首页 > 最新文献

Ocean Dynamics最新文献

英文 中文
Direct observations of general geothermal convection in deep Mediterranean waters 地中海深水一般地热对流的直接观测
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-10 DOI: 10.1007/s10236-023-01585-5
Hans van Haren
{"title":"Direct observations of general geothermal convection in deep Mediterranean waters","authors":"Hans van Haren","doi":"10.1007/s10236-023-01585-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01585-5","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"111 42","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual sea-level variation around mainland Japan forced by subtropical North Pacific wind and its possible impact on the Tsugaru warm current 副热带北太平洋风对日本大陆周边海平面的年际变化及其对津garu暖流的可能影响
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-09 DOI: 10.1007/s10236-023-01580-w
Akira Nagano, Hitoshi Kaneko, Masahide Wakita
{"title":"Interannual sea-level variation around mainland Japan forced by subtropical North Pacific wind and its possible impact on the Tsugaru warm current","authors":"Akira Nagano, Hitoshi Kaneko, Masahide Wakita","doi":"10.1007/s10236-023-01580-w","DOIUrl":"https://doi.org/10.1007/s10236-023-01580-w","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":" 39","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relative role of east and west pacific sea surface temperature (SST) gradients in the prediction skill of Central Pacific NINO3.4 SST 东、西太平洋海温梯度在中太平洋NINO3.4海温预报中的相对作用
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-02 DOI: 10.1007/s10236-023-01581-9
S. Lekshmi, Rajib Chattopadhyay, D. S. Pai, M. Rajeevan, Vinu Valsala, K. S. Hosalikar, M. Mohapatra
{"title":"On the relative role of east and west pacific sea surface temperature (SST) gradients in the prediction skill of Central Pacific NINO3.4 SST","authors":"S. Lekshmi, Rajib Chattopadhyay, D. S. Pai, M. Rajeevan, Vinu Valsala, K. S. Hosalikar, M. Mohapatra","doi":"10.1007/s10236-023-01581-9","DOIUrl":"https://doi.org/10.1007/s10236-023-01581-9","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"35 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamic mechanism of rapid sediment deposition in the mangrove region of the Guangxi Beibu Gulf 广西北部湾红树林区快速泥沙沉积的动力机制
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-01 DOI: 10.1007/s10236-023-01579-3
Jingsong Gao, Ling Chen, Hanfang Lu, Xiaoni Meng, Xuefeng Cao, Dapeng Wang, Lingling Xie, KitYue Kwan, Baoqing Hu
{"title":"The dynamic mechanism of rapid sediment deposition in the mangrove region of the Guangxi Beibu Gulf","authors":"Jingsong Gao, Ling Chen, Hanfang Lu, Xiaoni Meng, Xuefeng Cao, Dapeng Wang, Lingling Xie, KitYue Kwan, Baoqing Hu","doi":"10.1007/s10236-023-01579-3","DOIUrl":"https://doi.org/10.1007/s10236-023-01579-3","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"175 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135321434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea 海草作为德国瓦登海海岸保护的自然解决方案的评价
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-18 DOI: 10.1007/s10236-023-01577-5
Benjamin Jacob, Tobias Dolch, Andreas Wurpts, Joanna Staneva
Abstract Global climate change increases the overall risks for coastal flooding and erosion. Meanwhile, nature-based solutions (NbS) are increasingly becoming a focus of coastal protection measures to improve the climate adaptability. In this study, the present and potential future role of seagrass in coastal risk reduction strategies were explored for the highly energetic Wadden Sea area of the German Bight. The methodology in this study combined seagrass coverage data ( Zostera marina and Zostera noltei ) obtained by field surveys and what-if scenario simulations using the SCHISM unstructured grid model framework, coupling hydrodynamics, waves, sediments, and a seagrass module. The results suggest that the introduction of seagrass meadows locally can reduce both current velocities and significant wave heights in the order of up to 30 $$%$$ % in the deeper areas and above 90 $$%$$ % in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.
全球气候变化增加了沿海洪水和侵蚀的总体风险。与此同时,基于自然的解决方案(NbS)日益成为提高气候适应能力的海岸保护措施的重点。在这项研究中,海草在沿海风险降低策略中的作用和潜在的未来在德国湾的高能量瓦登海地区进行了探讨。本研究的方法结合了通过实地调查获得的海草覆盖数据(Zostera marina和Zostera noltei)和使用SCHISM非结构化网格模型框架进行的情景模拟,耦合了水动力学、波浪、沉积物和海草模块。结果表明,局部引入海草草甸可以降低海流速度和显著波高,最高可达30 $$%$$ % in the deeper areas and above 90 $$%$$ % in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.
{"title":"Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea","authors":"Benjamin Jacob, Tobias Dolch, Andreas Wurpts, Joanna Staneva","doi":"10.1007/s10236-023-01577-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01577-5","url":null,"abstract":"Abstract Global climate change increases the overall risks for coastal flooding and erosion. Meanwhile, nature-based solutions (NbS) are increasingly becoming a focus of coastal protection measures to improve the climate adaptability. In this study, the present and potential future role of seagrass in coastal risk reduction strategies were explored for the highly energetic Wadden Sea area of the German Bight. The methodology in this study combined seagrass coverage data ( Zostera marina and Zostera noltei ) obtained by field surveys and what-if scenario simulations using the SCHISM unstructured grid model framework, coupling hydrodynamics, waves, sediments, and a seagrass module. The results suggest that the introduction of seagrass meadows locally can reduce both current velocities and significant wave heights in the order of up to 30 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in the deeper areas and above 90 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in extreme wave events in the southwestern South Atlantic Ocean 南大西洋西南部极端波浪事件的变化
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-07 DOI: 10.1007/s10236-023-01575-7
Carolina B. Gramcianinov, Joanna Staneva, Ricardo de Camargo, Pedro L. da Silva Dias
Abstract The southwestern South Atlantic (SWSA) has faced several extreme events that caused coastal and ocean hazards associated with high waves. This study aimed to investigate the extreme wave climate trends in the SWSA using percentile- and storm-based approaches to determine potential coastal impacts. Changes in extreme wave event characteristics were evaluated through distribution maps and directional density distributions. Our results showed an overall increase in the 95 $$^{th}$$ th -percentile of the significant wave height (Hs), mostly in the northern and southern portions of the domain. There was a general increase in the area affected by the events and in their lifetimes in the austral summer. In contrast, winter events had higher maximum intensities, which were not homogeneous throughout the domain. Changes in the wave power direction affected most of the analysed locations, showing a clockwise shift of summer events and a large directional spread of events from the southern quadrant (SW–SE). These changes were related to the southwards shift of the subtropical branch of the storm track, reflecting increased cyclonic activity at 30 $$^circ $$ S (summer) and 45 $$^circ $$ S (winter). These storm track shifts allowed the development of large fetches on the southern edge of the domain, promoting the propagation of long waves.
南大西洋西南部(SWSA)面临着几次极端事件,这些事件导致了与高浪相关的海岸和海洋危害。本研究旨在利用基于百分位和基于风暴的方法来确定潜在的沿海影响,调查西南西南海区的极端海浪气候趋势。通过分布图和方向密度分布评价了极端波事件特征的变化。我们的结果显示,显著波高(Hs)的95 $$^{th}$$ -百分位数总体增加,主要在该域的北部和南部部分。受这些事件影响的地区和它们在南方夏季的寿命普遍增加。相反,冬季事件的最大强度更高,并且在整个区域内不均匀。波浪功率方向的变化影响了大多数分析的位置,显示夏季事件的顺时针移动,并且事件从南象限(SW-SE)方向扩散。这些变化与风暴路径的副热带分支向南移动有关,反映了30 $$^circ $$°S(夏季)和45 $$^circ $$°S(冬季)的气旋活动增加。这些风暴路径的移动使得该区域的南部边缘形成了大的涡流,促进了长波的传播。
{"title":"Changes in extreme wave events in the southwestern South Atlantic Ocean","authors":"Carolina B. Gramcianinov, Joanna Staneva, Ricardo de Camargo, Pedro L. da Silva Dias","doi":"10.1007/s10236-023-01575-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01575-7","url":null,"abstract":"Abstract The southwestern South Atlantic (SWSA) has faced several extreme events that caused coastal and ocean hazards associated with high waves. This study aimed to investigate the extreme wave climate trends in the SWSA using percentile- and storm-based approaches to determine potential coastal impacts. Changes in extreme wave event characteristics were evaluated through distribution maps and directional density distributions. Our results showed an overall increase in the 95 $$^{th}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mi>th</mml:mi> </mml:mrow> </mml:msup> </mml:math> -percentile of the significant wave height (Hs), mostly in the northern and southern portions of the domain. There was a general increase in the area affected by the events and in their lifetimes in the austral summer. In contrast, winter events had higher maximum intensities, which were not homogeneous throughout the domain. Changes in the wave power direction affected most of the analysed locations, showing a clockwise shift of summer events and a large directional spread of events from the southern quadrant (SW–SE). These changes were related to the southwards shift of the subtropical branch of the storm track, reflecting increased cyclonic activity at 30 $$^circ $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mo>∘</mml:mo> </mml:msup> </mml:math> S (summer) and 45 $$^circ $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mo>∘</mml:mo> </mml:msup> </mml:math> S (winter). These storm track shifts allowed the development of large fetches on the southern edge of the domain, promoting the propagation of long waves.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A study of the simulated climatological January mean upwelling in the northwestern Gulf of Alaska 对阿拉斯加湾西北部一月平均上升流的模拟气候研究
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-04 DOI: 10.1007/s10236-023-01578-4
Nan Yuan, Humio Mitsudera, Hideharu Sasaki
Abstract In this research, we studied the upwelling in the northwestern Gulf of Alaska using the climatological January mean and data from the output of the Ocean General Circulation Model for Earth Simulator (OFES2). Specifically, we analyzed the upwelling in the regions where the Alaska Coastal Current (ACC) flows out of the Shelikof Strait (especially the part to the west of Kodiak Island) and where the ACC and the Alaskan Stream (AS) are confluent. In both regions, strong geostrophic currents and downwelling-favorable wind predominate in winter. Furthermore, there are freshwater discharges along the Alaskan coast and an observed mean current vertical shear in the ACC. We revealed that when the internal water stress is larger than the wind stress inside the study regions, this could be decisive in terms of the local horizontal velocity divergence and further upwelling, even if the region is away from the coast and lacks upwelling-favorable wind conditions. Geostrophic stress is part of the internal water stress and is a product of the geostrophic current shear (due to the thermal wind relation) and the vertical viscosity coefficient. The analysis indicated that a front with a large geostrophic stress may act as a “virtual wall” and contribute to local upwelling within a depth of approximately 100 m in the study regions. This process could provide a heuristic for understanding the distribution of pollock in the areas during February and March, which corresponds to the simulated upwelling region.
本文利用1月气候平均值和海洋环流模拟地球模拟器(OFES2)输出的数据,对阿拉斯加湾西北部的上升流进行了研究。具体来说,我们分析了阿拉斯加海岸流(ACC)从Shelikof海峡流出的区域(特别是Kodiak岛以西的部分)以及ACC和阿拉斯加流(AS)的汇合处的上升流。这两个地区冬季以强地转流和有利于下沉的风为主。此外,沿阿拉斯加海岸有淡水排放,并在太平洋环流中观测到平均洋流垂直切变。我们发现,当研究区域内的内部水应力大于风应力时,即使该区域远离海岸且缺乏有利于上升流的风条件,这也可能对局部水平速度辐散和进一步上升流起决定性作用。地转应力是内部水应力的一部分,是地转流切变(由于热风关系)和垂直粘度系数的乘积。分析表明,具有较大地转应力的锋面可能起到“虚拟壁面”的作用,并在研究区域约100 m深度内促进局部上升流。该过程可为了解2月和3月该区狭鳕的分布提供启发式信息,该区域与模拟的上升流区相对应。
{"title":"A study of the simulated climatological January mean upwelling in the northwestern Gulf of Alaska","authors":"Nan Yuan, Humio Mitsudera, Hideharu Sasaki","doi":"10.1007/s10236-023-01578-4","DOIUrl":"https://doi.org/10.1007/s10236-023-01578-4","url":null,"abstract":"Abstract In this research, we studied the upwelling in the northwestern Gulf of Alaska using the climatological January mean and data from the output of the Ocean General Circulation Model for Earth Simulator (OFES2). Specifically, we analyzed the upwelling in the regions where the Alaska Coastal Current (ACC) flows out of the Shelikof Strait (especially the part to the west of Kodiak Island) and where the ACC and the Alaskan Stream (AS) are confluent. In both regions, strong geostrophic currents and downwelling-favorable wind predominate in winter. Furthermore, there are freshwater discharges along the Alaskan coast and an observed mean current vertical shear in the ACC. We revealed that when the internal water stress is larger than the wind stress inside the study regions, this could be decisive in terms of the local horizontal velocity divergence and further upwelling, even if the region is away from the coast and lacks upwelling-favorable wind conditions. Geostrophic stress is part of the internal water stress and is a product of the geostrophic current shear (due to the thermal wind relation) and the vertical viscosity coefficient. The analysis indicated that a front with a large geostrophic stress may act as a “virtual wall” and contribute to local upwelling within a depth of approximately 100 m in the study regions. This process could provide a heuristic for understanding the distribution of pollock in the areas during February and March, which corresponds to the simulated upwelling region.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional structure of summer circulation in the Bohai Sea and its intraseasonal variability 渤海夏季环流三维结构及其季内变率
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-09-30 DOI: 10.1007/s10236-023-01576-6
Wenfan Wu, Fangguo Zhai, Cong Liu, Yanzhen Gu, Peiliang Li
{"title":"Three-dimensional structure of summer circulation in the Bohai Sea and its intraseasonal variability","authors":"Wenfan Wu, Fangguo Zhai, Cong Liu, Yanzhen Gu, Peiliang Li","doi":"10.1007/s10236-023-01576-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01576-6","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of the wind, Loop Current Eddies, and topography to the circulation in the southern Gulf of Mexico 风、环流涡流和地形对墨西哥湾南部环流的贡献
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-09-29 DOI: 10.1007/s10236-023-01569-5
Erick R. Olvera-Prado, Rosario Romero-Centeno, Jorge Zavala-Hidalgo, Efraín Moreles, Angel Ruiz-Angulo
Abstract The Bay of Campeche, located in the southern Gulf of Mexico (GoM), is characterized by a semi-permanent cyclonic circulation commonly referred to as the Campeche Gyre (CG). Several studies documenting its upper layer structure have suggested a possible relationship between its seasonal variability and the wind stress, and that non-seasonal variability arises mainly from the interaction of the gyre with Loop Current Eddies (LCEs) that arrive in the region. Nevertheless, a partition of the contributions of these forcings to the circulation of the CG in a statistically consistent manner is still needed. This study examines the wind- and eddy-driven circulation with long-term numerical simulations of the GoM using the HYbrid Coordinate Ocean Model. Our results show that, in the absence of LCEs, the wind can sustain a seasonal-modulated circulation in the CG, confined within the upper 600 m. When considering LCEs, high fluctuations on the flow at intraseasonal time scales are imposed. We found that the LCEs influence the western Bay of Campeche circulation through two main mechanisms: (a) by decelerating and inhibiting the CG through a positive vorticity flux out of the bay, leading to reversals in the flow if LCE southward penetration is large, or (b) by strengthening the CG when a big cyclone, accompanying the LCE, enters the region. It is proposed that the second mechanism is responsible for inducing a net weak cyclonic circulation in the Bay in the absence of wind. Furthermore, past studies have shown that the CG behaves as an equivalent-barotropic flow, with topography acting to confine the CG to the west of the bay. In our modeling results, the role of topography manifests similarly among the different numerical experiments, resulting in closed geostrophic contours to the west of the bay that confine an upper-layer, nearly-symmetric, equivalent-barotropic CG.
坎佩切湾位于墨西哥湾(GoM)南部,其特点是一个半永久性的气旋环流,通常被称为坎佩切环流(CG)。记录其上层结构的几项研究表明,其季节性变化与风应力之间可能存在关系,非季节性变化主要来自环流与到达该地区的环流涡流(LCEs)的相互作用。然而,仍然需要以统计上一致的方式划分这些强迫对全球环流的贡献。本研究利用混合坐标海洋模式对墨西哥湾进行了长期数值模拟,考察了风和涡流驱动的环流。我们的研究结果表明,在没有lce的情况下,风可以在CG中维持季节性调制的环流,限制在600米以上。当考虑lce时,在季节内时间尺度上施加了流量的高波动。我们发现,LCE通过两种主要机制影响坎佩切湾西部环流:(a)通过海湾外的正涡度通量减速和抑制CG,如果LCE向南渗透较大,则导致气流逆转;或(b)当LCE伴随大气旋进入该地区时,通过增强CG。有人提出,第二种机制是在没有风的情况下在海湾诱发净弱气旋环流的原因。此外,过去的研究表明,涡旋流表现为等效正压流,地形将涡旋流限制在海湾西部。在我们的模拟结果中,地形的作用在不同的数值实验中表现得相似,导致海湾西部封闭的地转等高线,限制了上层几乎对称的等效正压CG。
{"title":"Contribution of the wind, Loop Current Eddies, and topography to the circulation in the southern Gulf of Mexico","authors":"Erick R. Olvera-Prado, Rosario Romero-Centeno, Jorge Zavala-Hidalgo, Efraín Moreles, Angel Ruiz-Angulo","doi":"10.1007/s10236-023-01569-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01569-5","url":null,"abstract":"Abstract The Bay of Campeche, located in the southern Gulf of Mexico (GoM), is characterized by a semi-permanent cyclonic circulation commonly referred to as the Campeche Gyre (CG). Several studies documenting its upper layer structure have suggested a possible relationship between its seasonal variability and the wind stress, and that non-seasonal variability arises mainly from the interaction of the gyre with Loop Current Eddies (LCEs) that arrive in the region. Nevertheless, a partition of the contributions of these forcings to the circulation of the CG in a statistically consistent manner is still needed. This study examines the wind- and eddy-driven circulation with long-term numerical simulations of the GoM using the HYbrid Coordinate Ocean Model. Our results show that, in the absence of LCEs, the wind can sustain a seasonal-modulated circulation in the CG, confined within the upper 600 m. When considering LCEs, high fluctuations on the flow at intraseasonal time scales are imposed. We found that the LCEs influence the western Bay of Campeche circulation through two main mechanisms: (a) by decelerating and inhibiting the CG through a positive vorticity flux out of the bay, leading to reversals in the flow if LCE southward penetration is large, or (b) by strengthening the CG when a big cyclone, accompanying the LCE, enters the region. It is proposed that the second mechanism is responsible for inducing a net weak cyclonic circulation in the Bay in the absence of wind. Furthermore, past studies have shown that the CG behaves as an equivalent-barotropic flow, with topography acting to confine the CG to the west of the bay. In our modeling results, the role of topography manifests similarly among the different numerical experiments, resulting in closed geostrophic contours to the west of the bay that confine an upper-layer, nearly-symmetric, equivalent-barotropic CG.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"310 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135200166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity of the Lorenz energy cycle of the global ocean 全球海洋洛伦兹能量循环的敏感性
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-09-27 DOI: 10.1007/s10236-023-01568-6
John Ssebandeke, Jin-Song von Storch, Nils Brüggemann
Abstract We re-examine the Lorenz energy cycle (LEC) for the global ocean by assessing its sensitivity to model and forcing differences. We do so by comparing LECs derived from two simulations based on different eddy-rich ocean models, ICON-O and MPI-OM, both driven by NCEP/NCAR reanalysis, and by comparing LECs derived from two simulations generated using ICON-O model but driven by two different reanalyses, NCEP/NCAR and ERA5. Regarding model difference, we find weaker eddy kinetic energy, $$k_e$$ k e , in the ICON-O simulation than in the MPI-OM simulation. We attribute this to the higher horizontal resolution of MPI-OM in the Southern Ocean. The weaker $$k_e$$ k e in ICON-O is not caused by the lack of eddy available potential energy, $$p_e$$ p e , but by the strong dissipation of $$p_e$$ p e and the resulting weak conversion from $$p_e$$ p e to $$k_e$$ k e . Regarding forcing difference, we find that considerably more mechanical energy is generated by the ERA5 forcing, which has a higher spatial-temporal resolution compared to the NCEP/NCAR forcing. In particular, the generation of $$k_e$$ k e , which also contains the resolved part of the internal wave spectrum, is enhanced by about 1 TW (40%). However, the dominance of the baroclinic and the barotropic pathways forces the enhanced generation of $$k_e$$ k e to be balanced by an enhanced dissipation in the surface layer. The gross features of LEC are insensitive to both model and forcing differences, picturing the ocean as an inefficient “windmill” that converts only a small portion of the inputted mechanical energy into the interior mean and transient circulations.
通过评估全球海洋的洛伦兹能量循环对模式和强迫差异的敏感性,我们重新审视了全球海洋的洛伦兹能量循环。我们通过比较基于NCEP/NCAR再分析驱动的ICON-O和MPI-OM两种不同富涡海洋模型的模拟结果得出的LECs,以及通过比较由ICON-O模型生成但由NCEP/NCAR和ERA5两种不同再分析驱动的两个模拟结果得出的LECs。在模式差异方面,ICON-O模拟的涡动能$$k_e$$ ke比MPI-OM模拟的弱。我们将此归因于南大洋MPI-OM的水平分辨率较高。ICON-O中较弱的$$k_e$$ ke不是由于缺乏涡动有效势能$$p_e$$ p e造成的,而是由于$$p_e$$ p e的强耗散以及由此产生的从$$p_e$$ p e到$$k_e$$ ke的弱转换。在强迫差异方面,ERA5强迫产生的机械能明显高于NCEP/NCAR强迫,且具有更高的时空分辨率。特别是,$$k_e$$ k e的生成,也包含了内波谱的分解部分,增强了约1 TW (40)%). However, the dominance of the baroclinic and the barotropic pathways forces the enhanced generation of $$k_e$$ k e to be balanced by an enhanced dissipation in the surface layer. The gross features of LEC are insensitive to both model and forcing differences, picturing the ocean as an inefficient “windmill” that converts only a small portion of the inputted mechanical energy into the interior mean and transient circulations.
{"title":"Sensitivity of the Lorenz energy cycle of the global ocean","authors":"John Ssebandeke, Jin-Song von Storch, Nils Brüggemann","doi":"10.1007/s10236-023-01568-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01568-6","url":null,"abstract":"Abstract We re-examine the Lorenz energy cycle (LEC) for the global ocean by assessing its sensitivity to model and forcing differences. We do so by comparing LECs derived from two simulations based on different eddy-rich ocean models, ICON-O and MPI-OM, both driven by NCEP/NCAR reanalysis, and by comparing LECs derived from two simulations generated using ICON-O model but driven by two different reanalyses, NCEP/NCAR and ERA5. Regarding model difference, we find weaker eddy kinetic energy, $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , in the ICON-O simulation than in the MPI-OM simulation. We attribute this to the higher horizontal resolution of MPI-OM in the Southern Ocean. The weaker $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> in ICON-O is not caused by the lack of eddy available potential energy, $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , but by the strong dissipation of $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> and the resulting weak conversion from $$p_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> to $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> . Regarding forcing difference, we find that considerably more mechanical energy is generated by the ERA5 forcing, which has a higher spatial-temporal resolution compared to the NCEP/NCAR forcing. In particular, the generation of $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> , which also contains the resolved part of the internal wave spectrum, is enhanced by about 1 TW (40%). However, the dominance of the baroclinic and the barotropic pathways forces the enhanced generation of $$k_e$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>e</mml:mi> </mml:msub> </mml:math> to be balanced by an enhanced dissipation in the surface layer. The gross features of LEC are insensitive to both model and forcing differences, picturing the ocean as an inefficient “windmill” that converts only a small portion of the inputted mechanical energy into the interior mean and transient circulations.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1