Pub Date : 2024-11-12DOI: 10.1016/j.neuropsychologia.2024.109034
Akbar Hussain , Jon Walbrin , Marija Tochadse , Jorge Almeida
Correctly using hand-held tools and manipulable objects typically relies not only on sensory and motor-related processes, but also centrally on conceptual knowledge about how objects are typically used (e.g. grasping the handle of a kitchen knife rather than the blade avoids injury). A wealth of fMRI connectivity-related evidence demonstrates that contributions from both ventral and dorsal stream areas are important for accurate tool knowledge and use. Here, we investigate the combined role of ventral and dorsal stream areas in representing “primary” manipulation knowledge - that is, knowledge that is hypothesized to be of central importance for day-to-day object use. We operationalize primary manipulation knowledge by extracting the first dimension from a multi-dimensional scaling solution over a behavioral judgement task where subjects arranged a set of 80 manipulable objects based on their overall manipulation similarity. We then relate this dimension to representational and time-course correlations between ventral and dorsal stream areas. Our results show that functional coupling between posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) is uniquely related to primary manipulation knowledge about objects, and that this effect is more pronounced for objects that require precision grasping. We reason this is due to precision-grasp objects requiring more ventral/temporal information relating to object shape, material and function to allow correct finger placement and controlled manipulation. These results demonstrate the importance of functional coupling across these ventral and dorsal stream areas in service of manipulation knowledge and accurate grasp-related behavior.
{"title":"Primary manipulation knowledge of objects is associated with the functional coupling of pMTG and aIPS","authors":"Akbar Hussain , Jon Walbrin , Marija Tochadse , Jorge Almeida","doi":"10.1016/j.neuropsychologia.2024.109034","DOIUrl":"10.1016/j.neuropsychologia.2024.109034","url":null,"abstract":"<div><div>Correctly using hand-held tools and manipulable objects typically relies not only on sensory and motor-related processes, but also centrally on conceptual knowledge about how objects are typically used (e.g. grasping the handle of a kitchen knife rather than the blade avoids injury). A wealth of fMRI connectivity-related evidence demonstrates that contributions from both ventral and dorsal stream areas are important for accurate tool knowledge and use. Here, we investigate the combined role of ventral and dorsal stream areas in representing “primary” manipulation knowledge - that is, knowledge that is hypothesized to be of central importance for day-to-day object use. We operationalize primary manipulation knowledge by extracting the first dimension from a multi-dimensional scaling solution over a behavioral judgement task where subjects arranged a set of 80 manipulable objects based on their overall manipulation similarity. We then relate this dimension to representational and time-course correlations between ventral and dorsal stream areas. Our results show that functional coupling between posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) is uniquely related to primary manipulation knowledge about objects, and that this effect is more pronounced for objects that require precision grasping. We reason this is due to precision-grasp objects requiring more ventral/temporal information relating to object shape, material and function to allow correct finger placement and controlled manipulation. These results demonstrate the importance of functional coupling across these ventral and dorsal stream areas in service of manipulation knowledge and accurate grasp-related behavior.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109034"},"PeriodicalIF":2.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To understand how we evaluate harm to others, it is crucial to consider the offender's intent and the victim's suffering. Previous research investigating event-related potentials (ERPs) during moral evaluation has been limited by small sample sizes and a priori selection of electrodes and time windows that may bias the results. To overcome these limitations, we examined ERPs in 66 healthy human adults using a data-driven analytic approach involving cluster-based permutation tests. Participants performed an implicit moral evaluation task requiring to observe scenarios depicting intentional harm (IHS), accidental harm (AHS), and neutral actions (NAS) while judging whether each scenario was set indoors or outdoors. Our results revealed two distinct clusters, peaking at ∼170 and ∼250 ms, showing differences between harm scenarios (IHS and AHS) and NAS, suggesting rapid processing of the victim's physical outcome. The difference between IHS and AHS scenarios emerged later, at ∼400 ms, potentially reflecting subsequent evaluation of the agent's intentions. Source analysis showed that brain regions associated with empathy for pain were associated with the earlier peaks at ∼170 and ∼250 ms, while the modulation of the activity of the mentalizing network was presented at ∼250 and ∼400 ms. These findings advance our understanding of the neural mechanisms underlying implicit moral evaluation. Notably, they provide electrocortical new insights for models of implicit moral evaluation, suggesting an early neural response linked to empathy for pain, with subsequent integration of empathy response with mentalizing processes, followed by later cognitive evaluations, likely reflecting the assessment of the agent's moral responsibility.
{"title":"Temporal dynamics of implicit moral evaluation: From empathy for pain to mentalizing processes","authors":"Kamela Cenka , Chiara Spaccasassi , Stella Petkovic , Rachele Pezzetta , Giorgio Arcara , Alessio Avenanti","doi":"10.1016/j.neuropsychologia.2024.109033","DOIUrl":"10.1016/j.neuropsychologia.2024.109033","url":null,"abstract":"<div><div>To understand how we evaluate harm to others, it is crucial to consider the offender's intent and the victim's suffering. Previous research investigating event-related potentials (ERPs) during moral evaluation has been limited by small sample sizes and a priori selection of electrodes and time windows that may bias the results. To overcome these limitations, we examined ERPs in 66 healthy human adults using a data-driven analytic approach involving cluster-based permutation tests. Participants performed an implicit moral evaluation task requiring to observe scenarios depicting intentional harm (IHS), accidental harm (AHS), and neutral actions (NAS) while judging whether each scenario was set indoors or outdoors. Our results revealed two distinct clusters, peaking at ∼170 and ∼250 ms, showing differences between harm scenarios (IHS and AHS) and NAS, suggesting rapid processing of the victim's physical outcome. The difference between IHS and AHS scenarios emerged later, at ∼400 ms, potentially reflecting subsequent evaluation of the agent's intentions. Source analysis showed that brain regions associated with empathy for pain were associated with the earlier peaks at ∼170 and ∼250 ms, while the modulation of the activity of the mentalizing network was presented at ∼250 and ∼400 ms. These findings advance our understanding of the neural mechanisms underlying implicit moral evaluation. Notably, they provide electrocortical new insights for models of implicit moral evaluation, suggesting an early neural response linked to empathy for pain, with subsequent integration of empathy response with mentalizing processes, followed by later cognitive evaluations, likely reflecting the assessment of the agent's moral responsibility.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109033"},"PeriodicalIF":2.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.neuropsychologia.2024.109032
B.S. DeCouto , M. Bilalić , A.M. Williams
Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.
{"title":"Neuroimaging and perceptual-cognitive expertise in sport: A narrative review of research and future directions","authors":"B.S. DeCouto , M. Bilalić , A.M. Williams","doi":"10.1016/j.neuropsychologia.2024.109032","DOIUrl":"10.1016/j.neuropsychologia.2024.109032","url":null,"abstract":"<div><div>Perceptual-cognitive expertise is crucial in domains that require rapid extraction of information for anticipation (e.g., sport, aviation, warfighting). Yet, published reports on the neuroscience of perceptual-cognitive expertise in such dynamic performance environments focus almost exclusively on biological motion processing (i.e., action observation network), leaving gaps in knowledge about the neural mechanisms underlying other frequently cited perceptual-cognitive skills, such as pattern recognition, the use of contextual priors, and global processing. In this paper, we provide a narrative review of research on the neural mechanisms underlying perceptual-cognitive expertise in sport, a domain where individuals possess highly specialized perceptual-cognitive skills (i.e., expertise) that enable successful performance in dynamic environments. Additionally, we discuss how work from domains with more static, predictable stimuli for perception and decision-making (e.g., radiology, chess) can enhance understanding of the neuroscience of expertise in sport. In future, efforts are needed to address the neural mechanisms underpinning less studied perceptual-cognitive skills (i.e., pattern recognition, contextual priors, global processing) and to explore how experts prioritize these skills within different contexts, thereby enhancing our understanding of perceptual-cognitive expertise across numerous professional domains.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109032"},"PeriodicalIF":2.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Working memory (WM) load has been well-documented to impair selective attention and inhibitory control. However, its effects on motor function remain insufficiently explored. To extend the existing literature, we investigated the impact of WM load on force control and movement-related brain activity. Sixteen healthy young participants performed a visual static force matching task using a pinch grip under varying WM loads. The task included low and high WM load conditions (memorizing one digit or six digits), and the precision level required to control force was adjusted by manipulating visual gain (low vs. high visual gains), with higher visual gain necessitating more precise force control. Peri-movement alpha and beta event-related desynchronization (ERD), along with force accuracy and steadiness, were measured using electroencephalography recorded over the central areas during the force control task. Results indicated that while force accuracy and steadiness significantly improved with higher visual gain, there was no significant effect of WM load on these measures. Alpha and beta ERD were greater under high than low visual gain, and also greater under high than low WM load. These findings suggest that in young adults, increased WM load leads to compensatory increases in sensorimotor cortical activity to mitigate potential declines in static force control performance that may result from the depletion of neural resources caused by WM load. Our findings extend current understanding of the interaction between WM and sensorimotor processes by offering new insights into how movement-related brain activity is influenced by heightened WM load.
{"title":"Working memory load increases movement-related alpha and beta desynchronization","authors":"Aoki Takahashi , Shugo Iuchi , Taisei Sasaki , Yuhei Hashimoto , Riku Ishizaka , Kodai Minami , Tatsunori Watanabe","doi":"10.1016/j.neuropsychologia.2024.109030","DOIUrl":"10.1016/j.neuropsychologia.2024.109030","url":null,"abstract":"<div><div>Working memory (WM) load has been well-documented to impair selective attention and inhibitory control. However, its effects on motor function remain insufficiently explored. To extend the existing literature, we investigated the impact of WM load on force control and movement-related brain activity. Sixteen healthy young participants performed a visual static force matching task using a pinch grip under varying WM loads. The task included low and high WM load conditions (memorizing one digit or six digits), and the precision level required to control force was adjusted by manipulating visual gain (low vs. high visual gains), with higher visual gain necessitating more precise force control. Peri-movement alpha and beta event-related desynchronization (ERD), along with force accuracy and steadiness, were measured using electroencephalography recorded over the central areas during the force control task. Results indicated that while force accuracy and steadiness significantly improved with higher visual gain, there was no significant effect of WM load on these measures. Alpha and beta ERD were greater under high than low visual gain, and also greater under high than low WM load. These findings suggest that in young adults, increased WM load leads to compensatory increases in sensorimotor cortical activity to mitigate potential declines in static force control performance that may result from the depletion of neural resources caused by WM load. Our findings extend current understanding of the interaction between WM and sensorimotor processes by offering new insights into how movement-related brain activity is influenced by heightened WM load.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109030"},"PeriodicalIF":2.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.neuropsychologia.2024.109031
K. Lertladaluck , Y. Moriguchi
Numerous studies have highlighted the importance of executive functions (EFs) in the development of Theory of Mind (ToM) in preschoolers. However, research focusing on young children at the neural level has been limited. This study examined the relationship between EFs and ToM in twenty-nine healthy Japanese preschoolers aged 5–7 years, focusing on neural responses during EF and ToM tasks using near-infrared spectroscopy (NIRS) to monitor prefrontal cortex (PFC) activity. The study utilized EF tasks and the Sally-Anne scenario to assess false- and true-belief understanding, aiming to provide a comprehensive analysis of ToM capabilities. Results indicated that despite advanced EF capabilities and a ceiling effect across all EF tasks, there were no significant correlations between EF performance or verbal ability and ToM task performance. NIRS data revealed no PFC activation during the Stroop task. However, activation was observed in the left and right lateral PFC in the control false belief condition, the left lateral PFC in the false belief condition, and across all PFC regions in the true belief condition during ToM tasks. Significant relationships were found between behavioral performance in ToM tasks and neural activity in key brain regions. The study also identified a complex relationship between false and true belief reasoning, suggesting a nuanced developmental trajectory for ToM. These findings underscore the crucial role of early childhood in the development of ToM and the complex interplay between cognitive functions and neural efficiency in understanding others' mental states.
许多研究都强调了执行功能(EFs)在学龄前儿童心智理论(ToM)发展中的重要性。然而,针对幼儿神经水平的研究还很有限。本研究考察了 29 名 5-7 岁健康日本学龄前儿童的执行功能与心智理论之间的关系,重点是使用近红外光谱(NIRS)监测前额叶皮层(PFC)活动时执行功能和心智理论任务的神经反应。该研究利用EF任务和萨莉-安妮情景来评估虚假和真实信念的理解,旨在提供对ToM能力的全面分析。结果表明,尽管EF能力较强,而且在所有EF任务中都存在天花板效应,但EF表现或言语能力与ToM任务表现之间没有显著相关性。近红外光谱数据显示,在进行 Stroop 任务时,前脑功能区没有激活。然而,在对照组虚假信念条件下,左侧和右侧外侧 PFC 被激活;在虚假信念条件下,左侧外侧 PFC 被激活;在 ToM 任务中,在真实信念条件下,所有 PFC 区域都被激活。研究发现,ToM 任务中的行为表现与关键脑区的神经活动之间存在显著关系。研究还发现了假信念推理和真信念推理之间的复杂关系,这表明 ToM 有着细微的发展轨迹。这些发现强调了幼儿期在ToM发展中的关键作用,以及在理解他人心理状态时认知功能和神经效率之间复杂的相互作用。
{"title":"Executive functions and theory of mind development in preschoolers: Insights from NIRS data","authors":"K. Lertladaluck , Y. Moriguchi","doi":"10.1016/j.neuropsychologia.2024.109031","DOIUrl":"10.1016/j.neuropsychologia.2024.109031","url":null,"abstract":"<div><div>Numerous studies have highlighted the importance of executive functions (EFs) in the development of Theory of Mind (ToM) in preschoolers. However, research focusing on young children at the neural level has been limited. This study examined the relationship between EFs and ToM in twenty-nine healthy Japanese preschoolers aged 5–7 years, focusing on neural responses during EF and ToM tasks using near-infrared spectroscopy (NIRS) to monitor prefrontal cortex (PFC) activity. The study utilized EF tasks and the Sally-Anne scenario to assess false- and true-belief understanding, aiming to provide a comprehensive analysis of ToM capabilities. Results indicated that despite advanced EF capabilities and a ceiling effect across all EF tasks, there were no significant correlations between EF performance or verbal ability and ToM task performance. NIRS data revealed no PFC activation during the Stroop task. However, activation was observed in the left and right lateral PFC in the control false belief condition, the left lateral PFC in the false belief condition, and across all PFC regions in the true belief condition during ToM tasks. Significant relationships were found between behavioral performance in ToM tasks and neural activity in key brain regions. The study also identified a complex relationship between false and true belief reasoning, suggesting a nuanced developmental trajectory for ToM. These findings underscore the crucial role of early childhood in the development of ToM and the complex interplay between cognitive functions and neural efficiency in understanding others' mental states.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109031"},"PeriodicalIF":2.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.neuropsychologia.2024.109019
Emily E. Harford , Erin D. Smith , Lori L. Holt , Taylor J. Abel
The human auditory system consists of both peripheral and central components, both of which play a role but contribute distinctly to overall auditory functioning and can be differentially impacted by pathophysiologic states. Hemispheric surgery (HS), a procedure used for the treatment of drug-resistant epilepsy, involves complete disconnection of the auditory cortex in the operative hemisphere, leaving hearing acuity (peripheral function) intact but having heavy implications for auditory processing (central function). The literature describing pre- and post-operative auditory processing abilities of individuals who have undergone HS is sparse, but the research available provides evidence that several central auditory processes including auditory spatial analysis and temporal processing may be impacted. Deficits noted in standardized testing within the clinical or research environment have concrete functional impacts that may be currently under-appreciated and could lead to under-utilization of appropriate therapeutic strategies and accommodations. This review describes the profile of central auditory processing abilities in patients who have undergone HS by synthesizing available literature and incorporating research in other clinical populations to help fill critical gaps in our understanding of how cerebral disconnection impacts the central auditory system.
{"title":"Listening with one hemisphere: A review of auditory processing among individuals after hemispheric surgery","authors":"Emily E. Harford , Erin D. Smith , Lori L. Holt , Taylor J. Abel","doi":"10.1016/j.neuropsychologia.2024.109019","DOIUrl":"10.1016/j.neuropsychologia.2024.109019","url":null,"abstract":"<div><div>The human auditory system consists of both peripheral and central components, both of which play a role but contribute distinctly to overall auditory functioning and can be differentially impacted by pathophysiologic states. Hemispheric surgery (HS), a procedure used for the treatment of drug-resistant epilepsy, involves complete disconnection of the auditory cortex in the operative hemisphere, leaving hearing acuity (peripheral function) intact but having heavy implications for auditory processing (central function). The literature describing pre- and post-operative auditory processing abilities of individuals who have undergone HS is sparse, but the research available provides evidence that several central auditory processes including auditory spatial analysis and temporal processing may be impacted. Deficits noted in standardized testing within the clinical or research environment have concrete functional impacts that may be currently under-appreciated and could lead to under-utilization of appropriate therapeutic strategies and accommodations. This review describes the profile of central auditory processing abilities in patients who have undergone HS by synthesizing available literature and incorporating research in other clinical populations to help fill critical gaps in our understanding of how cerebral disconnection impacts the central auditory system.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109019"},"PeriodicalIF":2.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.neuropsychologia.2024.109020
Golnaz Yadollahikhales , Maria Luisa Mandelli , Zoe Ezzes , Janhavi Pillai , Buddhika Ratnasiri , David Paul Baquirin , Zachary Miller , Jessica de Leon , Boon Lead Tee , William Seeley , Howard Rosen , Bruce Miller , Joel Kramer , Virginia Sturm , Maria Luisa Gorno-Tempini , Maxime Montembeault
State of the art
Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition.
Methodology
We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery – Recognition, Naming, Semantic associations – pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12.
Results
svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces’ recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with grey matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS).
Conclusion
Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.
{"title":"Perceptual and semantic deficits in face recognition in semantic dementia","authors":"Golnaz Yadollahikhales , Maria Luisa Mandelli , Zoe Ezzes , Janhavi Pillai , Buddhika Ratnasiri , David Paul Baquirin , Zachary Miller , Jessica de Leon , Boon Lead Tee , William Seeley , Howard Rosen , Bruce Miller , Joel Kramer , Virginia Sturm , Maria Luisa Gorno-Tempini , Maxime Montembeault","doi":"10.1016/j.neuropsychologia.2024.109020","DOIUrl":"10.1016/j.neuropsychologia.2024.109020","url":null,"abstract":"<div><h3>State of the art</h3><div>Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition.</div></div><div><h3>Methodology</h3><div>We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery – Recognition, Naming, Semantic associations – pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12.</div></div><div><h3>Results</h3><div>svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces’ recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with grey matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS).</div></div><div><h3>Conclusion</h3><div>Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109020"},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.neuropsychologia.2024.109018
Sara Scarfo, Antonella M.A. Marsella, Loulouda Grigoriadou, Yashar Moshfeghi, William J. McGeown
{"title":"Corrigendum to ‘Neuroanatomical correlates and predictors of psychotic symptoms in Alzheimer's disease: A systematic review and meta-analysis’ [Neuropsychologia 204 (2024) Advance online publication]","authors":"Sara Scarfo, Antonella M.A. Marsella, Loulouda Grigoriadou, Yashar Moshfeghi, William J. McGeown","doi":"10.1016/j.neuropsychologia.2024.109018","DOIUrl":"10.1016/j.neuropsychologia.2024.109018","url":null,"abstract":"","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"206 ","pages":"Article 109018"},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the neural mechanisms underlying spatial attention is crucial for unraveling the pathogenesis of unilateral spatial neglect (USN). However, the neural link between spatial attention and USN remains unclear. Thus, the neural mechanisms of spatial attention in the left and right hemispheres were compared. Twenty healthy volunteers participated in a hand mental rotation task in which they determined whether images depicted as left or right hands. The hand images were randomly displayed in the upper, lower, left, and right directions, centered on a fixation point. The laterality index for the alpha oscillatory activity was determined to assess the lateralization of neural activity during visual stimulation. Our results revealed a significant shift in alpha oscillatory neural activity in the inferior parietal lobule (IPL) towards the right hemisphere when visual stimulation occurred on the left side. In contrast, no significant oscillatory shift in the alpha band towards the left hemisphere was observed in the IPL when the visual stimulus was presented on the right side. These findings indicate that the spatial attention on the left side depends on oscillatory alpha activity in the right IPL, whereas that on the right side doesn't depend on either hemispheric alpha activity. These results provide valuable insights into the neural mechanisms of hemispatial neglect.
{"title":"Lateralized alpha oscillatory activity in the inferior parietal lobule to the right hemisphere during left-side visual stimulation","authors":"Marino Iwakiri , Yuhi Takeo , Takashi Ikeda , Masayuki Hara , Hisato Sugata","doi":"10.1016/j.neuropsychologia.2024.109017","DOIUrl":"10.1016/j.neuropsychologia.2024.109017","url":null,"abstract":"<div><div>Understanding the neural mechanisms underlying spatial attention is crucial for unraveling the pathogenesis of unilateral spatial neglect (USN). However, the neural link between spatial attention and USN remains unclear. Thus, the neural mechanisms of spatial attention in the left and right hemispheres were compared. Twenty healthy volunteers participated in a hand mental rotation task in which they determined whether images depicted as left or right hands. The hand images were randomly displayed in the upper, lower, left, and right directions, centered on a fixation point. The laterality index for the alpha oscillatory activity was determined to assess the lateralization of neural activity during visual stimulation. Our results revealed a significant shift in alpha oscillatory neural activity in the inferior parietal lobule (IPL) towards the right hemisphere when visual stimulation occurred on the left side. In contrast, no significant oscillatory shift in the alpha band towards the left hemisphere was observed in the IPL when the visual stimulus was presented on the right side. These findings indicate that the spatial attention on the left side depends on oscillatory alpha activity in the right IPL, whereas that on the right side doesn't depend on either hemispheric alpha activity. These results provide valuable insights into the neural mechanisms of hemispatial neglect.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109017"},"PeriodicalIF":2.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1016/j.neuropsychologia.2024.109016
María Roca, Facundo Manes
This viewpoint explores the gap between theoretical frameworks in experimental neuroscience and clinical neuropsychology. It highlights how John Duncan's theory of the Multiple Demand (MD) system, which links the frontal lobe to fluid intelligence (g), helps explain general performance on classical executive tests. However, it also discusses how traditional scores often fail to capture the complexity of behaviours associated with frontal lobe damage, and we suggest that developing improved scoring methods could be useful for integrating experimental and clinical neuropsychology insights.
{"title":"Bridging experimental neuroscience and clinical neuropsychology: Fluid intelligence in frontal lobe assessments","authors":"María Roca, Facundo Manes","doi":"10.1016/j.neuropsychologia.2024.109016","DOIUrl":"10.1016/j.neuropsychologia.2024.109016","url":null,"abstract":"<div><div>This viewpoint explores the gap between theoretical frameworks in experimental neuroscience and clinical neuropsychology. It highlights how John Duncan's theory of the Multiple Demand (MD) system, which links the frontal lobe to fluid intelligence (g), helps explain general performance on classical executive tests. However, it also discusses how traditional scores often fail to capture the complexity of behaviours associated with frontal lobe damage, and we suggest that developing improved scoring methods could be useful for integrating experimental and clinical neuropsychology insights.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"205 ","pages":"Article 109016"},"PeriodicalIF":2.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}