首页 > 最新文献

Ocean Dynamics最新文献

英文 中文
A three-layer model of hydrodynamic processes in the Cyprus Eddy system 塞浦路斯涡旋系统水动力过程的三层模型
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-16 DOI: 10.1007/s10236-023-01584-6
Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis

A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.

建立了一种三层准地转模式,研究了黎凡特盆地东南部埃拉托色尼海山周围的地形涡旋,特别是由反气旋塞浦路斯涡旋和较小尺度气旋组成的偶极涡旋结构。采用等高线动力学方法进行数值实验,模拟地中海中部急流沿模型域西部边界形成不同倾角和强度的东向气流。地形涡旋的双重性质在以前的报道中经常在均匀的海洋近似中产生,但在目前的研究中,考虑斜压性主要模拟了归因于塞浦路斯涡旋的单一涡旋,偶尔会产生小规模气旋。结果表明,沿模式域西边界的强向东气流的方向和强度是气旋涡形成的主要因素。模拟结果与埃拉托色尼海山更广阔海域的地转模式在定性上一致。
{"title":"A three-layer model of hydrodynamic processes in the Cyprus Eddy system","authors":"Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis","doi":"10.1007/s10236-023-01584-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01584-6","url":null,"abstract":"<p>A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"9 4","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Link between the internal variability and the baroclinic instability in the Bohai and Yellow Sea 渤海和黄海内部变率与斜压不稳定的关系
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-13 DOI: 10.1007/s10236-023-01583-7
Lin Lin, Hans von Storch, Xueen Chen, Wensheng Jiang, Shengquan Tang
Abstract A regional ocean ensemble simulation with slightly different initial conditions demonstrates that internal variability is formed (not only) in the Bohai and Yellow Sea. In this paper, we analyze the relationship between the internal variability and the baroclinic instability, (represented by the Eady predicted theoretical diffusivity $${K}_{t}$$ K t ; the larger the $${K}_{t}$$ K t , the stronger the baroclinic instability level). In the ensemble, with tidal forcing, the spatial correlation between the Eady predicted theoretical diffusivity $${K}_{t}$$ K t and the internal variability amounts to 0.80. Also, the time evolution trends of baroclinic instability and internal variability are similar. Based on this evidence, baroclinic instability may be a significant driver for internal variability. This hypothesis is validated using an additional ensemble of simulations, which is identical to the first ensemble, but this time, the tides are inactivated. This modification leads to an increase in internal variability, combined with the strengthening of baroclinic instability. In addition, the baroclinic instability level and internal variability variation co-vary consistently when comparing summer and winter seasons, both with and without tides. Our interpretation is that a stronger baroclinic instability causes more potential energy to be transformed into kinetic energy, allowing the unforced disturbances to grow.
初始条件略有不同的区域海洋综合模拟结果表明,渤海和黄海不仅形成了内部变率。本文分析了内部变率与斜压不稳定性之间的关系,(用Eady预测的理论扩散系数$${K}_{t}$$ K t表示;$${K}_{t}$$ K t越大,斜压不稳定程度越强)。在潮汐强迫作用下,Eady预测的理论扩散系数$${K}_{t}$$ K t与内部变率的空间相关系数为0.80。斜压不稳定和内部变率的时间演化趋势相似。基于这一证据,斜压不稳定性可能是内部变率的重要驱动因素。这个假设是通过另一个模拟集合来验证的,这个模拟集合与第一个集合相同,但这一次,潮汐是不活跃的。这种改变导致内部变率的增加,并与斜压不稳定性的加强相结合。此外,无论有无潮汐,夏季和冬季的斜压不稳定水平和内部变率变化都是一致的。我们的解释是,更强的斜压不稳定性导致更多的势能转化为动能,从而使非受迫性扰动增大。
{"title":"Link between the internal variability and the baroclinic instability in the Bohai and Yellow Sea","authors":"Lin Lin, Hans von Storch, Xueen Chen, Wensheng Jiang, Shengquan Tang","doi":"10.1007/s10236-023-01583-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01583-7","url":null,"abstract":"Abstract A regional ocean ensemble simulation with slightly different initial conditions demonstrates that internal variability is formed (not only) in the Bohai and Yellow Sea. In this paper, we analyze the relationship between the internal variability and the baroclinic instability, (represented by the Eady predicted theoretical diffusivity $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> ; the larger the $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> , the stronger the baroclinic instability level). In the ensemble, with tidal forcing, the spatial correlation between the Eady predicted theoretical diffusivity $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> and the internal variability amounts to 0.80. Also, the time evolution trends of baroclinic instability and internal variability are similar. Based on this evidence, baroclinic instability may be a significant driver for internal variability. This hypothesis is validated using an additional ensemble of simulations, which is identical to the first ensemble, but this time, the tides are inactivated. This modification leads to an increase in internal variability, combined with the strengthening of baroclinic instability. In addition, the baroclinic instability level and internal variability variation co-vary consistently when comparing summer and winter seasons, both with and without tides. Our interpretation is that a stronger baroclinic instability causes more potential energy to be transformed into kinetic energy, allowing the unforced disturbances to grow.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"48 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical properties of extreme waves in multidirectional wave fields over complex bathymetry 复杂测深上多向波场极值波的统计性质
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-11 DOI: 10.1007/s10236-023-01586-4
Lili Mei, Hongzhou Chen, Xu Yang, Fukun Gui
{"title":"Statistical properties of extreme waves in multidirectional wave fields over complex bathymetry","authors":"Lili Mei, Hongzhou Chen, Xu Yang, Fukun Gui","doi":"10.1007/s10236-023-01586-4","DOIUrl":"https://doi.org/10.1007/s10236-023-01586-4","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"49 14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct observations of general geothermal convection in deep Mediterranean waters 地中海深水一般地热对流的直接观测
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-10 DOI: 10.1007/s10236-023-01585-5
Hans van Haren
{"title":"Direct observations of general geothermal convection in deep Mediterranean waters","authors":"Hans van Haren","doi":"10.1007/s10236-023-01585-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01585-5","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"111 42","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual sea-level variation around mainland Japan forced by subtropical North Pacific wind and its possible impact on the Tsugaru warm current 副热带北太平洋风对日本大陆周边海平面的年际变化及其对津garu暖流的可能影响
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-09 DOI: 10.1007/s10236-023-01580-w
Akira Nagano, Hitoshi Kaneko, Masahide Wakita
{"title":"Interannual sea-level variation around mainland Japan forced by subtropical North Pacific wind and its possible impact on the Tsugaru warm current","authors":"Akira Nagano, Hitoshi Kaneko, Masahide Wakita","doi":"10.1007/s10236-023-01580-w","DOIUrl":"https://doi.org/10.1007/s10236-023-01580-w","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":" 39","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relative role of east and west pacific sea surface temperature (SST) gradients in the prediction skill of Central Pacific NINO3.4 SST 东、西太平洋海温梯度在中太平洋NINO3.4海温预报中的相对作用
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-02 DOI: 10.1007/s10236-023-01581-9
S. Lekshmi, Rajib Chattopadhyay, D. S. Pai, M. Rajeevan, Vinu Valsala, K. S. Hosalikar, M. Mohapatra
{"title":"On the relative role of east and west pacific sea surface temperature (SST) gradients in the prediction skill of Central Pacific NINO3.4 SST","authors":"S. Lekshmi, Rajib Chattopadhyay, D. S. Pai, M. Rajeevan, Vinu Valsala, K. S. Hosalikar, M. Mohapatra","doi":"10.1007/s10236-023-01581-9","DOIUrl":"https://doi.org/10.1007/s10236-023-01581-9","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"35 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamic mechanism of rapid sediment deposition in the mangrove region of the Guangxi Beibu Gulf 广西北部湾红树林区快速泥沙沉积的动力机制
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-01 DOI: 10.1007/s10236-023-01579-3
Jingsong Gao, Ling Chen, Hanfang Lu, Xiaoni Meng, Xuefeng Cao, Dapeng Wang, Lingling Xie, KitYue Kwan, Baoqing Hu
{"title":"The dynamic mechanism of rapid sediment deposition in the mangrove region of the Guangxi Beibu Gulf","authors":"Jingsong Gao, Ling Chen, Hanfang Lu, Xiaoni Meng, Xuefeng Cao, Dapeng Wang, Lingling Xie, KitYue Kwan, Baoqing Hu","doi":"10.1007/s10236-023-01579-3","DOIUrl":"https://doi.org/10.1007/s10236-023-01579-3","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"175 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135321434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea 海草作为德国瓦登海海岸保护的自然解决方案的评价
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-18 DOI: 10.1007/s10236-023-01577-5
Benjamin Jacob, Tobias Dolch, Andreas Wurpts, Joanna Staneva
Abstract Global climate change increases the overall risks for coastal flooding and erosion. Meanwhile, nature-based solutions (NbS) are increasingly becoming a focus of coastal protection measures to improve the climate adaptability. In this study, the present and potential future role of seagrass in coastal risk reduction strategies were explored for the highly energetic Wadden Sea area of the German Bight. The methodology in this study combined seagrass coverage data ( Zostera marina and Zostera noltei ) obtained by field surveys and what-if scenario simulations using the SCHISM unstructured grid model framework, coupling hydrodynamics, waves, sediments, and a seagrass module. The results suggest that the introduction of seagrass meadows locally can reduce both current velocities and significant wave heights in the order of up to 30 $$%$$ % in the deeper areas and above 90 $$%$$ % in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.
全球气候变化增加了沿海洪水和侵蚀的总体风险。与此同时,基于自然的解决方案(NbS)日益成为提高气候适应能力的海岸保护措施的重点。在这项研究中,海草在沿海风险降低策略中的作用和潜在的未来在德国湾的高能量瓦登海地区进行了探讨。本研究的方法结合了通过实地调查获得的海草覆盖数据(Zostera marina和Zostera noltei)和使用SCHISM非结构化网格模型框架进行的情景模拟,耦合了水动力学、波浪、沉积物和海草模块。结果表明,局部引入海草草甸可以降低海流速度和显著波高,最高可达30 $$%$$ % in the deeper areas and above 90 $$%$$ % in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.
{"title":"Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea","authors":"Benjamin Jacob, Tobias Dolch, Andreas Wurpts, Joanna Staneva","doi":"10.1007/s10236-023-01577-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01577-5","url":null,"abstract":"Abstract Global climate change increases the overall risks for coastal flooding and erosion. Meanwhile, nature-based solutions (NbS) are increasingly becoming a focus of coastal protection measures to improve the climate adaptability. In this study, the present and potential future role of seagrass in coastal risk reduction strategies were explored for the highly energetic Wadden Sea area of the German Bight. The methodology in this study combined seagrass coverage data ( Zostera marina and Zostera noltei ) obtained by field surveys and what-if scenario simulations using the SCHISM unstructured grid model framework, coupling hydrodynamics, waves, sediments, and a seagrass module. The results suggest that the introduction of seagrass meadows locally can reduce both current velocities and significant wave heights in the order of up to 30 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in the deeper areas and above 90 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in the shallow areas. Reduction in bottom shear stress of a similar relative magnitude significantly reduced sediment mobilisation on the order of 2 g/L in the 95th quantile of bottom layer sediment concentrations. Effectively altering hydromorphodynamic conditions favouring sediment accumulation, seagrass expansion could help tidal flats height growths to keep up with SLR, thus further maintaining the bathymetry-induced tidal dampening and lowering flooding and erosion risks as well the amount of energy at dike infrastructure. The accumulated effect of seagrass under calm weather conditions is considered more important than the increased attenuation in absolute values it provides during extreme conditions. The overall conclusion is that seagrass expansion could be a useful addition to engineered coastal protection measures.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in extreme wave events in the southwestern South Atlantic Ocean 南大西洋西南部极端波浪事件的变化
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-07 DOI: 10.1007/s10236-023-01575-7
Carolina B. Gramcianinov, Joanna Staneva, Ricardo de Camargo, Pedro L. da Silva Dias
Abstract The southwestern South Atlantic (SWSA) has faced several extreme events that caused coastal and ocean hazards associated with high waves. This study aimed to investigate the extreme wave climate trends in the SWSA using percentile- and storm-based approaches to determine potential coastal impacts. Changes in extreme wave event characteristics were evaluated through distribution maps and directional density distributions. Our results showed an overall increase in the 95 $$^{th}$$ th -percentile of the significant wave height (Hs), mostly in the northern and southern portions of the domain. There was a general increase in the area affected by the events and in their lifetimes in the austral summer. In contrast, winter events had higher maximum intensities, which were not homogeneous throughout the domain. Changes in the wave power direction affected most of the analysed locations, showing a clockwise shift of summer events and a large directional spread of events from the southern quadrant (SW–SE). These changes were related to the southwards shift of the subtropical branch of the storm track, reflecting increased cyclonic activity at 30 $$^circ $$ S (summer) and 45 $$^circ $$ S (winter). These storm track shifts allowed the development of large fetches on the southern edge of the domain, promoting the propagation of long waves.
南大西洋西南部(SWSA)面临着几次极端事件,这些事件导致了与高浪相关的海岸和海洋危害。本研究旨在利用基于百分位和基于风暴的方法来确定潜在的沿海影响,调查西南西南海区的极端海浪气候趋势。通过分布图和方向密度分布评价了极端波事件特征的变化。我们的结果显示,显著波高(Hs)的95 $$^{th}$$ -百分位数总体增加,主要在该域的北部和南部部分。受这些事件影响的地区和它们在南方夏季的寿命普遍增加。相反,冬季事件的最大强度更高,并且在整个区域内不均匀。波浪功率方向的变化影响了大多数分析的位置,显示夏季事件的顺时针移动,并且事件从南象限(SW-SE)方向扩散。这些变化与风暴路径的副热带分支向南移动有关,反映了30 $$^circ $$°S(夏季)和45 $$^circ $$°S(冬季)的气旋活动增加。这些风暴路径的移动使得该区域的南部边缘形成了大的涡流,促进了长波的传播。
{"title":"Changes in extreme wave events in the southwestern South Atlantic Ocean","authors":"Carolina B. Gramcianinov, Joanna Staneva, Ricardo de Camargo, Pedro L. da Silva Dias","doi":"10.1007/s10236-023-01575-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01575-7","url":null,"abstract":"Abstract The southwestern South Atlantic (SWSA) has faced several extreme events that caused coastal and ocean hazards associated with high waves. This study aimed to investigate the extreme wave climate trends in the SWSA using percentile- and storm-based approaches to determine potential coastal impacts. Changes in extreme wave event characteristics were evaluated through distribution maps and directional density distributions. Our results showed an overall increase in the 95 $$^{th}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mi>th</mml:mi> </mml:mrow> </mml:msup> </mml:math> -percentile of the significant wave height (Hs), mostly in the northern and southern portions of the domain. There was a general increase in the area affected by the events and in their lifetimes in the austral summer. In contrast, winter events had higher maximum intensities, which were not homogeneous throughout the domain. Changes in the wave power direction affected most of the analysed locations, showing a clockwise shift of summer events and a large directional spread of events from the southern quadrant (SW–SE). These changes were related to the southwards shift of the subtropical branch of the storm track, reflecting increased cyclonic activity at 30 $$^circ $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mo>∘</mml:mo> </mml:msup> </mml:math> S (summer) and 45 $$^circ $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mo>∘</mml:mo> </mml:msup> </mml:math> S (winter). These storm track shifts allowed the development of large fetches on the southern edge of the domain, promoting the propagation of long waves.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A study of the simulated climatological January mean upwelling in the northwestern Gulf of Alaska 对阿拉斯加湾西北部一月平均上升流的模拟气候研究
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-10-04 DOI: 10.1007/s10236-023-01578-4
Nan Yuan, Humio Mitsudera, Hideharu Sasaki
Abstract In this research, we studied the upwelling in the northwestern Gulf of Alaska using the climatological January mean and data from the output of the Ocean General Circulation Model for Earth Simulator (OFES2). Specifically, we analyzed the upwelling in the regions where the Alaska Coastal Current (ACC) flows out of the Shelikof Strait (especially the part to the west of Kodiak Island) and where the ACC and the Alaskan Stream (AS) are confluent. In both regions, strong geostrophic currents and downwelling-favorable wind predominate in winter. Furthermore, there are freshwater discharges along the Alaskan coast and an observed mean current vertical shear in the ACC. We revealed that when the internal water stress is larger than the wind stress inside the study regions, this could be decisive in terms of the local horizontal velocity divergence and further upwelling, even if the region is away from the coast and lacks upwelling-favorable wind conditions. Geostrophic stress is part of the internal water stress and is a product of the geostrophic current shear (due to the thermal wind relation) and the vertical viscosity coefficient. The analysis indicated that a front with a large geostrophic stress may act as a “virtual wall” and contribute to local upwelling within a depth of approximately 100 m in the study regions. This process could provide a heuristic for understanding the distribution of pollock in the areas during February and March, which corresponds to the simulated upwelling region.
本文利用1月气候平均值和海洋环流模拟地球模拟器(OFES2)输出的数据,对阿拉斯加湾西北部的上升流进行了研究。具体来说,我们分析了阿拉斯加海岸流(ACC)从Shelikof海峡流出的区域(特别是Kodiak岛以西的部分)以及ACC和阿拉斯加流(AS)的汇合处的上升流。这两个地区冬季以强地转流和有利于下沉的风为主。此外,沿阿拉斯加海岸有淡水排放,并在太平洋环流中观测到平均洋流垂直切变。我们发现,当研究区域内的内部水应力大于风应力时,即使该区域远离海岸且缺乏有利于上升流的风条件,这也可能对局部水平速度辐散和进一步上升流起决定性作用。地转应力是内部水应力的一部分,是地转流切变(由于热风关系)和垂直粘度系数的乘积。分析表明,具有较大地转应力的锋面可能起到“虚拟壁面”的作用,并在研究区域约100 m深度内促进局部上升流。该过程可为了解2月和3月该区狭鳕的分布提供启发式信息,该区域与模拟的上升流区相对应。
{"title":"A study of the simulated climatological January mean upwelling in the northwestern Gulf of Alaska","authors":"Nan Yuan, Humio Mitsudera, Hideharu Sasaki","doi":"10.1007/s10236-023-01578-4","DOIUrl":"https://doi.org/10.1007/s10236-023-01578-4","url":null,"abstract":"Abstract In this research, we studied the upwelling in the northwestern Gulf of Alaska using the climatological January mean and data from the output of the Ocean General Circulation Model for Earth Simulator (OFES2). Specifically, we analyzed the upwelling in the regions where the Alaska Coastal Current (ACC) flows out of the Shelikof Strait (especially the part to the west of Kodiak Island) and where the ACC and the Alaskan Stream (AS) are confluent. In both regions, strong geostrophic currents and downwelling-favorable wind predominate in winter. Furthermore, there are freshwater discharges along the Alaskan coast and an observed mean current vertical shear in the ACC. We revealed that when the internal water stress is larger than the wind stress inside the study regions, this could be decisive in terms of the local horizontal velocity divergence and further upwelling, even if the region is away from the coast and lacks upwelling-favorable wind conditions. Geostrophic stress is part of the internal water stress and is a product of the geostrophic current shear (due to the thermal wind relation) and the vertical viscosity coefficient. The analysis indicated that a front with a large geostrophic stress may act as a “virtual wall” and contribute to local upwelling within a depth of approximately 100 m in the study regions. This process could provide a heuristic for understanding the distribution of pollock in the areas during February and March, which corresponds to the simulated upwelling region.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1