Pub Date : 2024-10-28DOI: 10.1016/j.optcom.2024.131255
YanYan Huo , Yuqian Zhang , Xinyu Liu , Tingyin Ning , Yingying Ren
Ultrasmall mode volumes and strongly localized fields are crucial for the miniaturization and performance enhancement of nanolasers. Here, we demonstrate a nanolaser based on a vertical dipole resonance coupled to its mirror in a periodic array of nanopillars on an Ag mirror, governed by symmetry-protected bound states in the continuum (BICs), which possess extremely small mode volumes and high field enhancement. A nanolaser with a strongly localized field size of only ∼λ/300 (where λ is the resonant wavelength) can be explored by using this vertical dipole. Compared to a vertical dipole nanolaser without a silver mirror, the effective mode volume can be reduced by an order of magnitude, and the threshold can decrease from 5.85 to 0.337 μJ/mm2. Additionally, by controlling further investigated the angle of the incident light, we can also adjust the threshold of the nanolaser. When the incidence angle is adjusted from 9° to 1°, the threshold can be reduced from 1.43 to 0.299 μJ/mm2.
{"title":"Strongly localized nanolaser based on the vertical dipole governed by bound states in the continuum","authors":"YanYan Huo , Yuqian Zhang , Xinyu Liu , Tingyin Ning , Yingying Ren","doi":"10.1016/j.optcom.2024.131255","DOIUrl":"10.1016/j.optcom.2024.131255","url":null,"abstract":"<div><div>Ultrasmall mode volumes and strongly localized fields are crucial for the miniaturization and performance enhancement of nanolasers. Here, we demonstrate a nanolaser based on a vertical dipole resonance coupled to its mirror in a periodic array of nanopillars on an Ag mirror, governed by symmetry-protected bound states in the continuum (BICs), which possess extremely small mode volumes and high field enhancement. A nanolaser with a strongly localized field size of only ∼λ/300 (where λ is the resonant wavelength) can be explored by using this vertical dipole. Compared to a vertical dipole nanolaser without a silver mirror, the effective mode volume can be reduced by an order of magnitude, and the threshold can decrease from 5.85 to 0.337 μJ/mm<sup>2</sup>. Additionally, by controlling further investigated the angle of the incident light, we can also adjust the threshold of the nanolaser. When the incidence angle is adjusted from 9° to 1°, the threshold can be reduced from 1.43 to 0.299 μJ/mm<sup>2</sup>.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131255"},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.optcom.2024.131235
Tianqi Zheng, Jianjun Yu
The radio over fiber (ROF) system based on Delta-sigma modulation (DSM) can meet the requirements of the fronthaul system with its high signal fidelity and mature digital fronthaul interface specification. However, nonlinear impairments in ROF systems can seriously affect the performance of DSM signals. To reduce the impact of nonlinear effects on DSM signals with low complexity, we have designed a nonlinear equalizer based on the Volterra series. The complexity of the Volterra nonlinear equalizer (VNLE) is reduced through a weight pruning strategy. And by using directed decision instead of training sequences, we eliminate the redundancy introduced by VNLE while simultaneously ensuring its stability within the DSM system. Ultimately, we transmit one-bit single-carrier loaded DSM signals over 20 km of SMF-28 fiber and 3 m of wireless distance in an antenna polarization division multiplexing (APDM) intensity modulation and direct detection (IM/DD) system. For the first time, we add decision-directed weight-pruning Volterra nonlinear equalization (DD-PVNLE) algorithm in the APDM-IM/DD system to overcome the signal damage by the nonlinearity of the system. The BER of the Delta-sigma modulated on-off keying (DSM-OOK) signal reduces from 1 × 10−3 to 1.1 × 10−4. The high-fidelity 1024QAM, 2048QAM, and 4096QAM are recovered successfully whose BERs below the soft decision threshold 2.4 × 10−2 and hard decision threshold 3.8 × 10−3 respectively.
{"title":"ROF-based antenna-PDM system employing DSM and DD-weight-pruning Volterra nonlinear equalization","authors":"Tianqi Zheng, Jianjun Yu","doi":"10.1016/j.optcom.2024.131235","DOIUrl":"10.1016/j.optcom.2024.131235","url":null,"abstract":"<div><div>The radio over fiber (ROF) system based on Delta-sigma modulation (DSM) can meet the requirements of the fronthaul system with its high signal fidelity and mature digital fronthaul interface specification. However, nonlinear impairments in ROF systems can seriously affect the performance of DSM signals. To reduce the impact of nonlinear effects on DSM signals with low complexity, we have designed a nonlinear equalizer based on the Volterra series. The complexity of the Volterra nonlinear equalizer (VNLE) is reduced through a weight pruning strategy. And by using directed decision instead of training sequences, we eliminate the redundancy introduced by VNLE while simultaneously ensuring its stability within the DSM system. Ultimately, we transmit one-bit single-carrier loaded DSM signals over 20 km of SMF-28 fiber and 3 m of wireless distance in an antenna polarization division multiplexing (APDM) intensity modulation and direct detection (IM/DD) system. For the first time, we add decision-directed weight-pruning Volterra nonlinear equalization (DD-PVNLE) algorithm in the APDM-IM/DD system to overcome the signal damage by the nonlinearity of the system. The BER of the Delta-sigma modulated on-off keying (DSM-OOK) signal reduces from 1 × 10<sup>−3</sup> to 1.1 × 10<sup>−4</sup>. The high-fidelity 1024QAM, 2048QAM, and 4096QAM are recovered successfully whose BERs below the soft decision threshold 2.4 × 10<sup>−2</sup> and hard decision threshold 3.8 × 10<sup>−3</sup> respectively.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131235"},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.optcom.2024.131237
Chen Wang , Zhiyong Xu , Jingyuan Wang , Jianhua Li , Weifeng Mou , Huatao Zhu , Jiyong Zhao , Yang Su , Yimin Wang , Ailin Qi
This paper proposes a method for estimating and detecting optical signals in practical photon-counting receivers. There are two important aspects of non-perfect photon-counting receivers, namely, (i) dead time which results in blocking loss, and (ii) non-photon-number-resolving, which leads to counting loss during the gate-ON interval. These factors introduce nonlinear distortion to the detected photon counts. The detected photon counts depend not only on the optical intensity but also on the signal waveform, and obey a Poisson binomial process. Using the discrete Fourier transform characteristic function (DFT-CF) method, we derive the probability mass function (PMF) of the detected photon counts. Furthermore, unlike conventional methods that assume an ideal rectangle wave, we propose a novel signal estimation and decision method applicable to arbitrary waveform. We demonstrate that the proposed method achieves superior error performance compared to conventional methods. The proposed algorithm has the potential to become an essential signal processing tool for photon-counting receivers.
{"title":"A novel signal detection method for photon-counting communications with nonlinear distortion effects","authors":"Chen Wang , Zhiyong Xu , Jingyuan Wang , Jianhua Li , Weifeng Mou , Huatao Zhu , Jiyong Zhao , Yang Su , Yimin Wang , Ailin Qi","doi":"10.1016/j.optcom.2024.131237","DOIUrl":"10.1016/j.optcom.2024.131237","url":null,"abstract":"<div><div>This paper proposes a method for estimating and detecting optical signals in practical photon-counting receivers. There are two important aspects of non-perfect photon-counting receivers, namely, (i) dead time which results in blocking loss, and (ii) non-photon-number-resolving, which leads to counting loss during the gate-ON interval. These factors introduce nonlinear distortion to the detected photon counts. The detected photon counts depend not only on the optical intensity but also on the signal waveform, and obey a Poisson binomial process. Using the discrete Fourier transform characteristic function (DFT-CF) method, we derive the probability mass function (PMF) of the detected photon counts. Furthermore, unlike conventional methods that assume an ideal rectangle wave, we propose a novel signal estimation and decision method applicable to arbitrary waveform. We demonstrate that the proposed method achieves superior error performance compared to conventional methods. The proposed algorithm has the potential to become an essential signal processing tool for photon-counting receivers.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131237"},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.optcom.2024.131256
Yuanyuan Zhang , Chunlong Yu , Wenxin Wang , Daxing Li , Bin Zou , Guling Zhang , Shuai Feng
Silicon-based refractive index sensors are of significance in the detection of gases, biological substances and chemical compounds. Among these, optical microcavities can confine the optical field to the micrometre-scale region, and possess the advantages of high Q factor, small size and easy integration. In this paper, a trapezoidal subwavelength grating (SWG) is introduced into a slot micro-ring resonator, and the mode splitting is employed to enrich the supported standing wave modes and optimize the spatial profiles of the resonant modes. The modes’ Q factor is improved and the high sensitivity and low detection limit is achieved. The optimal trapezoidal subwavelength grating double slot micro-ring resonator (T-SWGDSMRR) structure is obtained by designing the structural parameters and analyzing their effects on the sensing performance parameters and spectral characteristics. The T-SWGDSMRR, designed for detecting the glucose solution, demonstrated a low detection limit of RIU and an ultra-high Q factor of up to 100825, accompanied by a refractive index sensitivity of 424 nm/RIU. Finally, a cascaded double micro-ring sensor is proposed using the vernier effect, through cascading the T-SWGDSMRR with a referential ring, the sensitivity is enhanced to 12828 nm/RIU, and the limit of detection is RIU.
{"title":"Double-slot micro-ring resonators with trapezoidal subwavelength grating as ultra-sensitive biochemical sensors","authors":"Yuanyuan Zhang , Chunlong Yu , Wenxin Wang , Daxing Li , Bin Zou , Guling Zhang , Shuai Feng","doi":"10.1016/j.optcom.2024.131256","DOIUrl":"10.1016/j.optcom.2024.131256","url":null,"abstract":"<div><div>Silicon-based refractive index sensors are of significance in the detection of gases, biological substances and chemical compounds. Among these, optical microcavities can confine the optical field to the micrometre-scale region, and possess the advantages of high <em>Q</em> factor, small size and easy integration. In this paper, a trapezoidal subwavelength grating (SWG) is introduced into a slot micro-ring resonator, and the mode splitting is employed to enrich the supported standing wave modes and optimize the spatial profiles of the resonant modes. The modes’ <em>Q</em> factor is improved and the high sensitivity and low detection limit is achieved. The optimal trapezoidal subwavelength grating double slot micro-ring resonator (T-SWGDSMRR) structure is obtained by designing the structural parameters and analyzing their effects on the sensing performance parameters and spectral characteristics. The T-SWGDSMRR, designed for detecting the glucose solution, demonstrated a low detection limit of <span><math><mrow><mn>3.3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> RIU and an ultra-high <em>Q</em> factor of up to 100825, accompanied by a refractive index sensitivity of 424 nm/RIU. Finally, a cascaded double micro-ring sensor is proposed using the vernier effect, through cascading the T-SWGDSMRR with a referential ring, the sensitivity is enhanced to 12828 nm/RIU, and the limit of detection is <span><math><mrow><mn>3.12</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> RIU.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131256"},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.optcom.2024.131252
Zeyu Gang , Shijian Guan , Jun Lu , Yunshan Zhang , Shenghong Xie , Yitong Liu , Zhenxing Sun , Rulei Xiao , Tao Fang , Xiangfei Chen
An 8-channel monolithically integrated narrow linewidth multi-wavelength laser array (NL-MLA) combined with the commercial 8 × 1 planar lightwave circuit (PLC) coupler by the photonic wire bonding (PWB) technique is demonstrated in this paper. A distributed feedback (DFB) laser with the high-reflection and anti-reflection coatings (HR-AR) and the tapered asymmetric corrugation-pitch-modulated (TACPM) grating structure is proposed. The TACPM grating is achieved by the reconstruction equivalent chirp (REC) technique, which is low-cost and of high wavelength accuracy. According to the numerical simulation results, under the unavoidable impact of the facet phase of the HR end, the TACPM DFB laser suppresses the longitudinal spatial hole burning (LSHB) effect significantly, while having better single-mode performance and control of wavelength compared with the conventional HR-AR DFB laser. An 8-channel HR-AR TACPM DFB NL-MLA is fabricated with the 0.8 nm wavelength spacing design. The hybrid integration between the 8-channel NL-MLA and the PLC chip is achieved using the PWB technique. Both good single-mode performance and accurate wavelength interval of 0.8 nm can be obtained when all channels work simultaneously. The laser linewidth is below 273.8 kHz with good uniformity, and the relative intensity noise is under −159.6 dB/Hz for each channel.
{"title":"An 8-channel narrow linewidth multi-wavelength laser hybrid integrated by photonic wire bonding structures for DWDM systems","authors":"Zeyu Gang , Shijian Guan , Jun Lu , Yunshan Zhang , Shenghong Xie , Yitong Liu , Zhenxing Sun , Rulei Xiao , Tao Fang , Xiangfei Chen","doi":"10.1016/j.optcom.2024.131252","DOIUrl":"10.1016/j.optcom.2024.131252","url":null,"abstract":"<div><div>An 8-channel monolithically integrated narrow linewidth multi-wavelength laser array (NL-MLA) combined with the commercial 8 × 1 planar lightwave circuit (PLC) coupler by the photonic wire bonding (PWB) technique is demonstrated in this paper. A distributed feedback (DFB) laser with the high-reflection and anti-reflection coatings (HR-AR) and the tapered asymmetric corrugation-pitch-modulated (TACPM) grating structure is proposed. The TACPM grating is achieved by the reconstruction equivalent chirp (REC) technique, which is low-cost and of high wavelength accuracy. According to the numerical simulation results, under the unavoidable impact of the facet phase of the HR end, the TACPM DFB laser suppresses the longitudinal spatial hole burning (LSHB) effect significantly, while having better single-mode performance and control of wavelength compared with the conventional HR-AR DFB laser. An 8-channel HR-AR TACPM DFB NL-MLA is fabricated with the 0.8 nm wavelength spacing design. The hybrid integration between the 8-channel NL-MLA and the PLC chip is achieved using the PWB technique. Both good single-mode performance and accurate wavelength interval of 0.8 nm can be obtained when all channels work simultaneously. The laser linewidth is below 273.8 kHz with good uniformity, and the relative intensity noise is under −159.6 dB/Hz for each channel.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131252"},"PeriodicalIF":2.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.optcom.2024.131243
Bungala Chinna Jamalaiah
The CaF2 based oxyfluoroborosilicate glasses and glass ceramics doped with Er3+ ions were prepared via melt quench process followed by heat treatment and characterized for 1.53 μm broadband applications. The optimized glass ceramic sample was obtained at 450oC/1h heat treatment. The Er3+ concentration was optimized as 1.0 mol% for efficient emission at 460 nm excitation through concentration dependent luminescence analysis. The spectroscopic parameters such as Ωλ = 2,4,6 parameters and the radiative parameters such as spontaneous transition probability rates (AR), branching ratios (βR) and decay times (τR) were calculated applying the standard Judd-Ofelt theory. The effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff), quantum efficiency (η) and figure of merit (σe × τR) were calculated as 25.78 nm, 13.42 × 10−21 cm2, 3.46 × 10−26 cm3, 82.83% and 5.32 × 10−23 cm2s, respectively for the optimized glass ceramic sample. The exchange type of energy transfer among the excited Er3+ ions results the quenching in luminescence and the non-exponentiality in decay curves. The systematic investigations carried out indicate that the glass ceramic obtained at 450oC/1h heat treatment was proficient for 1.53 μm broadband fiber lasers and optical amplifiers in S and C band communication window.
{"title":"Er3+ -doped oxyfluoroborosilicate glass ceramics with embedded CaF2 nanoparticles for 1.53 μm broad band applications","authors":"Bungala Chinna Jamalaiah","doi":"10.1016/j.optcom.2024.131243","DOIUrl":"10.1016/j.optcom.2024.131243","url":null,"abstract":"<div><div>The CaF<sub>2</sub> based oxyfluoroborosilicate glasses and glass ceramics doped with Er<sup>3+</sup> ions were prepared via melt quench process followed by heat treatment and characterized for 1.53 μm broadband applications. The optimized glass ceramic sample was obtained at 450<sup>o</sup>C/1h heat treatment. The Er<sup>3+</sup> concentration was optimized as 1.0 mol% for efficient emission at 460 nm excitation through concentration dependent luminescence analysis. The spectroscopic parameters such as Ω<sub>λ = 2,4,6</sub> parameters and the radiative parameters such as spontaneous transition probability rates (A<sub>R</sub>), branching ratios (β<sub>R</sub>) and decay times (τ<sub>R</sub>) were calculated applying the standard Judd-Ofelt theory. The effective bandwidth (Δλ<sub>eff</sub>), stimulated emission cross-section (σ<sub>e</sub>), gain bandwidth (σ<sub>e</sub> × Δλ<sub>eff</sub>), quantum efficiency (η) and figure of merit (σ<sub>e</sub> × τ<sub>R</sub>) were calculated as 25.78 nm, 13.42 × 10<sup>−21</sup> cm<sup>2</sup>, 3.46 × 10<sup>−26</sup> cm<sup>3</sup>, 82.83% and 5.32 × 10<sup>−23</sup> cm<sup>2</sup>s, respectively for the optimized glass ceramic sample. The exchange type of energy transfer among the excited Er<sup>3+</sup> ions results the quenching in luminescence and the non-exponentiality in decay curves. The systematic investigations carried out indicate that the glass ceramic obtained at 450<sup>o</sup>C/1h heat treatment was proficient for 1.53 μm broadband fiber lasers and optical amplifiers in S and C band communication window.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131243"},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.optcom.2024.131242
K. Xie , H. Jiang , H. Xia , Z. Hu , J. Zhang , Q. Mao
—In this work photonic crystal fibers of different cross-sectional patterns are studied. Dirac points of these various lattices are explored, propagation diagrams showing positions of the Dirac spectrums are obtained, and their application in fiber guiding is discussed. A quasi-3D FDTD simulation method, which is simpler and more efficient than a commercial 3D FDTD simulation software, is developed for photonic crystal fiber. This method is then applied to the new photonic crystal fiber proposed in [Fiber guiding at the Dirac frequency beyond photonic bandgaps, Light Sci. & App. 4 (2015) e304.]. Dirac-point guidance, which is based on Dirac localization of photons, is verified for these fibers.
-本文研究了不同截面图案的光子晶体光纤。探讨了这些不同晶格的狄拉克点,获得了显示狄拉克谱位置的传播图,并讨论了它们在光纤导引中的应用。针对光子晶体光纤开发了一种准三维 FDTD 仿真方法,这种方法比商用三维 FDTD 仿真软件更简单、更高效。然后将该方法应用于[Fiber guiding at the Dirac frequency beyond photonic bandgaps, Light Sci.4 (2015) e304.].基于光子狄拉克定位的狄拉克点导引在这些光纤上得到了验证。
{"title":"Photonic crystal fibers based on Dirac point-guiding","authors":"K. Xie , H. Jiang , H. Xia , Z. Hu , J. Zhang , Q. Mao","doi":"10.1016/j.optcom.2024.131242","DOIUrl":"10.1016/j.optcom.2024.131242","url":null,"abstract":"<div><div>—In this work photonic crystal fibers of different cross-sectional patterns are studied. Dirac points of these various lattices are explored, propagation diagrams showing positions of the Dirac spectrums are obtained, and their application in fiber guiding is discussed. A quasi-3D FDTD simulation method, which is simpler and more efficient than a commercial 3D FDTD simulation software, is developed for photonic crystal fiber. This method is then applied to the new photonic crystal fiber proposed in [Fiber guiding at the Dirac frequency beyond photonic bandgaps, Light Sci. & App. 4 (2015) e304.]. Dirac-point guidance, which is based on Dirac localization of photons, is verified for these fibers.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131242"},"PeriodicalIF":2.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.optcom.2024.131248
Hongyan Shi , Lu Dai , Qinghua Lv , Lei Shen , Xinfang Zhao , Hui Lv
Few-mode erbium-doped fiber amplifiers (FM-EDFAs) have opened up the possibility of realizing the next generation of high-capacity, high-rate communication systems. However, the leakage of pump light during continuous operation of the FM-EDFA is likely to cause the temperature of the cladding pump coupler to be too high and thus destabilize the amplifier. In this work, a low heat release cladding pump coupler was designed and the corresponding FM-EDFA was constructed. The cladding pump coupler in the 8 h of continuous operation of the FM-EDFA is at 27.8 °C for maximum, 23.7 °C for minimum, and 26 °C for average temperatures, respectively, which are in a low-temperature safe transmission state. The FM-EDFA performance test was performed on this basis, and the results show that when the input pump power is 7 W, the maximum gain fluctuation of each mode of FM-EDFA at 1550 nm in 0∼8 h is only 1.5 dB, the gain of all modes is greater than 23 dB and the differential mode gain (DMG) is less than 2 dB. In addition, the FM-EDFA still has good performance in the C-band after 8 h of continuous operation. The gain for all modes is greater than 21 dB, DMG is less than 2 dB, and wavelength flatness is 3.6 dB. The low heat release cladding pump coupler is conducive to the stable amplification transmission of FM-EDFA, which is of great significance to achieving the upgrading and expansion of the communication system.
少模掺铒光纤放大器(FM-EDFA)为实现下一代大容量、高速率通信系统提供了可能。然而,在 FM-EDFA 连续工作期间,泵浦光的泄漏很可能导致包层泵浦耦合器温度过高,从而破坏放大器的稳定性。在这项工作中,设计了一种低热释放包层泵浦耦合器,并构建了相应的调频-EDFA。在 FM-EDFA 连续工作 8 h 的情况下,包层泵耦合器的最高温度、最低温度和平均温度分别为 27.8 ℃、23.7 ℃ 和 26 ℃,处于低温安全传输状态。在此基础上进行了 FM-EDFA 性能测试,结果表明,当输入泵功率为 7 W 时,FM-EDFA 在 1550 nm 波长的各模式增益在 0∼8 h 内的最大波动仅为 1.5 dB,所有模式的增益均大于 23 dB,差模增益(DMG)小于 2 dB。此外,FM-EDFA 在 C 波段连续工作 8 h 后仍具有良好的性能。所有模式的增益均大于 21 dB,DMG 小于 2 dB,波长平坦度为 3.6 dB。低放热包层泵浦耦合器有利于调频-EDFA的稳定放大传输,对实现通信系统的升级和扩展具有重要意义。
{"title":"A low heat release cladding pump coupler","authors":"Hongyan Shi , Lu Dai , Qinghua Lv , Lei Shen , Xinfang Zhao , Hui Lv","doi":"10.1016/j.optcom.2024.131248","DOIUrl":"10.1016/j.optcom.2024.131248","url":null,"abstract":"<div><div>Few-mode erbium-doped fiber amplifiers (FM-EDFAs) have opened up the possibility of realizing the next generation of high-capacity, high-rate communication systems. However, the leakage of pump light during continuous operation of the FM-EDFA is likely to cause the temperature of the cladding pump coupler to be too high and thus destabilize the amplifier. In this work, a low heat release cladding pump coupler was designed and the corresponding FM-EDFA was constructed. The cladding pump coupler in the 8 h of continuous operation of the FM-EDFA is at 27.8 °C for maximum, 23.7 °C for minimum, and 26 °C for average temperatures, respectively, which are in a low-temperature safe transmission state. The FM-EDFA performance test was performed on this basis, and the results show that when the input pump power is 7 W, the maximum gain fluctuation of each mode of FM-EDFA at 1550 nm in 0∼8 h is only 1.5 dB, the gain of all modes is greater than 23 dB and the differential mode gain (DMG) is less than 2 dB. In addition, the FM-EDFA still has good performance in the C-band after 8 h of continuous operation. The gain for all modes is greater than 21 dB, DMG is less than 2 dB, and wavelength flatness is 3.6 dB. The low heat release cladding pump coupler is conducive to the stable amplification transmission of FM-EDFA, which is of great significance to achieving the upgrading and expansion of the communication system.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131248"},"PeriodicalIF":2.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.optcom.2024.131228
Yang Wang , Rui Chang , Zhiyuan Gu , Bin Yang , Lei Zhang
A design method for an off-axis three-mirror anastigmatic optical system with low misalignment sensitivity is proposed. Based on the transformed pupil coordinate and nodal aberration theory, the analytical expressions between the optical parameters and misalignments are derived and an as-built performance evaluation model is established. The effects of mirror spacings and the off-axis magnitude value on the misalignment sensitivity are analyzed. With the desensitization design method proposed in this paper, a low-sensitivity off-axis TMA optical system can be designed. The simulation experiments show that, the misalignment sensitivity of the off-axis TMA optical system obtained by our method is approximately 60% that of the system obtained by nominal performance optimization method, and the as-built performance is about 1.491.54 times that of the nominal performance optimization method.
{"title":"Desensitization design method of an off-axis three-mirror anastigmatic optical system based on the nodal aberration theory","authors":"Yang Wang , Rui Chang , Zhiyuan Gu , Bin Yang , Lei Zhang","doi":"10.1016/j.optcom.2024.131228","DOIUrl":"10.1016/j.optcom.2024.131228","url":null,"abstract":"<div><div>A design method for an off-axis three-mirror anastigmatic optical system with low misalignment sensitivity is proposed. Based on the transformed pupil coordinate and nodal aberration theory, the analytical expressions between the optical parameters and misalignments are derived and an as-built performance evaluation model is established. The effects of mirror spacings and the off-axis magnitude value on the misalignment sensitivity are analyzed. With the desensitization design method proposed in this paper, a low-sensitivity off-axis TMA optical system can be designed. The simulation experiments show that, the misalignment sensitivity of the off-axis TMA optical system obtained by our method is approximately 60% that of the system obtained by nominal performance optimization method, and the as-built performance is about 1.49<span><math><mo>∼</mo></math></span>1.54 times that of the nominal performance optimization method.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131228"},"PeriodicalIF":2.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.optcom.2024.131231
Ye Zhang , Ruiting Wang , Yejin Zhang , Jiaoqing Pan
In recent years, the field of neural network research has witnessed remarkable advancements in various domains. One of the emerging approaches is the integration of photonic computing, which leverages the unique properties of light for ultra-fast information processing. In this article, we establish a mixed precision quantization model to silicon-based optical neural networks and evaluates their performance on the MNIST and Fashion-MNIST datasets. Through a genetic algorithm-based optimization process, we achieve significant parameter compression while maintaining competitive accuracy. Our findings demonstrate that with an average quantization bitwidth of 4.5 bits on the MNIST dataset, we achieve an impressive 85.94% reduction in parameter size compared to traditional 32-bit networks, with only a marginal accuracy drop of 0.65%. Similarly, on the Fashion-MNIST dataset, we achieve an average quantization bitwidth of 5.67 bits, resulting in an 82.28% reduction in parameter size with a slight accuracy drop of 0.8%.
{"title":"Mixed precision quantization of silicon optical neural network chip","authors":"Ye Zhang , Ruiting Wang , Yejin Zhang , Jiaoqing Pan","doi":"10.1016/j.optcom.2024.131231","DOIUrl":"10.1016/j.optcom.2024.131231","url":null,"abstract":"<div><div>In recent years, the field of neural network research has witnessed remarkable advancements in various domains. One of the emerging approaches is the integration of photonic computing, which leverages the unique properties of light for ultra-fast information processing. In this article, we establish a mixed precision quantization model to silicon-based optical neural networks and evaluates their performance on the MNIST and Fashion-MNIST datasets. Through a genetic algorithm-based optimization process, we achieve significant parameter compression while maintaining competitive accuracy. Our findings demonstrate that with an average quantization bitwidth of 4.5 bits on the MNIST dataset, we achieve an impressive 85.94% reduction in parameter size compared to traditional 32-bit networks, with only a marginal accuracy drop of 0.65%. Similarly, on the Fashion-MNIST dataset, we achieve an average quantization bitwidth of 5.67 bits, resulting in an 82.28% reduction in parameter size with a slight accuracy drop of 0.8%.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131231"},"PeriodicalIF":2.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}