The mitochondria‑associated endoplasmic reticulum (ER) membrane (MAM), serving as a vital link between the mitochondria and ER, holds a pivotal role in maintaining the physiological function of these two organelles. Its specific functions encompass the participation in the biosynthesis and functional regulation of the mitochondria, calcium ion transport, lipid metabolism, oxidative stress and autophagy among numerous other facets. Scientific exploration has revealed that MAMs hold potential as effective therapeutic targets influencing the mitochondria and ER within the context of cancer therapy. The present review focused on elucidating the related pathways of mitochondrial autophagy and ER stress and their practical application in ovarian cancer, aiming to identify commonalities existing between MAMs and these pathways, thereby extending to related applications of MAMs in ovarian cancer treatment. This endeavor aimed at exploring new potential for MAMs in clinically managing ovarian cancer.
线粒体相关内质网(ER)膜(MAM)是连接线粒体和ER的重要纽带,在维持这两个细胞器的生理功能方面起着举足轻重的作用。其具体功能包括参与线粒体的生物合成和功能调节、钙离子转运、脂质代谢、氧化应激和自噬等诸多方面。科学探索表明,MAMs 有潜力成为癌症治疗中影响线粒体和 ER 的有效治疗靶点。本综述侧重于阐明线粒体自噬和ER应激的相关途径及其在卵巢癌中的实际应用,旨在找出MAMs与这些途径之间存在的共性,从而扩展MAMs在卵巢癌治疗中的相关应用。这项研究旨在探索 MAMs 在卵巢癌临床治疗中的新潜力。
{"title":"Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review).","authors":"Yi-Fan Dong, Jiaheng Zhang, Jin-Hong Zhou, Yi-Li Xiao, Wan-Juan Pei, Hui-Ping Liu","doi":"10.3892/or.2024.8771","DOIUrl":"10.3892/or.2024.8771","url":null,"abstract":"<p><p>The mitochondria‑associated endoplasmic reticulum (ER) membrane (MAM), serving as a vital link between the mitochondria and ER, holds a pivotal role in maintaining the physiological function of these two organelles. Its specific functions encompass the participation in the biosynthesis and functional regulation of the mitochondria, calcium ion transport, lipid metabolism, oxidative stress and autophagy among numerous other facets. Scientific exploration has revealed that MAMs hold potential as effective therapeutic targets influencing the mitochondria and ER within the context of cancer therapy. The present review focused on elucidating the related pathways of mitochondrial autophagy and ER stress and their practical application in ovarian cancer, aiming to identify commonalities existing between MAMs and these pathways, thereby extending to related applications of MAMs in ovarian cancer treatment. This endeavor aimed at exploring new potential for MAMs in clinically managing ovarian cancer.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.
{"title":"Hedgehog pathway and cancer: A new area (Review).","authors":"Deyi Shen, Yuwei Xia, Yuhan Fu, Qiaochang Cao, Wenqian Chen, Ying Zhu, Kaibo Guo, Leitao Sun","doi":"10.3892/or.2024.8775","DOIUrl":"10.3892/or.2024.8775","url":null,"abstract":"<p><p>In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-12DOI: 10.3892/or.2024.8776
Qun Zeng, Tingting Jiang, Jing Wang
Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.
癌症是一种以众多基因和通路失调为特征的多发性疾病。其中,LIM domain only 7(LMO7)已成为各种癌症类型中的重要角色,因其参与肿瘤发生和癌症进展而备受关注。本综述力图全面论述 LMO7 在癌症中的复杂功能和机制,特别强调其作为治疗靶点和预后指标的潜力。文章深入探讨了 LMO7 的分子属性、其在癌症病因学中的意义以及推动其致癌特性的潜在机制。此外,它还强调了以 LMO7 为靶点抗击癌症的现有挑战和未来前景。
{"title":"Role of LMO7 in cancer (Review).","authors":"Qun Zeng, Tingting Jiang, Jing Wang","doi":"10.3892/or.2024.8776","DOIUrl":"10.3892/or.2024.8776","url":null,"abstract":"<p><p>Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-21DOI: 10.3892/or.2024.8759
Jin Yu, Kailun Wang, Yongjiang Tang, Dalin Zheng
Radiotherapy exhibits significant versatility and efficacy in cancer treatment, thereby playing a crucial role in the field of oncology. However, there remains an urgent need for extensive research on various aspects of radiotherapy, including target selection, damage repair and its combination with immunotherapy. Particularly, the development of in vitro models to replicate in vivo tumor lesion responses is vital. The present study provides a thorough review of the establishment and application of tumor organoids in radiotherapy, aiming to explore their potential impact on cancer treatment.
{"title":"Applications and perspectives of tumor organoids in radiobiology (Review).","authors":"Jin Yu, Kailun Wang, Yongjiang Tang, Dalin Zheng","doi":"10.3892/or.2024.8759","DOIUrl":"10.3892/or.2024.8759","url":null,"abstract":"<p><p>Radiotherapy exhibits significant versatility and efficacy in cancer treatment, thereby playing a crucial role in the field of oncology. However, there remains an urgent need for extensive research on various aspects of radiotherapy, including target selection, damage repair and its combination with immunotherapy. Particularly, the development of <i>in vitro</i> models to replicate <i>in vivo</i> tumor lesion responses is vital. The present study provides a thorough review of the establishment and application of tumor organoids in radiotherapy, aiming to explore their potential impact on cancer treatment.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intrahepatic cholangiocarcinoma (ICC) is a type of liver cancer associated with poor prognosis and increased mortality; the limited treatment strategy highlights the urgent need for investigation. Traditional Chinese Medicine (TCM), used alone or in combination with other treatments, can enhance therapeutic efficacy, improve life quality of patients and extend overall survival. In total, two rounds of screening of a TCM library of 2,538 active compounds were conducted using a Cell Counting Kit‑8 assay and ICC cell lines. Cell proliferation and migration abilities were assessed through colony formation, 5‑ethynyl‑2'‑deoxyuridine, would healing and Transwell assays. The impact of digitoxin (DT) on signaling pathways was initially investigated using RNA sequencing and further validated using reverse transcription‑quantitative PCR, western blotting, lectin blotting and flow cytometry. ICC cells stably overexpressing ST6 β‑galactoside α‑2,6‑sialyltransferase 1 (ST6GAL1) were generated through lentiviral transfection. It was shown that DT emerged as a highly effective anti‑ICC candidate from two rounds high‑throughput library screening. DT could inhibit the proliferation and migration of ICC cells by suppressing NF‑κB activation and reducing nuclear phosphorylated‑NF‑κB levels, along with diminishing ST6GAL1 mRNA and protein expression. The aforementioned biological effects and signal pathways of DT could be counteracted by overexpressing ST6GAL1 in ICC cells. In conclusion, DT suppressed ICC cell proliferation and migration by targeting the NF‑κB/ST6GAL1 signaling axis. The findings of the present study indicated the promising therapeutic effects of DT in managing ICC, offering new avenues for treatment strategies.
{"title":"Digitoxin inhibits ICC cell properties via the NF‑κB/ST6GAL1 signaling pathway.","authors":"Yueping Zhan, Rong Wang, Chenjun Huang, Xuewen Xu, Xiao Xiao, Linlin Wu, Jiao Wei, Tian Long, Chunfang Gao","doi":"10.3892/or.2024.8762","DOIUrl":"10.3892/or.2024.8762","url":null,"abstract":"<p><p>Intrahepatic cholangiocarcinoma (ICC) is a type of liver cancer associated with poor prognosis and increased mortality; the limited treatment strategy highlights the urgent need for investigation. Traditional Chinese Medicine (TCM), used alone or in combination with other treatments, can enhance therapeutic efficacy, improve life quality of patients and extend overall survival. In total, two rounds of screening of a TCM library of 2,538 active compounds were conducted using a Cell Counting Kit‑8 assay and ICC cell lines. Cell proliferation and migration abilities were assessed through colony formation, 5‑ethynyl‑2'‑deoxyuridine, would healing and Transwell assays. The impact of digitoxin (DT) on signaling pathways was initially investigated using RNA sequencing and further validated using reverse transcription‑quantitative PCR, western blotting, lectin blotting and flow cytometry. ICC cells stably overexpressing ST6 β‑galactoside α‑2,6‑sialyltransferase 1 (ST6GAL1) were generated through lentiviral transfection. It was shown that DT emerged as a highly effective anti‑ICC candidate from two rounds high‑throughput library screening. DT could inhibit the proliferation and migration of ICC cells by suppressing NF‑κB activation and reducing nuclear phosphorylated‑NF‑κB levels, along with diminishing ST6GAL1 mRNA and protein expression. The aforementioned biological effects and signal pathways of DT could be counteracted by overexpressing ST6GAL1 in ICC cells. In conclusion, DT suppressed ICC cell proliferation and migration by targeting the NF‑κB/ST6GAL1 signaling axis. The findings of the present study indicated the promising therapeutic effects of DT in managing ICC, offering new avenues for treatment strategies.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-21DOI: 10.3892/or.2024.8760
Jong Seung Lim, Eunkyoung Kim, Jin-Sook Song, Sunjoo Ahn
Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.
{"title":"Energy‑stress‑mediated activation of AMPK sensitizes MPS1 kinase inhibition in triple‑negative breast cancer.","authors":"Jong Seung Lim, Eunkyoung Kim, Jin-Sook Song, Sunjoo Ahn","doi":"10.3892/or.2024.8760","DOIUrl":"10.3892/or.2024.8760","url":null,"abstract":"<p><p>Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple‑negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate‑activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI‑402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell‑cycle distribution, and <i>in vivo</i> xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI‑402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen‑activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI‑402257 and AICAR monotherapy in the MDA‑MB‑231 xenograft model. The present study suggested that the combination of CFI‑402257 and AICAR is a promising therapeutic strategy for TNBC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-28DOI: 10.3892/or.2024.8764
Qiangfang Dai, Xiaoli Wei, Jumei Zhao, Die Zhang, Yidan Luo, Yue Yang, Yang Xiang, Xiaolong Liu
Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.
{"title":"Inhibition of FSP1: A new strategy for the treatment of tumors (Review).","authors":"Qiangfang Dai, Xiaoli Wei, Jumei Zhao, Die Zhang, Yidan Luo, Yue Yang, Yang Xiang, Xiaolong Liu","doi":"10.3892/or.2024.8764","DOIUrl":"10.3892/or.2024.8764","url":null,"abstract":"<p><p>Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-28DOI: 10.3892/or.2024.8766
Hailong Li, Xia Li, Wei Du
Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
{"title":"Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review).","authors":"Hailong Li, Xia Li, Wei Du","doi":"10.3892/or.2024.8766","DOIUrl":"10.3892/or.2024.8766","url":null,"abstract":"<p><p>Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-28DOI: 10.3892/or.2024.8763
Yuanhong Zhou, Yan Xie, Youzheng Luo, Shuling Wang, Qing Han, Qiang Liu
The prognosis of patients with human papillomavirus (HPV)‑negative cervical cancer is significantly worse than that of patients with HPV‑positive cervical cancer. Understanding the mechanisms of this is crucial for preventing disease evolution. In the present study, the GV367‑snail family transcriptional repressor 2 (SNAI2) lentiviral vector was constructed and transduced into C‑33A cells. Subsequently, the proliferation of tumor cells was detected using the Cell Counting Kit (CCK)‑8 method. Flow cytometry was used to analyze the cell cycle progression of tumor cells. The glucose consumption of tumor cells was detected using an oxidase assay, and the senescence of tumor cells was detected using beta‑galactosidase staining. The gene expression and the activity of p38 and ERK1/2 were detected using reverse transcription‑quantitative PCR and western blotting, respectively. The C‑33A‑SNAI2 cell line was successfully established. Compared with HeLa and C‑33A‑Wild cells, the proliferation and percentage of G0/G1‑phase cells in the C‑33A‑SNAI2 group were decreased, as detected by the CCK‑8 assay (100±0 vs. 239.1±58.3 vs. 39.7±20.1, P<0.01) and flow cytometry (34.0±7.1% vs. 46.2±10.6% vs. 61.3±5.3%, P<0.05). Compared with the HeLa group, the glucose consumption of the C‑33A‑Wild and C‑33A‑SNAI2 groups was significantly decreased (P<0.01). The results of beta‑galactosidase staining showed that the proportion of beta‑galactosidase‑positive cells in the C‑33A‑SNAI2 group was significantly decreased compared with the C‑33A‑Wild group (P<0.01). Upregulation of SNAI2 enhanced the increase in p21 expression, and the decrease in CDK1, urokinase plasminogen activator receptor (u‑PAR) and cyclin D1 expression in C‑33A cells compared with C‑33A‑Wild cells (P<0.05). In addition, the activities of p38, ERK1/2 and the phosphorylated (p)‑ERK1/2/p‑p38 ratio were decreased in the C‑33A‑SNAI2 group compared with the C‑33A‑Wild and HeLa groups (P<0.05). In conclusion, SNAI2 enhanced HPV‑negative cervical cancer C‑33A cell dormancy, which was characterized by G0/G1 arrest, by the downregulation of u‑PAR expression, and a decrease in the activity of the p‑ERK1/2 and p‑p38MAPK signaling pathways in vitro. Cancer recurrence and metastases are responsible for most cancer‑related deaths. Given that SNAI2 is required for enhancing HPV‑negative cervical cancer cell dormancy, regulating this process may promote cervical tumor cells to enter a continuous dormant state, which could be a potential approach for tumor therapy.
人乳头瘤病毒(HPV)阴性宫颈癌患者的预后明显差于 HPV 阳性宫颈癌患者。了解其中的机制对于预防疾病演变至关重要。本研究构建了GV367-蜗牛家族转录抑制因子2(SNAI2)慢病毒载体,并将其转导到C-33A细胞中。随后,使用细胞计数试剂盒(CCK)-8 法检测肿瘤细胞的增殖情况。流式细胞术用于分析肿瘤细胞的细胞周期进展。用氧化酶检测法检测肿瘤细胞的葡萄糖消耗,用β-半乳糖苷酶染色法检测肿瘤细胞的衰老。利用逆转录定量 PCR 和 Western 印迹技术分别检测了 p38 和 ERK1/2 的基因表达和活性。成功建立了 C-33A-SNAI2 细胞系。与HeLa和C-33A-Wild细胞相比,C-33A-SNAI2组细胞的增殖和G0/G1期细胞的百分比均有所下降,如CCK-8检测所示(100±0 vs. 239.1±58.3 vs. 39.7±20.1, Pin vitro)。癌症复发和转移是大多数癌症相关死亡的原因。鉴于 SNAI2 是增强 HPV 阴性宫颈癌细胞休眠所必需的,调节这一过程可能会促进宫颈肿瘤细胞进入持续休眠状态,这可能是一种潜在的肿瘤治疗方法。
{"title":"SNAI2 enhances HPV‑negative cervical cancer cell dormancy by modulating u‑PAR expression and the activity of the ERK/p38 signaling pathway <i>in vitro</i>.","authors":"Yuanhong Zhou, Yan Xie, Youzheng Luo, Shuling Wang, Qing Han, Qiang Liu","doi":"10.3892/or.2024.8763","DOIUrl":"10.3892/or.2024.8763","url":null,"abstract":"<p><p>The prognosis of patients with human papillomavirus (HPV)‑negative cervical cancer is significantly worse than that of patients with HPV‑positive cervical cancer. Understanding the mechanisms of this is crucial for preventing disease evolution. In the present study, the GV367‑snail family transcriptional repressor 2 (SNAI2) lentiviral vector was constructed and transduced into C‑33A cells. Subsequently, the proliferation of tumor cells was detected using the Cell Counting Kit (CCK)‑8 method. Flow cytometry was used to analyze the cell cycle progression of tumor cells. The glucose consumption of tumor cells was detected using an oxidase assay, and the senescence of tumor cells was detected using beta‑galactosidase staining. The gene expression and the activity of p38 and ERK1/2 were detected using reverse transcription‑quantitative PCR and western blotting, respectively. The C‑33A‑SNAI2 cell line was successfully established. Compared with HeLa and C‑33A‑Wild cells, the proliferation and percentage of G0/G1‑phase cells in the C‑33A‑SNAI2 group were decreased, as detected by the CCK‑8 assay (100±0 vs. 239.1±58.3 vs. 39.7±20.1, P<0.01) and flow cytometry (34.0±7.1% vs. 46.2±10.6% vs. 61.3±5.3%, P<0.05). Compared with the HeLa group, the glucose consumption of the C‑33A‑Wild and C‑33A‑SNAI2 groups was significantly decreased (P<0.01). The results of beta‑galactosidase staining showed that the proportion of beta‑galactosidase‑positive cells in the C‑33A‑SNAI2 group was significantly decreased compared with the C‑33A‑Wild group (P<0.01). Upregulation of SNAI2 enhanced the increase in p21 expression, and the decrease in CDK1, urokinase plasminogen activator receptor (u‑PAR) and cyclin D1 expression in C‑33A cells compared with C‑33A‑Wild cells (P<0.05). In addition, the activities of p38, ERK1/2 and the phosphorylated (p)‑ERK1/2/p‑p38 ratio were decreased in the C‑33A‑SNAI2 group compared with the C‑33A‑Wild and HeLa groups (P<0.05). In conclusion, SNAI2 enhanced HPV‑negative cervical cancer C‑33A cell dormancy, which was characterized by G0/G1 arrest, by the downregulation of u‑PAR expression, and a decrease in the activity of the p‑ERK1/2 and p‑p38MAPK signaling pathways <i>in vitro</i>. Cancer recurrence and metastases are responsible for most cancer‑related deaths. Given that SNAI2 is required for enhancing HPV‑negative cervical cancer cell dormancy, regulating this process may promote cervical tumor cells to enter a continuous dormant state, which could be a potential approach for tumor therapy.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the immunofluorescence data featured in Fig. 1H, TUNEL assay data in Fig. 2A, cytochome c leakage assay data in Fig. 2H, staining of cardiolipin images in Fig. 2H, lamellipodia‑stained data in Fig. 3A, and immunofluorescence assay data in Figs. 3F and 5D were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Oncology Reports, or were under consideration for publication at around the same time (several of which have now been retracted). In addition, overlapping sections of data were noted within the data panels in Fig. 3D and F, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original source(s). In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, and in view of an overall lack of confidence in the presented data, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 1671‑1681, 2018; DOI: 10.3892/or.2018.6252].
{"title":"[Retracted] Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy.","authors":"Hongzhu Yan, Chengmin Qiu, Weiwei Sun, Minmin Gu, Feng Xiao, Jue Zou, Li Zhang","doi":"10.3892/or.2024.8767","DOIUrl":"10.3892/or.2024.8767","url":null,"abstract":"<p><p>Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the immunofluorescence data featured in Fig. 1H, TUNEL assay data in Fig. 2A, cytochome <i>c</i> leakage assay data in Fig. 2H, staining of cardiolipin images in Fig. 2H, lamellipodia‑stained data in Fig. 3A, and immunofluorescence assay data in Figs. 3F and 5D were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to <i>Oncology Reports</i>, or were under consideration for publication at around the same time (several of which have now been retracted). In addition, overlapping sections of data were noted within the data panels in Fig. 3D and F, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original source(s). In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, and in view of an overall lack of confidence in the presented data, the Editor of <i>Oncology Reports</i> has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 1671‑1681, 2018; DOI: 10.3892/or.2018.6252].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}