了在 K 谷和 K′谷附近产生间隙能谱外,还产生了超晶格狄拉克点,导致纳米球周围的准粒子发生磁约束。我们在低温传输测量中观察到的与栅极有关的电阻振荡证明了这一点,自洽紧密结合计算也证实了这一点。此外,我们还展示了外部磁场可以调整纳米球产生的磁超格势,从而调整系统的传输特性。这种利用磁性纳米结构进行磁场调谐带状结构工程的技术可以扩展到更广泛的二维范德华和拓扑材料。
{"title":"Tunable magnetic confinement effect in a magnetic superlattice of graphene","authors":"Onur Tosun, Preetha Sarkar, Chang Qian, Matthew Gilbert, Qian Chen, Nadya Mason","doi":"10.1038/s41699-024-00468-7","DOIUrl":"10.1038/s41699-024-00468-7","url":null,"abstract":"Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00468-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of the two-dimensional transition metal phosphide MoP2 as anode for Na/K ion batteries 二维过渡金属磷化物 MoP2 作为 Na/K 离子电池阳极的探索
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-06 DOI: 10.1038/s41699-024-00453-0
Junjie Jin, Udo Schwingenschlögl
Transition metal phosphides are regarded to be potential anode materials for alkali metal ion batteries with abundant availability of the constituent elements. However, the volume changes and resulting structure deterioration during the charge-discharge process are challenges. Using evolutionary search combined with ab initio calculations, we discover a dynamically, thermally, and mechanically stable MoP2 monolayer, which turns out to be an excellent anode material for Na-ion batteries providing a high specific capacity of 339 mA h g−1, low diffusion barrier of 0.12 eV, and low open-circuit voltage of 0.48 V. The volume expansion (125%) is found to be decisively smaller than in the case of black phosphorus (443%), for example.
过渡金属磷化物被认为是碱金属离子电池的潜在阳极材料,其组成元素非常丰富。然而,充放电过程中的体积变化和由此导致的结构退化是一个挑战。通过进化搜索和 ab initio 计算,我们发现了一种在动力学、热学和机械学上都很稳定的 MoP2 单层,它是一种极好的镎离子电池阳极材料,具有 339 mA h g-1 的高比容量、0.12 eV 的低扩散势垒和 0.48 V 的低开路电压。体积膨胀率(125%)明显小于黑磷(443%)。
{"title":"Exploration of the two-dimensional transition metal phosphide MoP2 as anode for Na/K ion batteries","authors":"Junjie Jin, Udo Schwingenschlögl","doi":"10.1038/s41699-024-00453-0","DOIUrl":"10.1038/s41699-024-00453-0","url":null,"abstract":"Transition metal phosphides are regarded to be potential anode materials for alkali metal ion batteries with abundant availability of the constituent elements. However, the volume changes and resulting structure deterioration during the charge-discharge process are challenges. Using evolutionary search combined with ab initio calculations, we discover a dynamically, thermally, and mechanically stable MoP2 monolayer, which turns out to be an excellent anode material for Na-ion batteries providing a high specific capacity of 339 mA h g−1, low diffusion barrier of 0.12 eV, and low open-circuit voltage of 0.48 V. The volume expansion (125%) is found to be decisively smaller than in the case of black phosphorus (443%), for example.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00453-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-reorientation driven emergent phases and unconventional magnetotransport in quasi-2D vdW ferromagnet Fe4GeTe2 准二维 vdW 铁磁体 Fe4GeTe2 中的自旋定向驱动新兴相和非常规磁传输
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-05 DOI: 10.1038/s41699-024-00463-y
Riju Pal, Buddhadeb Pal, Suchanda Mondal, Rajesh O. Sharma, Tanmoy Das, Prabhat Mandal, Atindra Nath Pal
Non-trivial spin textures driven by strong exchange interaction, magneto-crystalline anisotropy, and electron correlation in a low-dimensional magnetic material often lead to unusual electronic transitions. Through a combination of transport experiments in exfoliated nanoflakes down to 16 layers and first principle calculations, we unravel emergent electronic phases in quasi-2D van der Waals ferromagnet, Fe4GeTe2, possessing ferromagnetic TC ~ 270 K, along with a spin-reorientation transition (TSR ~ 120 K) with the change of magnetic easy axis. Two electronic transitions are identified. The first transition near TSR exhibits a sharp fall in resistivity, followed by a sign change in the ordinary Hall coefficient (R0), together with, maximum negative magnetoresistance (MR) and anomalous Hall conductivity. Another unusual electronic transition, hitherto unknown, is observed near ~ 40–50 K (TQ), where R0 again changes sign and below which, the resistivity shows a quadratic temperature dependence, and MR becomes positive. An analysis of the experimental data further uncovers the role of competing inelastic scattering processes in anomalous magnetotransport behavior. The density-functional theory based first-principle calculations unveil two possible magnetic phases, followed by a low-energy model Hamiltonian which captures the essence of these phases as well as explains the observed magnetotransport behavior. Thus, we demonstrate an interplay between magnetism and band topology and its consequence on electron transport in Fe4GeTe2, important for spintronic applications.
在低维磁性材料中,由强交换相互作用、磁晶各向异性和电子相关性驱动的非三维自旋纹理往往会导致不寻常的电子转变。通过在剥离至 16 层的纳米片中进行输运实验和第一原理计算相结合,我们揭示了准二维范德华铁磁体 Fe4GeTe2 中出现的电子相,它具有铁磁性 TC ~ 270 K,同时随着磁易轴的改变而出现自旋定向转变(TSR ~ 120 K)。确定了两个电子转变。在 TSR 附近的第一个转变表现为电阻率急剧下降,随后普通霍尔系数(R0)发生符号变化,同时出现最大负磁电阻(MR)和反常霍尔电导率。在 ~ 40-50 K (TQ) 附近观察到另一个迄今未知的不寻常电子转变,此时 R0 的符号再次发生改变,在此温度以下,电阻率显示出二次温度依赖性,MR 变为正值。对实验数据的分析进一步揭示了竞争性非弹性散射过程在异常磁传输行为中的作用。基于密度泛函理论的第一原理计算揭示了两种可能的磁性阶段,随后的低能模型哈密顿能捕捉到这些阶段的本质,并解释了观察到的磁传输行为。因此,我们证明了磁性和带拓扑之间的相互作用及其对 Fe4GeTe2 中电子传输的影响,这对自旋电子应用非常重要。
{"title":"Spin-reorientation driven emergent phases and unconventional magnetotransport in quasi-2D vdW ferromagnet Fe4GeTe2","authors":"Riju Pal, Buddhadeb Pal, Suchanda Mondal, Rajesh O. Sharma, Tanmoy Das, Prabhat Mandal, Atindra Nath Pal","doi":"10.1038/s41699-024-00463-y","DOIUrl":"10.1038/s41699-024-00463-y","url":null,"abstract":"Non-trivial spin textures driven by strong exchange interaction, magneto-crystalline anisotropy, and electron correlation in a low-dimensional magnetic material often lead to unusual electronic transitions. Through a combination of transport experiments in exfoliated nanoflakes down to 16 layers and first principle calculations, we unravel emergent electronic phases in quasi-2D van der Waals ferromagnet, Fe4GeTe2, possessing ferromagnetic TC ~ 270 K, along with a spin-reorientation transition (TSR ~ 120 K) with the change of magnetic easy axis. Two electronic transitions are identified. The first transition near TSR exhibits a sharp fall in resistivity, followed by a sign change in the ordinary Hall coefficient (R0), together with, maximum negative magnetoresistance (MR) and anomalous Hall conductivity. Another unusual electronic transition, hitherto unknown, is observed near ~ 40–50 K (TQ), where R0 again changes sign and below which, the resistivity shows a quadratic temperature dependence, and MR becomes positive. An analysis of the experimental data further uncovers the role of competing inelastic scattering processes in anomalous magnetotransport behavior. The density-functional theory based first-principle calculations unveil two possible magnetic phases, followed by a low-energy model Hamiltonian which captures the essence of these phases as well as explains the observed magnetotransport behavior. Thus, we demonstrate an interplay between magnetism and band topology and its consequence on electron transport in Fe4GeTe2, important for spintronic applications.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00463-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logic-in-memory application of ferroelectric-based WS2-channel field-effect transistors for improved area and energy efficiency 基于铁电的 WS2 沟道场效应晶体管的逻辑内存应用,提高面积和能效
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-01 DOI: 10.1038/s41699-024-00466-9
Huijun Kim, Juhwan Park, Hanggyo Jung, Changho Ra, Jongwook Jeon
In this study, we applied ferroelectrics to the gate stack of Field Effect Transistors (FETs) with a 2D transition-metal dichalcogenide (TMDC) channel, actively researching for sub-2nm technology node implementation. Subsequently, we analyzed the circuit characteristics of Logic-in-Memory (LiM) operation and utilized LiM features after applying ferroelectrics to achieve a single-device configuration. Based on well-calibrated simulations, we performed compact modeling in a circuit simulator to depict the temperature-dependent electrical characteristics of ferroelectric FETs with a double gate structure and 2D channel (DG 2D-FeFET) in sub-2nm dimensions. Through this, we have confirmed that the 2D FeFET-based LiM technology, designed for the 2 nm technology node, exhibits superior characteristics in terms of delay, power/energy consumption, and circuit area under all temperature conditions, compared to the conventional CMOS technology based on 2D FETs. This verification serves as proof of the future technological potential of 2D-FeFET in extremely scaled-down technology nodes.
在本研究中,我们将铁电体应用于具有二维过渡金属二卤化物(TMDC)沟道的场效应晶体管(FET)的栅堆,积极研究 2 纳米以下技术节点的实现。随后,我们分析了内存逻辑(LiM)工作的电路特性,并在应用铁电后利用 LiM 特性实现了单器件配置。基于校准良好的模拟,我们在电路模拟器中进行了紧凑建模,以描述具有双栅极结构和二维沟道(DG 2D-FeFET)的铁电 FET 在亚 2 纳米尺寸下随温度变化的电气特性。通过这一研究,我们证实,与基于二维场效应晶体管的传统 CMOS 技术相比,为 2 纳米技术节点设计的基于二维铁电场效应晶体管的 LiM 技术在所有温度条件下的延迟、功率/能耗和电路面积方面都表现出更优越的特性。这一验证证明了二维场效应晶体管未来在极度缩小的技术节点中的技术潜力。
{"title":"Logic-in-memory application of ferroelectric-based WS2-channel field-effect transistors for improved area and energy efficiency","authors":"Huijun Kim, Juhwan Park, Hanggyo Jung, Changho Ra, Jongwook Jeon","doi":"10.1038/s41699-024-00466-9","DOIUrl":"10.1038/s41699-024-00466-9","url":null,"abstract":"In this study, we applied ferroelectrics to the gate stack of Field Effect Transistors (FETs) with a 2D transition-metal dichalcogenide (TMDC) channel, actively researching for sub-2nm technology node implementation. Subsequently, we analyzed the circuit characteristics of Logic-in-Memory (LiM) operation and utilized LiM features after applying ferroelectrics to achieve a single-device configuration. Based on well-calibrated simulations, we performed compact modeling in a circuit simulator to depict the temperature-dependent electrical characteristics of ferroelectric FETs with a double gate structure and 2D channel (DG 2D-FeFET) in sub-2nm dimensions. Through this, we have confirmed that the 2D FeFET-based LiM technology, designed for the 2 nm technology node, exhibits superior characteristics in terms of delay, power/energy consumption, and circuit area under all temperature conditions, compared to the conventional CMOS technology based on 2D FETs. This verification serves as proof of the future technological potential of 2D-FeFET in extremely scaled-down technology nodes.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00466-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hometronics – accessible production of graphene suspensions for health sensing applications using only household items 家居电子学--仅使用家居用品就可生产用于健康传感应用的石墨烯悬浮物
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-30 DOI: 10.1038/s41699-024-00467-8
Adel K. A. Aljarid, Jasper Winder, Cencen Wei, Arvind Venkatraman, Oliver Tomes, Aaron Soul, Dimitrios G. Papageorgiou, Matthias E. Möbius, Conor S. Boland
Nanoscience at times can seem out of reach to the developing world and the general public, with much of the equipment expensive and knowledge seemingly esoteric to nonexperts. Using only cheap, everyday household items, accessible research with real applications can be shown. Here, graphene suspensions were produced using pencil lead, tap water, kitchen appliances, soaps and coffee filters, with a children’s glue-based graphene nanocomposite for highly sensitive pulse measurements demonstrated.
对于发展中国家和普通大众来说,纳米科学有时似乎遥不可及,因为许多设备价格昂贵,而对于非专业人士来说,纳米科学知识似乎又很深奥。只需使用廉价的日常生活用品,就能展示出具有实际应用价值的易学易用的研究成果。在这里,利用铅笔芯、自来水、厨房用具、肥皂和咖啡滤纸生产出了石墨烯悬浮液,并展示了一种基于儿童胶水的石墨烯纳米复合材料,可用于高灵敏度脉冲测量。
{"title":"Hometronics – accessible production of graphene suspensions for health sensing applications using only household items","authors":"Adel K. A. Aljarid, Jasper Winder, Cencen Wei, Arvind Venkatraman, Oliver Tomes, Aaron Soul, Dimitrios G. Papageorgiou, Matthias E. Möbius, Conor S. Boland","doi":"10.1038/s41699-024-00467-8","DOIUrl":"10.1038/s41699-024-00467-8","url":null,"abstract":"Nanoscience at times can seem out of reach to the developing world and the general public, with much of the equipment expensive and knowledge seemingly esoteric to nonexperts. Using only cheap, everyday household items, accessible research with real applications can be shown. Here, graphene suspensions were produced using pencil lead, tap water, kitchen appliances, soaps and coffee filters, with a children’s glue-based graphene nanocomposite for highly sensitive pulse measurements demonstrated.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-5"},"PeriodicalIF":9.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00467-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic description of conductive bridge formation in two-dimensional material based memristor 基于二维材料的忆阻器中导电桥形成的原子论描述
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-27 DOI: 10.1038/s41699-024-00465-w
Sanchali Mitra, Santanu Mahapatra
In-memory computing technology built on 2D material-based nonvolatile resistive switches (aka memristors) has made great progress in recent years. It has however been debated whether such remarkable resistive switching is an inherent property of the 2D materials or if the metal electrode plays any role? Can the metal atoms penetrate through the crystalline 2D materials to form conductive filaments as observed in amorphous oxide-based memristors? To find answers, here we investigate MoS2 and h-BN-based devices with electrochemically passive and active (metal) electrodes using reactive molecular dynamics with a charge equilibration approach. We find that the SET and RESET processes in active electrode-based multilayer devices involve the formation and disruption of metal filaments linking the two electrodes exclusively through the grain boundaries, the configuration of which affects the volatility of the resistive switching. Whereas the switching mechanisms in passive electrode-based devices require the formation of interlayer B-N bonds and popping of the S atom to the Mo plane at the point defects. We also show that metal atom adsorption at the point defects causes resistive switching in monolayer MoS2. Our atomic-level understanding provides explanations to the apparently contradictory experimental findings and enables defect-engineering guidelines in 2D materials for such disruptive technology.
近年来,基于二维材料的非易失性电阻开关(又称忆阻器)的内存计算技术取得了长足的进步。然而,人们一直在争论,这种显著的电阻开关是二维材料的固有特性,还是金属电极起了什么作用?金属原子是否能像在基于非晶氧化物的忆阻器中观察到的那样穿透晶体二维材料形成导电丝?为了找到答案,我们在此采用反应分子动力学和电荷平衡方法,研究了带有电化学被动电极和主动(金属)电极的基于 MoS2 和 h-BN 的器件。我们发现,基于主动电极的多层器件中的 SET 和 RESET 过程涉及完全通过晶界连接两个电极的金属丝的形成和破坏,而金属丝的配置会影响电阻开关的波动性。而被动电极型器件的开关机制则需要在点缺陷处形成层间 B-N 键并将 S 原子弹向 Mo 平面。我们还表明,金属原子在点缺陷处的吸附会导致单层 MoS2 的电阻开关。我们在原子层面上的理解为明显矛盾的实验发现提供了解释,并为二维材料中的缺陷工程提供了指导,以实现这种颠覆性技术。
{"title":"Atomistic description of conductive bridge formation in two-dimensional material based memristor","authors":"Sanchali Mitra, Santanu Mahapatra","doi":"10.1038/s41699-024-00465-w","DOIUrl":"10.1038/s41699-024-00465-w","url":null,"abstract":"In-memory computing technology built on 2D material-based nonvolatile resistive switches (aka memristors) has made great progress in recent years. It has however been debated whether such remarkable resistive switching is an inherent property of the 2D materials or if the metal electrode plays any role? Can the metal atoms penetrate through the crystalline 2D materials to form conductive filaments as observed in amorphous oxide-based memristors? To find answers, here we investigate MoS2 and h-BN-based devices with electrochemically passive and active (metal) electrodes using reactive molecular dynamics with a charge equilibration approach. We find that the SET and RESET processes in active electrode-based multilayer devices involve the formation and disruption of metal filaments linking the two electrodes exclusively through the grain boundaries, the configuration of which affects the volatility of the resistive switching. Whereas the switching mechanisms in passive electrode-based devices require the formation of interlayer B-N bonds and popping of the S atom to the Mo plane at the point defects. We also show that metal atom adsorption at the point defects causes resistive switching in monolayer MoS2. Our atomic-level understanding provides explanations to the apparently contradictory experimental findings and enables defect-engineering guidelines in 2D materials for such disruptive technology.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-14"},"PeriodicalIF":9.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00465-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene oxide-based membranes for water desalination and purification 基于氧化石墨烯的脱盐和净水膜
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-27 DOI: 10.1038/s41699-024-00462-z
Saurabh Kr Tiwary, Maninderjeet Singh, Shubham Vasant Chavan, Alamgir Karim
Millions of people across the globe are severely afflicted because of water potability issues, and to proffer a solution to this crisis, efficient and cost-effective desalination techniques are necessitated. Membranes, in particular Graphene-derived membranes, have emerged as a potential answer to this grave problem because of their tunable ionic and molecular sieving capability, thin structure, and customizable microstructure. Among graphene-derived membranes, Graphene Oxide membranes have been the most promising, given the replete presence of oxygen-containing functional groups on its surface. However, the prospects of commercial applicability of these membranes are currently plagued by uneven stacking, crossflow delamination, flawed pores, screening and pH effects, and horizontal defects in the membrane. In addition, due to the selectivity–permeability trade-off that commonly exists in all membranes, the separation efficiency is negatively influenced. This review, while studying these challenges, aims to outline the most recent ground-breaking developments in graphene-based membrane technology, encompassing their separation mechanism, selectivity, adjustable mechanical characteristics, and uses. Additionally, we have covered in detail how several process variables such as temperature, total oxygen concentration, and functional groups affect the effectiveness of membrane separation with the focal point tilted toward studying the currently used intercalation techniques and effective nanomaterial graphene oxide membranes for water desalination
全球数以百万计的人因饮水问题而深受其害,要解决这一危机,就必须采用高效、经济的海水淡化技术。膜,尤其是石墨烯衍生膜,因其可调的离子和分子筛分能力、薄结构和可定制的微结构,已成为解决这一严重问题的潜在方法。在石墨烯衍生膜中,氧化石墨烯膜是最有前途的,因为其表面含有完整的含氧官能团。然而,这些膜的商业应用前景目前受到堆叠不均匀、横流分层、孔隙缺陷、筛选和 pH 值效应以及膜的水平缺陷等问题的困扰。此外,由于所有膜通常都存在选择性-渗透性权衡,分离效率也会受到负面影响。本综述在研究这些挑战的同时,旨在概述石墨烯基膜技术的最新突破性发展,包括其分离机制、选择性、可调机械特性和用途。此外,我们还详细介绍了温度、总氧浓度和官能团等几个过程变量如何影响膜分离的效果,重点研究了目前使用的插层技术和用于海水淡化的有效纳米材料氧化石墨烯膜。
{"title":"Graphene oxide-based membranes for water desalination and purification","authors":"Saurabh Kr Tiwary, Maninderjeet Singh, Shubham Vasant Chavan, Alamgir Karim","doi":"10.1038/s41699-024-00462-z","DOIUrl":"10.1038/s41699-024-00462-z","url":null,"abstract":"Millions of people across the globe are severely afflicted because of water potability issues, and to proffer a solution to this crisis, efficient and cost-effective desalination techniques are necessitated. Membranes, in particular Graphene-derived membranes, have emerged as a potential answer to this grave problem because of their tunable ionic and molecular sieving capability, thin structure, and customizable microstructure. Among graphene-derived membranes, Graphene Oxide membranes have been the most promising, given the replete presence of oxygen-containing functional groups on its surface. However, the prospects of commercial applicability of these membranes are currently plagued by uneven stacking, crossflow delamination, flawed pores, screening and pH effects, and horizontal defects in the membrane. In addition, due to the selectivity–permeability trade-off that commonly exists in all membranes, the separation efficiency is negatively influenced. This review, while studying these challenges, aims to outline the most recent ground-breaking developments in graphene-based membrane technology, encompassing their separation mechanism, selectivity, adjustable mechanical characteristics, and uses. Additionally, we have covered in detail how several process variables such as temperature, total oxygen concentration, and functional groups affect the effectiveness of membrane separation with the focal point tilted toward studying the currently used intercalation techniques and effective nanomaterial graphene oxide membranes for water desalination","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-19"},"PeriodicalIF":9.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00462-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing dielectric passivation on monolayer WS2 via a sacrificial graphene oxide seeding layer 通过牺牲氧化石墨烯播种层增强单层 WS2 的介电钝化
IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-27 DOI: 10.1038/s41699-024-00464-x
P.-J. Wyndaele, J.-F. de Marneffe, S. Sergeant, C. J. L. de la Rosa, S. Brems, A. M. Caro, S. De Gendt
The full utilization of two-dimensional transition metal dichalcogenides (2D TMDCs) faces several challenges, among which is realizing uniform material deposition on the 2D surface. Typical strategies to enable material growth lead to a poor interface quality, degrading the 2D TMDC’s properties. In this work, a sacrificial, graphene oxide-based seeding layer is used (1) as passivation layer, protecting the underlying 2D TMDC and (2) as nucleation layer, enabling uniform material growth. Graphene is transferred on monolayer WS2, establishing a high-quality van der Waals interface. After transfer, the polymeric residues on graphene are cleaned via a combination of wet- and dry treatments and functionalized via dry UV/O3 oxidation. The rate of graphene oxidation is shown to be substrate dependent, which is explained by UV light-induced ultrafast charge transfer between the graphene and WS2 monolayer. The carbon-oxygen functionalities serve as nucleation sites in a subsequent HfO2 ALD process, achieving more uniform dielectric growth and faster layer closure compared to direct deposition. The graphene-based nucleation- / passivation approach offers adaptability, allowing for tailored surface chemistry to enable any alternative material growth, while maintaining a prefect van der Waals interface.
充分利用二维过渡金属二钙化物(2D TMDCs)面临着若干挑战,其中之一就是在二维表面实现均匀的材料沉积。实现材料生长的典型策略会导致界面质量不佳,从而降低二维过渡金属二掺杂化合物的性能。在这项工作中,基于氧化石墨烯的牺牲型播种层(1)用作钝化层,保护底层的二维 TMDC;(2)用作成核层,实现材料的均匀生长。石墨烯被转移到单层 WS2 上,建立起高质量的范德华界面。转移后,通过湿处理和干处理相结合的方法清洁石墨烯上的聚合物残留物,并通过干紫外线/O3 氧化实现功能化。石墨烯氧化的速率与基底有关,这可以用紫外光诱导的石墨烯和 WS2 单层之间的超快电荷转移来解释。在随后的 HfO2 ALD 过程中,碳-氧官能团可作为成核位点,与直接沉积相比,可实现更均匀的介电生长和更快的层闭合。基于石墨烯的成核/钝化方法具有适应性强的特点,可定制表面化学,实现任何替代材料的生长,同时保持完美的范德华界面。
{"title":"Enhancing dielectric passivation on monolayer WS2 via a sacrificial graphene oxide seeding layer","authors":"P.-J. Wyndaele, J.-F. de Marneffe, S. Sergeant, C. J. L. de la Rosa, S. Brems, A. M. Caro, S. De Gendt","doi":"10.1038/s41699-024-00464-x","DOIUrl":"10.1038/s41699-024-00464-x","url":null,"abstract":"The full utilization of two-dimensional transition metal dichalcogenides (2D TMDCs) faces several challenges, among which is realizing uniform material deposition on the 2D surface. Typical strategies to enable material growth lead to a poor interface quality, degrading the 2D TMDC’s properties. In this work, a sacrificial, graphene oxide-based seeding layer is used (1) as passivation layer, protecting the underlying 2D TMDC and (2) as nucleation layer, enabling uniform material growth. Graphene is transferred on monolayer WS2, establishing a high-quality van der Waals interface. After transfer, the polymeric residues on graphene are cleaned via a combination of wet- and dry treatments and functionalized via dry UV/O3 oxidation. The rate of graphene oxidation is shown to be substrate dependent, which is explained by UV light-induced ultrafast charge transfer between the graphene and WS2 monolayer. The carbon-oxygen functionalities serve as nucleation sites in a subsequent HfO2 ALD process, achieving more uniform dielectric growth and faster layer closure compared to direct deposition. The graphene-based nucleation- / passivation approach offers adaptability, allowing for tailored surface chemistry to enable any alternative material growth, while maintaining a prefect van der Waals interface.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00464-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj 2D Materials and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1