首页 > 最新文献

Ocean Dynamics最新文献

英文 中文
Significant wave height estimation from shipborne marine radar data using convolutional and self-attention network 利用卷积和自我关注网络从船载海洋雷达数据中估算波高
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-28 DOI: 10.1007/s10236-023-01591-7
Fupeng Wang, Xiaoliang Chu, Baoxue Zhang

In this paper, a fusion model based on convolution and self-attention with multi-subimage input model (CNN-SA-MS) is proposed to estimate significant wave height (SWH) from shipborne X-band radar images. The model takes multiple radar subimages as input simultaneously, which not only improves the accuracy of SWH inversion by including more information, but also avoids the restriction of selecting a single subimage in the upwind direction and dependence on external devices for wind data provision. Based on the characteristics of radar images and computational efficiency considerations, this paper selects three radar subimages as the input for the model. The comparison data from buoys and ECMWF are used for training and testing. After averaging the results of 64 radar images, the root mean square error (RMSE) and correlation coefficient (CC) of the CNN-SA-MS model are 0.197 m and 0.903, respectively. The results show that the CNN-SA-MS model improves the accuracy and stability of SWH estimation compared to single-subimage CNN regression model. For the two time periods with significant discrepancies between radar data and ECMWF predictions, we introduce satellite altimeter information as a source of reference for evaluation. The resulting analysis indicates that the significant wave height estimates generated by CNN-SA-MS model are more reliable.

本文提出了一种基于卷积和自注意的多子图像输入模型(CNN-SA-MS)融合模型,用于从船载 X 波段雷达图像估算显著波高(SWH)。该模型将多个雷达子图像同时作为输入,不仅通过包含更多信息提高了 SWH 反演的准确性,而且避免了只选择上风方向单个子图像的限制和风数据提供对外部设备的依赖。基于雷达图像的特点和计算效率的考虑,本文选择三个雷达子图像作为模型的输入。来自浮标和 ECMWF 的对比数据用于训练和测试。对 64 幅雷达图像的结果取平均值后,CNN-SA-MS 模型的均方根误差(RMSE)和相关系数(CC)分别为 0.197 m 和 0.903。结果表明,与单子图像 CNN 回归模型相比,CNN-SA-MS 模型提高了 SWH 估计的精度和稳定性。对于雷达数据与 ECMWF 预测值差异较大的两个时段,我们引入了卫星高度计信息作为评估的参考源。结果分析表明,CNN-SA-MS 模型生成的显著波高估计值更为可靠。
{"title":"Significant wave height estimation from shipborne marine radar data using convolutional and self-attention network","authors":"Fupeng Wang, Xiaoliang Chu, Baoxue Zhang","doi":"10.1007/s10236-023-01591-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01591-7","url":null,"abstract":"<p>In this paper, a fusion model based on convolution and self-attention with multi-subimage input model (CNN-SA-MS) is proposed to estimate significant wave height (SWH) from shipborne X-band radar images. The model takes multiple radar subimages as input simultaneously, which not only improves the accuracy of SWH inversion by including more information, but also avoids the restriction of selecting a single subimage in the upwind direction and dependence on external devices for wind data provision. Based on the characteristics of radar images and computational efficiency considerations, this paper selects three radar subimages as the input for the model. The comparison data from buoys and ECMWF are used for training and testing. After averaging the results of 64 radar images, the root mean square error (RMSE) and correlation coefficient (CC) of the CNN-SA-MS model are 0.197 m and 0.903, respectively. The results show that the CNN-SA-MS model improves the accuracy and stability of SWH estimation compared to single-subimage CNN regression model. For the two time periods with significant discrepancies between radar data and ECMWF predictions, we introduce satellite altimeter information as a source of reference for evaluation. The resulting analysis indicates that the significant wave height estimates generated by CNN-SA-MS model are more reliable.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"33 6 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139067467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the methods for separating wind sea and swell from directional wave spectra in finite-depth waters 从有限深度水域定向波谱中分离风海和涌浪的方法研究
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-19 DOI: 10.1007/s10236-023-01592-6
Zhenjun Zheng, Guohai Dong, Huawei Dong, Xiaozhou Ma, Mingfu Tang

Ocean waves are generally a mix of wind sea and swell. Given the significant disparities in their impact on engineering, the separation of wind sea and swell is of great significance for marine research and engineering applications. This work focuses on studying the methods for separating wind sea and swell from directional wave spectra in finite-depth waters (i.e., the south coast of Sri Lanka). The error caused by deep-water dispersion relationship in the identification of wind sea using wave age (WA) criterion in finite-depth waters is revealed. The magnitude of error increases with decreasing water depth and higher wind speeds. Subsequently, the impact of WA thresholds on the partitioned results of wind sea and swell is examined, followed by a summary on the procedure determining an appropriate WA threshold. Finally, effort is devoted to studying the overshoot phenomenon (OP) criterion, which does not rely on wind data. Overall, the OP criterion performs consistently with the WA criterion. However, the generation and dissipation of OP require some time. Therefore, the OP criterion exhibits a lag in capturing the growing wind sea as well as the transition of the wind sea to a young swell. Misclassification of wind sea by the OP criterion further contaminates the bulk parameters of swell. Moreover, when the wind direction changes slowly, the delays of OP-based wind sea become negligible, leading to improved identification of wind sea and swell.

海浪通常是风海和涌浪的混合体。由于风海和涌浪对工程的影响存在显著差异,因此风海和涌浪的分离对海洋研究和工程应用具有重要意义。这项工作的重点是研究从有限深度水域(即斯里兰卡南海岸)的定向波谱中分离风海和涌浪的方法。研究揭示了在有限深度水域使用波龄(WA)准则识别风海时,深水弥散关系造成的误差。误差幅度随水深减小和风速增大而增大。随后,研究了波龄阈值对风海和涌浪分区结果的影响,并总结了确定适当波龄阈值的程序。最后,对不依赖风力数据的过冲现象(OP)标准进行了研究。总体而言,OP 准则与 WA 准则的表现一致。不过,OP 的产生和消散需要一定的时间。因此,OP 准则在捕捉风海的增长以及风海向年轻涌浪的过渡方面表现出滞后性。OP 标准对风海的错误分类会进一步污染涌浪的体参数。此外,当风向变化缓慢时,基于 OP 的风海延迟变得可以忽略不计,从而改进了风海和涌浪的识别。
{"title":"Research on the methods for separating wind sea and swell from directional wave spectra in finite-depth waters","authors":"Zhenjun Zheng, Guohai Dong, Huawei Dong, Xiaozhou Ma, Mingfu Tang","doi":"10.1007/s10236-023-01592-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01592-6","url":null,"abstract":"<p>Ocean waves are generally a mix of wind sea and swell. Given the significant disparities in their impact on engineering, the separation of wind sea and swell is of great significance for marine research and engineering applications. This work focuses on studying the methods for separating wind sea and swell from directional wave spectra in finite-depth waters (i.e., the south coast of Sri Lanka). The error caused by deep-water dispersion relationship in the identification of wind sea using wave age (WA) criterion in finite-depth waters is revealed. The magnitude of error increases with decreasing water depth and higher wind speeds. Subsequently, the impact of WA thresholds on the partitioned results of wind sea and swell is examined, followed by a summary on the procedure determining an appropriate WA threshold. Finally, effort is devoted to studying the overshoot phenomenon (OP) criterion, which does not rely on wind data. Overall, the OP criterion performs consistently with the WA criterion. However, the generation and dissipation of OP require some time. Therefore, the OP criterion exhibits a lag in capturing the growing wind sea as well as the transition of the wind sea to a young swell. Misclassification of wind sea by the OP criterion further contaminates the bulk parameters of swell. Moreover, when the wind direction changes slowly, the delays of OP-based wind sea become negligible, leading to improved identification of wind sea and swell.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal 与孟加拉湾单向风速波动相关的近惯性风力的季节和季节内调制
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-14 DOI: 10.1007/s10236-023-01589-1

Abstract

This study examines the seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal (BoB). For that purpose, we use concurrent measurements of high-resolution in situ near-surface current and wind speed from six moorings in the BoB. It is found that the annual mean of near-inertial wind power in the BoB shows roughly similar magnitude (0.25–0.35 mW m−2) at all the mooring locations. However, in response to the seasonal evolution of monsoonal wind forcing, near-inertial wind power shows significant annual variability, with a maximum during summer (~ 0.4–0.5 mW m−2) and fall (~ 0.3–0.4 mW m−2) and a minimum during winter (~ 0.1 mW m−2) and spring (~ 0.2 mW m−2). In addition, it is also found that modulation of near-inertial wind power due to summer monsoon intraseasonal oscillation (MISO), such as its magnitude, reaches as large as ~ 1 mW m−2 at the mooring in the northern BoB during phases 3–4 of MISO. Using a high vertical resolution of current profile data, the near-inertial kinetic energy (NIKE) budget in the mixed layer in the northern BoB shows good temporal correspondence with the magnitude of the rate of change of NIKE and near-inertial wind power, with a maximum magnitude of the rate of change of NIKE lags the wind power by 24 hr. The NIKE budget also indicates that a significant portion of near-inertial wind power dissipates in the mixed layer and rarely energises the depth regime underneath the mixed layer.

摘要 本研究探讨了与孟加拉湾(BoB)单向风速波动有关的近惯性风力的季节和季节内调制。为此,我们使用了来自孟加拉湾六个系泊站的高分辨率原位近表面海流和风速同步测量数据。结果发现,在所有系泊点,孟加拉湾近惯性风力的年平均值大致相同(0.25-0.35 mW m-2)。然而,随着季风胁迫的季节性演变,近惯性风功率显示出显著的年变化,夏季(约 0.4-0.5 mW m-2)和秋季(约 0.3-0.4 mW m-2)为最大值,冬季(约 0.1 mW m-2)和春季(约 0.2 mW m-2)为最小值。此外,研究还发现,在夏季季风季内振荡(MISO)的第 3-4 阶段,夏季季风季内振荡引起的近惯性风功率的调制,如其幅度,在北部 BoB 的锚泊处可达约 1 mW m-2。利用高垂直分辨率的海流剖面数据,北博波混合层的近惯性动能(NIKE)预算与近惯性动能变化率和近惯性风能的大小在时间上有很好的对应关系,近惯性动能变化率的最大值滞后风能 24 小时。
{"title":"Seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal","authors":"","doi":"10.1007/s10236-023-01589-1","DOIUrl":"https://doi.org/10.1007/s10236-023-01589-1","url":null,"abstract":"<h3>Abstract</h3> <p>This study examines the seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal (BoB). For that purpose, we use concurrent measurements of high-resolution in situ near-surface current and wind speed from six moorings in the BoB. It is found that the annual mean of near-inertial wind power in the BoB shows roughly similar magnitude (0.25–0.35 mW m<sup>−2</sup>) at all the mooring locations. However, in response to the seasonal evolution of monsoonal wind forcing, near-inertial wind power shows significant annual variability, with a maximum during summer (~ 0.4–0.5 mW m<sup>−2</sup>) and fall (~ 0.3–0.4 mW m<sup>−2</sup>) and a minimum during winter (~ 0.1 mW m<sup>−2</sup>) and spring (~ 0.2 mW m<sup>−2</sup>). In addition, it is also found that modulation of near-inertial wind power due to summer monsoon intraseasonal oscillation (MISO), such as its magnitude, reaches as large as ~ 1 mW m<sup>−2</sup> at the mooring in the northern BoB during phases 3–4 of MISO. Using a high vertical resolution of current profile data, the near-inertial kinetic energy (NIKE) budget in the mixed layer in the northern BoB shows good temporal correspondence with the magnitude of the rate of change of NIKE and near-inertial wind power, with a maximum magnitude of the rate of change of NIKE lags the wind power by 24 hr. The NIKE budget also indicates that a significant portion of near-inertial wind power dissipates in the mixed layer and rarely energises the depth regime underneath the mixed layer.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"69 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138690415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 12th International Workshop on Modeling the Ocean (IWMO 2022) in Ann Arbor, Michigan, USA on June 28–July 1, 2022 第 12 届国际海洋建模研讨会(IWMO 2022)将于 2022 年 6 月 28 日至 7 月 1 日在美国密歇根州安阿伯市举行
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-14 DOI: 10.1007/s10236-023-01593-5
Jia Wang, T. Ezer, Ricardo de Camargo, Y. Miyazawa, Joanna Staneva, Fanghua Xu
{"title":"The 12th International Workshop on Modeling the Ocean (IWMO 2022) in Ann Arbor, Michigan, USA on June 28–July 1, 2022","authors":"Jia Wang, T. Ezer, Ricardo de Camargo, Y. Miyazawa, Joanna Staneva, Fanghua Xu","doi":"10.1007/s10236-023-01593-5","DOIUrl":"https://doi.org/10.1007/s10236-023-01593-5","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"275 2‐3","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139002147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity impacts on bioeconomic models of phytoplankton and zooplankton interactions 毒性对浮游植物和浮游动物相互作用生物经济模型的影响
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-05 DOI: 10.1007/s10236-023-01588-2
Nossaiba Baba, Imane Agmour, Youssef El Foutayeni, Naceur Achtaich

The primary aim of this research is to investigate how the presence of toxicity, stemming from phytoplankton, impacts fishing activities, catch levels, and financial returns. It is hypothesized that this toxicity arises when zooplankton accumulates harmful substances while consuming phytoplankton. To achieve this objective, we analyze a model resembling a prey-predator relationship involving phytoplankton. We examine the stable conditions in our model by utilizing eigenvalue analysis and calculate the optimal fishing effort that maximizes profitability for fishermen, employing the concept of generalized Nash equilibrium. Additionally, we explore the most effective harvesting strategy by applying Pontryagin’s maximum principle. In our numerical simulations, we identify the key variables that influence all economic aspects of the model, including fishing effort, catch levels, and benefits. Furthermore, we compare our results with findings from previous research.

本研究的主要目的是调查浮游植物产生的毒性如何影响捕捞活动、捕捞水平和经济回报。据推测,当浮游动物在消耗浮游植物的同时积累有害物质时,这种毒性就会产生。为了实现这一目标,我们分析了一个类似于涉及浮游植物的捕食者关系的模型。我们利用特征值分析来检验模型中的稳定条件,并利用广义纳什均衡的概念计算出渔民利润最大化的最优捕捞努力量。此外,我们通过应用庞特里亚金的最大值原则来探索最有效的收获策略。在我们的数值模拟中,我们确定了影响模型所有经济方面的关键变量,包括捕捞努力量、捕捞水平和效益。此外,我们将我们的结果与先前的研究结果进行了比较。
{"title":"Toxicity impacts on bioeconomic models of phytoplankton and zooplankton interactions","authors":"Nossaiba Baba, Imane Agmour, Youssef El Foutayeni, Naceur Achtaich","doi":"10.1007/s10236-023-01588-2","DOIUrl":"https://doi.org/10.1007/s10236-023-01588-2","url":null,"abstract":"<p>The primary aim of this research is to investigate how the presence of toxicity, stemming from phytoplankton, impacts fishing activities, catch levels, and financial returns. It is hypothesized that this toxicity arises when zooplankton accumulates harmful substances while consuming phytoplankton. To achieve this objective, we analyze a model resembling a prey-predator relationship involving phytoplankton. We examine the stable conditions in our model by utilizing eigenvalue analysis and calculate the optimal fishing effort that maximizes profitability for fishermen, employing the concept of generalized Nash equilibrium. Additionally, we explore the most effective harvesting strategy by applying Pontryagin’s maximum principle. In our numerical simulations, we identify the key variables that influence all economic aspects of the model, including fishing effort, catch levels, and benefits. Furthermore, we compare our results with findings from previous research.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"11 6","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses of the Pacific and Atlantic decadal variabilities under global warming by using CMIP6 models CMIP6模式对全球变暖下太平洋和大西洋年代际变化的响应
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-12-05 DOI: 10.1007/s10236-023-01590-8
Yuyang Shang, Peng Liu, Sheng Wu

Decadal variability in the ocean is an important indicator of climate system shifts and has considerable influences on marine ecosystems. We investigate the responses of decadal variability over the global ocean regions using nine CMIP6 models (BCC-CSM2-MR, CESM2-WACCM, CMCC-ESM2, EC-Earth3-Veg-LR, FGOAL-f3-L, INM-CM5-0, MIROC6, MPI-ESM1-2-LR, and NorESM2-MM). Our results show that climate models can capture the Pacific Decadal Oscillation, Tropical Pacific Decadal Variability, South Pacific Decadal Oscillation, and Atlantic Multidecadal Variability under present-day conditions. The ocean decadal variabilities are becoming weaker and their periods are decreasing, especially under the strong global warming scenario. However, there is a discrepancy between the Tropical Pacific Decadal Variability and the other three modes of climate variability. This might be caused by the nearly unchanged atmospheric forcing in the equatorial region, which is decreasing in the higher latitude regions.

海洋的年代际变率是气候系统变化的重要指标,对海洋生态系统具有相当大的影响。我们利用9个CMIP6模式(BCC-CSM2-MR、CESM2-WACCM、ccc - esm2、EC-Earth3-Veg-LR、FGOAL-f3-L、INM-CM5-0、MIROC6、MPI-ESM1-2-LR和NorESM2-MM)研究了全球海洋区域的年代变率响应。结果表明,在当前条件下,气候模式可以捕获太平洋年代际振荡、热带太平洋年代际变化、南太平洋年代际振荡和大西洋多年代际变化。海洋年代际变率正在变弱,周期正在缩短,特别是在全球变暖强烈的情景下。然而,热带太平洋年代际变率与其他三种气候变率模态之间存在差异。这可能是由于赤道地区几乎不变的大气强迫造成的,而在高纬度地区,这种强迫正在减弱。
{"title":"Responses of the Pacific and Atlantic decadal variabilities under global warming by using CMIP6 models","authors":"Yuyang Shang, Peng Liu, Sheng Wu","doi":"10.1007/s10236-023-01590-8","DOIUrl":"https://doi.org/10.1007/s10236-023-01590-8","url":null,"abstract":"<p>Decadal variability in the ocean is an important indicator of climate system shifts and has considerable influences on marine ecosystems. We investigate the responses of decadal variability over the global ocean regions using nine CMIP6 models (BCC-CSM2-MR, CESM2-WACCM, CMCC-ESM2, EC-Earth3-Veg-LR, FGOAL-f3-L, INM-CM5-0, MIROC6, MPI-ESM1-2-LR, and NorESM2-MM). Our results show that climate models can capture the Pacific Decadal Oscillation, Tropical Pacific Decadal Variability, South Pacific Decadal Oscillation, and Atlantic Multidecadal Variability under present-day conditions. The ocean decadal variabilities are becoming weaker and their periods are decreasing, especially under the strong global warming scenario. However, there is a discrepancy between the Tropical Pacific Decadal Variability and the other three modes of climate variability. This might be caused by the nearly unchanged atmospheric forcing in the equatorial region, which is decreasing in the higher latitude regions.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"9 2","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Amundsen Sea source of decadal temperature changes on the Antarctic continental shelf 南极大陆架年代际温度变化的阿蒙森海源
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-21 DOI: 10.1007/s10236-023-01587-3
Sybren S. Drijfhout, Christopher Y. S. Bull, Helene Hewitt, Paul R. Holland, Adrian Jenkins, Pierre Mathiot, Alberto Naveira Garabato

Mass loss from the Antarctic Ice Sheet is dominated by basal melting–induced warm ocean water. Ice-sheet mass loss and thinning of buttressing ice shelves occur primarily in the Amundsen and Bellingshausen Seas. Here, we show that in a global ocean simulation using the 0.25° Nucleus for European Modeling of Ocean (NEMO) model driven by the JRA55 reanalysis from 1982 to 2017, the Amundsen sector of the Antarctic continental shelf acts as a gateway, regulating the on-shelf access of warm Circumpolar Deep Water (CDW) from the deep ocean and its westward transfer to other sectors up to ca. 90° E, particularly the Ross Sea. As a result, anomalies in Antarctic-shelf-averaged temperature mainly originate in the Amundsen sector. These changes are primarily governed by shifts in the Amundsen Sea Low associated with tropical climate variability, modulating the on-shelf transport of CDW via wind-driven perturbations to ocean currents. The ensuing temperature anomalies progress westward from the Amundsen Sea via three distinct routes: a slow, convoluted westward pathway on the shelf via the Antarctic Coastal Current; a faster westward pathway along the shelf break via the Antarctic Slope Current and then onto the shelf along topographic troughs; and a third, eastward route toward the Bellingshausen sector, whereby temperature anomalies are transported into a region of local wind-generated changes farther north. These results emphasize the importance of the Amundsen sector for climate variability over the Antarctic shelves.

南极冰盖的质量损失主要是由基底融化引起的暖海水造成的。冰盖质量损失和支撑冰架变薄主要发生在阿蒙森海和别令斯豪森海。在1982年至2017年由JRA55再分析驱动的0.25°欧洲海洋模型(NEMO)模式的全球海洋模拟中,南极大陆架阿蒙森扇区作为一个门户,调节温暖的环极深水(CDW)从深海进入大陆架,并向西转移到东经约90°的其他扇区,特别是罗斯海。因此,南极大陆架平均温度异常主要源于阿蒙森板块。这些变化主要是由与热带气候变率相关的阿蒙森海低压的变化所控制的,它通过风对洋流的扰动调节了大陆架上CDW的运输。随后的温度异常从阿蒙森海向西移动,有三条不同的路线:大陆架上缓慢而曲折的向西通道,通过南极海岸流;沿着大陆架断裂向西通过南极斜坡流,然后沿着地形槽到达大陆架;第三条是通往别令斯豪森地区的向东路线,通过这条路线,温度异常被输送到更北的当地风力变化区域。这些结果强调了阿蒙森区对南极冰架气候变化的重要性。
{"title":"An Amundsen Sea source of decadal temperature changes on the Antarctic continental shelf","authors":"Sybren S. Drijfhout, Christopher Y. S. Bull, Helene Hewitt, Paul R. Holland, Adrian Jenkins, Pierre Mathiot, Alberto Naveira Garabato","doi":"10.1007/s10236-023-01587-3","DOIUrl":"https://doi.org/10.1007/s10236-023-01587-3","url":null,"abstract":"<p>Mass loss from the Antarctic Ice Sheet is dominated by basal melting–induced warm ocean water. Ice-sheet mass loss and thinning of buttressing ice shelves occur primarily in the Amundsen and Bellingshausen Seas. Here, we show that in a global ocean simulation using the 0.25° Nucleus for European Modeling of Ocean (NEMO) model driven by the JRA55 reanalysis from 1982 to 2017, the Amundsen sector of the Antarctic continental shelf acts as a gateway, regulating the on-shelf access of warm Circumpolar Deep Water (CDW) from the deep ocean and its westward transfer to other sectors up to ca. 90° E, particularly the Ross Sea. As a result, anomalies in Antarctic-shelf-averaged temperature mainly originate in the Amundsen sector. These changes are primarily governed by shifts in the Amundsen Sea Low associated with tropical climate variability, modulating the on-shelf transport of CDW via wind-driven perturbations to ocean currents. The ensuing temperature anomalies progress westward from the Amundsen Sea via three distinct routes: a slow, convoluted westward pathway on the shelf via the Antarctic Coastal Current; a faster westward pathway along the shelf break via the Antarctic Slope Current and then onto the shelf along topographic troughs; and a third, eastward route toward the Bellingshausen sector, whereby temperature anomalies are transported into a region of local wind-generated changes farther north. These results emphasize the importance of the Amundsen sector for climate variability over the Antarctic shelves.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"12 5","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-layer model of hydrodynamic processes in the Cyprus Eddy system 塞浦路斯涡旋系统水动力过程的三层模型
IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-16 DOI: 10.1007/s10236-023-01584-6
Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis

A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.

建立了一种三层准地转模式,研究了黎凡特盆地东南部埃拉托色尼海山周围的地形涡旋,特别是由反气旋塞浦路斯涡旋和较小尺度气旋组成的偶极涡旋结构。采用等高线动力学方法进行数值实验,模拟地中海中部急流沿模型域西部边界形成不同倾角和强度的东向气流。地形涡旋的双重性质在以前的报道中经常在均匀的海洋近似中产生,但在目前的研究中,考虑斜压性主要模拟了归因于塞浦路斯涡旋的单一涡旋,偶尔会产生小规模气旋。结果表明,沿模式域西边界的强向东气流的方向和强度是气旋涡形成的主要因素。模拟结果与埃拉托色尼海山更广阔海域的地转模式在定性上一致。
{"title":"A three-layer model of hydrodynamic processes in the Cyprus Eddy system","authors":"Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis","doi":"10.1007/s10236-023-01584-6","DOIUrl":"https://doi.org/10.1007/s10236-023-01584-6","url":null,"abstract":"<p>A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"9 4","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Link between the internal variability and the baroclinic instability in the Bohai and Yellow Sea 渤海和黄海内部变率与斜压不稳定的关系
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-13 DOI: 10.1007/s10236-023-01583-7
Lin Lin, Hans von Storch, Xueen Chen, Wensheng Jiang, Shengquan Tang
Abstract A regional ocean ensemble simulation with slightly different initial conditions demonstrates that internal variability is formed (not only) in the Bohai and Yellow Sea. In this paper, we analyze the relationship between the internal variability and the baroclinic instability, (represented by the Eady predicted theoretical diffusivity $${K}_{t}$$ K t ; the larger the $${K}_{t}$$ K t , the stronger the baroclinic instability level). In the ensemble, with tidal forcing, the spatial correlation between the Eady predicted theoretical diffusivity $${K}_{t}$$ K t and the internal variability amounts to 0.80. Also, the time evolution trends of baroclinic instability and internal variability are similar. Based on this evidence, baroclinic instability may be a significant driver for internal variability. This hypothesis is validated using an additional ensemble of simulations, which is identical to the first ensemble, but this time, the tides are inactivated. This modification leads to an increase in internal variability, combined with the strengthening of baroclinic instability. In addition, the baroclinic instability level and internal variability variation co-vary consistently when comparing summer and winter seasons, both with and without tides. Our interpretation is that a stronger baroclinic instability causes more potential energy to be transformed into kinetic energy, allowing the unforced disturbances to grow.
初始条件略有不同的区域海洋综合模拟结果表明,渤海和黄海不仅形成了内部变率。本文分析了内部变率与斜压不稳定性之间的关系,(用Eady预测的理论扩散系数$${K}_{t}$$ K t表示;$${K}_{t}$$ K t越大,斜压不稳定程度越强)。在潮汐强迫作用下,Eady预测的理论扩散系数$${K}_{t}$$ K t与内部变率的空间相关系数为0.80。斜压不稳定和内部变率的时间演化趋势相似。基于这一证据,斜压不稳定性可能是内部变率的重要驱动因素。这个假设是通过另一个模拟集合来验证的,这个模拟集合与第一个集合相同,但这一次,潮汐是不活跃的。这种改变导致内部变率的增加,并与斜压不稳定性的加强相结合。此外,无论有无潮汐,夏季和冬季的斜压不稳定水平和内部变率变化都是一致的。我们的解释是,更强的斜压不稳定性导致更多的势能转化为动能,从而使非受迫性扰动增大。
{"title":"Link between the internal variability and the baroclinic instability in the Bohai and Yellow Sea","authors":"Lin Lin, Hans von Storch, Xueen Chen, Wensheng Jiang, Shengquan Tang","doi":"10.1007/s10236-023-01583-7","DOIUrl":"https://doi.org/10.1007/s10236-023-01583-7","url":null,"abstract":"Abstract A regional ocean ensemble simulation with slightly different initial conditions demonstrates that internal variability is formed (not only) in the Bohai and Yellow Sea. In this paper, we analyze the relationship between the internal variability and the baroclinic instability, (represented by the Eady predicted theoretical diffusivity $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> ; the larger the $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> , the stronger the baroclinic instability level). In the ensemble, with tidal forcing, the spatial correlation between the Eady predicted theoretical diffusivity $${K}_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> and the internal variability amounts to 0.80. Also, the time evolution trends of baroclinic instability and internal variability are similar. Based on this evidence, baroclinic instability may be a significant driver for internal variability. This hypothesis is validated using an additional ensemble of simulations, which is identical to the first ensemble, but this time, the tides are inactivated. This modification leads to an increase in internal variability, combined with the strengthening of baroclinic instability. In addition, the baroclinic instability level and internal variability variation co-vary consistently when comparing summer and winter seasons, both with and without tides. Our interpretation is that a stronger baroclinic instability causes more potential energy to be transformed into kinetic energy, allowing the unforced disturbances to grow.","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"48 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical properties of extreme waves in multidirectional wave fields over complex bathymetry 复杂测深上多向波场极值波的统计性质
3区 地球科学 Q2 OCEANOGRAPHY Pub Date : 2023-11-11 DOI: 10.1007/s10236-023-01586-4
Lili Mei, Hongzhou Chen, Xu Yang, Fukun Gui
{"title":"Statistical properties of extreme waves in multidirectional wave fields over complex bathymetry","authors":"Lili Mei, Hongzhou Chen, Xu Yang, Fukun Gui","doi":"10.1007/s10236-023-01586-4","DOIUrl":"https://doi.org/10.1007/s10236-023-01586-4","url":null,"abstract":"","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"49 14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1