首页 > 最新文献

Organogenesis最新文献

英文 中文
Nicotinic acid inhibits angiogenesis likely through cytoskeleton remodeling. 烟酸可能通过细胞骨架重塑抑制血管生成。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-10-02 Epub Date: 2017-09-21 DOI: 10.1080/15476278.2017.1364829
Lemen Pan, Guanfeng Yu, Xiangjian Chen, Xiaoqiang Li

Angiogenesis is a physiological procedure during which the new blood vessels develop from the pre-existing vessels. Uncontrolled angiogenesis is related to various diseases including cancers. Clinical inhibition of undesired angiogenesis is still under investigation. We utilized nicotinic acid, a family member of the B-vitamin niacin (vitamin B3) that has been used in the prevention and treatment of atherosclerosis or other lipid-metabolic disorders, to treat human umbilical vein endothelial cells (HUVECs) and chick chorioallantoic membrane (CAM), and investigated its influence on angiogenesis in vitro and in vivo. We found that nicotinic acid could obviously inhibit HUVEC proliferation induced by vascular endothelial growth factor. Both the in vitro and in vivo assays showed that nicotinic acid could significantly inhibit the process of angiogenesis. To further investigate the mechanism underlying the effect of nicotinic acid on angiogenesis, we found that it might function via regulating the cytoskeleton arrangements, especially the rearranging the structures of F-actin and paxillin. In summary, we discovered that nicotinic acid could obviously inhibit the process of angiogenesis by changing the angiogenesis factor expression levels and inducing the cytoskeleton rearrangement of endothelial cells.

血管生成是一种生理过程,在此过程中,新血管从原有的血管发育而来。血管生成失控与包括癌症在内的多种疾病有关。临床抑制不希望的血管生成仍在研究中。我们利用已用于预防和治疗动脉粥样硬化或其他脂质代谢紊乱的b族维生素烟酸(维生素B3)家族成员烟酸治疗人脐静脉内皮细胞(HUVECs)和鸡绒毛膜尿囊膜(CAM),并在体外和体内研究其对血管生成的影响。我们发现烟酸能明显抑制血管内皮生长因子诱导的HUVEC增殖。体外和体内实验均表明,烟酸能显著抑制血管生成过程。为了进一步探讨烟酸影响血管生成的机制,我们发现烟酸可能通过调节细胞骨架排列,特别是F-actin和paxillin的结构重排而起作用。综上所述,我们发现烟酸可以通过改变血管生成因子的表达水平,诱导内皮细胞的细胞骨架重排,从而明显抑制血管生成过程。
{"title":"Nicotinic acid inhibits angiogenesis likely through cytoskeleton remodeling.","authors":"Lemen Pan,&nbsp;Guanfeng Yu,&nbsp;Xiangjian Chen,&nbsp;Xiaoqiang Li","doi":"10.1080/15476278.2017.1364829","DOIUrl":"https://doi.org/10.1080/15476278.2017.1364829","url":null,"abstract":"<p><p>Angiogenesis is a physiological procedure during which the new blood vessels develop from the pre-existing vessels. Uncontrolled angiogenesis is related to various diseases including cancers. Clinical inhibition of undesired angiogenesis is still under investigation. We utilized nicotinic acid, a family member of the B-vitamin niacin (vitamin B3) that has been used in the prevention and treatment of atherosclerosis or other lipid-metabolic disorders, to treat human umbilical vein endothelial cells (HUVECs) and chick chorioallantoic membrane (CAM), and investigated its influence on angiogenesis in vitro and in vivo. We found that nicotinic acid could obviously inhibit HUVEC proliferation induced by vascular endothelial growth factor. Both the in vitro and in vivo assays showed that nicotinic acid could significantly inhibit the process of angiogenesis. To further investigate the mechanism underlying the effect of nicotinic acid on angiogenesis, we found that it might function via regulating the cytoskeleton arrangements, especially the rearranging the structures of F-actin and paxillin. In summary, we discovered that nicotinic acid could obviously inhibit the process of angiogenesis by changing the angiogenesis factor expression levels and inducing the cytoskeleton rearrangement of endothelial cells.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1364829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35533182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. 影响核移植胚胎细胞分化的因素和分子。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-10-02 DOI: 10.1080/15476278.2017.1389367
Renata Simões, Arnaldo Rodrigues Santos

Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.

体细胞核移植是一种利用去核卵母细胞和供体细胞核创造胚胎的技术。体细胞的细胞核必须被重新编程,以便在去核的卵子中参与正常的发育。重编程是指将细胞表观遗传标记擦除和重塑到较低的分化状态。体细胞核必须由卵母细胞细胞质中的因子重新编程,以达到相当全能性的状态,因为重建的胚胎必须启动胚胎从一个细胞阶段到足月的发育。在通过核移植重建的胚胎中,供体遗传物质必须对细胞质的细胞质环境作出反应,并再现这一正常的发育过程。去核对克隆效率至关重要,因为它可能影响剩余细胞质的超微结构,从而导致其细胞区室的减少或破坏。尽管如此,体外培养的影响尚未得到充分了解。体外卵母细胞成熟可以影响特异性转录物的丰度,并可能消耗发育能力。在细胞分化过程中建立的表观遗传修饰是决定这种低效率的主要因素,因为它们作为表观遗传障碍限制了体细胞核的重编程。本文就影响核移植胚胎细胞分化的因素作一综述。
{"title":"Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer.","authors":"Renata Simões,&nbsp;Arnaldo Rodrigues Santos","doi":"10.1080/15476278.2017.1389367","DOIUrl":"https://doi.org/10.1080/15476278.2017.1389367","url":null,"abstract":"<p><p>Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1389367","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35598018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Upper limb hemimelia in a twin pregnancy which was obtained by an ICSI and PGD in a woman with mosaic Turner's syndrome and the prognosis. 通过ICSI和PGD获得的双胎妊娠的上肢偏瘫及其预后。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-10-02 Epub Date: 2017-09-21 DOI: 10.1080/15476278.2017.1358842
Ahter Tanay Tayyar, Ahmet Tayyar, Ahmet Eser, Çetin Kılıçcı, İlter Yenidede, Selçuk Selçuk

Turner's syndrome (TS) is depicted as a total or partial absence of X chromosome, and occurs in approximately 1/2200 of live born females. Generally, mosaic patients are diagnosed following karyotype analysis due to recurrent pregnancy loss, repeated in vitro fertilization (IVF) failure, and a history of malformed babies. The purpose of this case report is to show that even a selection of normal karyotype embryos can result in abnormalities for those with mosaic TS. A 32-year old patient who underwent IVF after ICSI-PGD, and was diagnosed with 45X/46XX karyotype. At the 12-week scan, one of the fetuses had an upper limb hemimelia in one arm, and feticide was applied to that fetus. The patient delivered a healthy, 2980 g female baby at the thirty-eighth week. In mosaic TS pregnancies (even those obtained by ICSI-PGD), fetal anomaly risk is high. Therefore, careful prenatal scanning is needed for these pregnancies.

特纳氏综合征(TS)被描述为X染色体的全部或部分缺失,大约有1/2200的活产女性发生。通常,由于反复流产、多次体外受精(IVF)失败和畸形婴儿史,马赛克患者通过核型分析被诊断。本病例报告的目的是表明即使选择正常核型胚胎也可能导致嵌合TS的异常。一位32岁的患者在ICSI-PGD后接受IVF,诊断为45X/46XX核型。在12周的扫描中,其中一个胎儿有一只手臂上肢偏瘫,并且对该胎儿使用了杀胎剂。患者在妊娠第38周产下一名2980克的健康女婴。在马赛克TS妊娠中(即使是通过ICSI-PGD获得的妊娠),胎儿异常的风险很高。因此,这些孕妇需要仔细的产前扫描。
{"title":"Upper limb hemimelia in a twin pregnancy which was obtained by an ICSI and PGD in a woman with mosaic Turner's syndrome and the prognosis.","authors":"Ahter Tanay Tayyar,&nbsp;Ahmet Tayyar,&nbsp;Ahmet Eser,&nbsp;Çetin Kılıçcı,&nbsp;İlter Yenidede,&nbsp;Selçuk Selçuk","doi":"10.1080/15476278.2017.1358842","DOIUrl":"https://doi.org/10.1080/15476278.2017.1358842","url":null,"abstract":"<p><p>Turner's syndrome (TS) is depicted as a total or partial absence of X chromosome, and occurs in approximately 1/2200 of live born females. Generally, mosaic patients are diagnosed following karyotype analysis due to recurrent pregnancy loss, repeated in vitro fertilization (IVF) failure, and a history of malformed babies. The purpose of this case report is to show that even a selection of normal karyotype embryos can result in abnormalities for those with mosaic TS. A 32-year old patient who underwent IVF after ICSI-PGD, and was diagnosed with 45X/46XX karyotype. At the 12-week scan, one of the fetuses had an upper limb hemimelia in one arm, and feticide was applied to that fetus. The patient delivered a healthy, 2980 g female baby at the thirty-eighth week. In mosaic TS pregnancies (even those obtained by ICSI-PGD), fetal anomaly risk is high. Therefore, careful prenatal scanning is needed for these pregnancies.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1358842","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35430414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of a silk Fibroin/Polyurethane blend patch on rat Vessels. 丝素/聚氨酯共混贴片对大鼠血管的影响。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-10-02 Epub Date: 2017-09-21 DOI: 10.1080/15476278.2017.1344376
Kazumi Shimada, Akira Higuchi, Ryota Kubo, Tomoaki Murakami, Yasumoto Nakazawa, Ryou Tanaka

Patch grafts are widely used in various kind of vascular surgeries such as detect repair or dilation of vascular stenosis. Expanded polytetrafluoroethylene (ePTFE) patches are flexible and handle well, but have shown problems with calcification as they are non-bioabsorbable and therefore permanently remain in the body. It is important to develop an alternative biocompatible patch. Silk fibroin (SF) was developed as a biocompatible material, but it lacks of the elasticity required for surgery as a patch. Polyurethane (PU) is also a well-known elastomer so this study focused on the SF and the PU blend materials with a weight ratio of 5:5 (SF/PU). To evaluate the SF/PU patch, the patches were implanted into the abdominal aortas of rats, using the ePTFE patch in the control group. Because it was more flexible the SF/PU patch was easier to implant than the ePTFE patch. At 1 week after implantation, the SF/PU patch had been infiltrated with cells and collagen fiber. The ePTFE control patch did not accumulate collagen fiber until 3 months and calcification occurred at 4 weeks. The SF/PU patch did not present any signs of calcification for 3 months. This study addressed the problems associated with using SF in isolation and showed that the SF/PU patch can be considered as a useful alternative to the ePTFE to overcome the problem of calcification.

膜片移植广泛应用于各种血管手术,如血管狭窄的检测修复或扩张。膨胀聚四氟乙烯(ePTFE)贴片柔韧性好,处理起来也很好,但由于它们不可生物吸收,因此会永久留在体内,因此存在钙化问题。开发一种可替代的生物相容性贴片是很重要的。丝素蛋白(SF)作为一种生物相容性材料被开发出来,但它缺乏作为手术贴片所需的弹性。聚氨酯(PU)也是一种众所周知的弹性体,因此本研究的重点是SF和PU共混材料,其重量比为5:5 (SF/PU)。为了评价SF/PU贴片的效果,将贴片植入大鼠腹主动脉,对照组采用ePTFE贴片。由于SF/PU贴片比ePTFE贴片更灵活,因此更容易植入。植入后1周,SF/PU补片已被细胞和胶原纤维浸润。ePTFE对照贴片直到3个月时才积累胶原纤维,4周时发生钙化。SF/PU贴片在3个月内未出现任何钙化迹象。本研究解决了与分离使用SF相关的问题,并表明SF/PU贴片可以被认为是ePTFE的有用替代品,以克服钙化问题。
{"title":"The effect of a silk Fibroin/Polyurethane blend patch on rat Vessels.","authors":"Kazumi Shimada,&nbsp;Akira Higuchi,&nbsp;Ryota Kubo,&nbsp;Tomoaki Murakami,&nbsp;Yasumoto Nakazawa,&nbsp;Ryou Tanaka","doi":"10.1080/15476278.2017.1344376","DOIUrl":"https://doi.org/10.1080/15476278.2017.1344376","url":null,"abstract":"<p><p>Patch grafts are widely used in various kind of vascular surgeries such as detect repair or dilation of vascular stenosis. Expanded polytetrafluoroethylene (ePTFE) patches are flexible and handle well, but have shown problems with calcification as they are non-bioabsorbable and therefore permanently remain in the body. It is important to develop an alternative biocompatible patch. Silk fibroin (SF) was developed as a biocompatible material, but it lacks of the elasticity required for surgery as a patch. Polyurethane (PU) is also a well-known elastomer so this study focused on the SF and the PU blend materials with a weight ratio of 5:5 (SF/PU). To evaluate the SF/PU patch, the patches were implanted into the abdominal aortas of rats, using the ePTFE patch in the control group. Because it was more flexible the SF/PU patch was easier to implant than the ePTFE patch. At 1 week after implantation, the SF/PU patch had been infiltrated with cells and collagen fiber. The ePTFE control patch did not accumulate collagen fiber until 3 months and calcification occurred at 4 weeks. The SF/PU patch did not present any signs of calcification for 3 months. This study addressed the problems associated with using SF in isolation and showed that the SF/PU patch can be considered as a useful alternative to the ePTFE to overcome the problem of calcification.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1344376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35428347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
EphB receptors, mainly EphB3, contribute to the proper development of cortical thymic epithelial cells. EphB受体,主要是EphB3,参与胸腺皮质上皮细胞的正常发育。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-10-02 DOI: 10.1080/15476278.2017.1389368
Sara Montero-Herradón, Javier García-Ceca, Agustín G Zapata

EphB and their ligands ephrin-B are an important family of protein tyrosine kinase receptors involved in thymocyte-thymic epithelial cell interactions known to be key for the maturation of both thymic cell components. In the present study, we have analyzed the maturation of cortical thymic epithelium in EphB-deficient thymuses evaluating the relative relevance of EphB2 and EphB3 in the process. Results support a relationship between the epithelial hypocellularity of mutant thymuses and altered development of thymocytes, lower proportions of cycling thymic epithelial cells and increased epithelial cell apoptosis. Together, these factors induce delayed development of mutant cortical TECs, defined by the expression of different cell markers, i.e. Ly51, CD205, MHCII, CD40 and β5t. Furthermore, although both EphB2 and EphB3 are necessary for cortical thymic epithelial maturation, the relevance of EphB3 is greater since EphB3-/- thymic cortex exhibits a more severe phenotype than that of EphB2-deficient thymuses.

EphB及其配体ephrin-B是一个重要的蛋白酪氨酸激酶受体家族,参与胸腺细胞-胸腺上皮细胞的相互作用,是胸腺细胞两种成分成熟的关键。在本研究中,我们分析了ephb缺陷胸腺胸腺皮质上皮的成熟过程,评估了EphB2和EphB3在这一过程中的相对相关性。结果支持突变胸腺上皮细胞减少与胸腺细胞发育改变、循环胸腺上皮细胞比例降低和上皮细胞凋亡增加之间的关系。这些因素共同诱导突变型皮质tec的延迟发育,通过表达不同的细胞标记物,即Ly51、CD205、MHCII、CD40和β5t来定义。此外,尽管EphB2和EphB3都是胸腺皮层上皮成熟所必需的,但EphB3的相关性更大,因为EphB3-/-胸腺皮层比EphB2缺陷胸腺表现出更严重的表型。
{"title":"EphB receptors, mainly EphB3, contribute to the proper development of cortical thymic epithelial cells.","authors":"Sara Montero-Herradón,&nbsp;Javier García-Ceca,&nbsp;Agustín G Zapata","doi":"10.1080/15476278.2017.1389368","DOIUrl":"https://doi.org/10.1080/15476278.2017.1389368","url":null,"abstract":"<p><p>EphB and their ligands ephrin-B are an important family of protein tyrosine kinase receptors involved in thymocyte-thymic epithelial cell interactions known to be key for the maturation of both thymic cell components. In the present study, we have analyzed the maturation of cortical thymic epithelium in EphB-deficient thymuses evaluating the relative relevance of EphB2 and EphB3 in the process. Results support a relationship between the epithelial hypocellularity of mutant thymuses and altered development of thymocytes, lower proportions of cycling thymic epithelial cells and increased epithelial cell apoptosis. Together, these factors induce delayed development of mutant cortical TECs, defined by the expression of different cell markers, i.e. Ly51, CD205, MHCII, CD40 and β5t. Furthermore, although both EphB2 and EphB3 are necessary for cortical thymic epithelial maturation, the relevance of EphB3 is greater since EphB3-/- thymic cortex exhibits a more severe phenotype than that of EphB2-deficient thymuses.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1389368","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35510082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The neuronal differentiation microenvironment is essential for spinal cord injury repair. 神经元分化微环境对脊髓损伤修复至关重要。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-07-03 Epub Date: 2017-06-09 DOI: 10.1080/15476278.2017.1329789
Yannan Zhao, Zhifeng Xiao, Bing Chen, Jianwu Dai

Spinal cord injury (SCI) often leads to substantial disability due to loss of motor function and sensation below the lesion. Neural stem cells (NSCs) are a promising strategy for SCI repair. However, NSCs rarely differentiate into neurons; they mostly differentiate into astrocytes because of the adverse microenvironment present after SCI. We have shown that myelin-associated inhibitors (MAIs) inhibited neuronal differentiation of NSCs. Given that MAIs activate epidermal growth factor receptor (EGFR) signaling, we used a collagen scaffold-tethered anti-EGFR antibody to attenuate the inhibitory effects of MAIs and create a neuronal differentiation microenvironment for SCI repair. The collagen scaffold modified with anti-EGFR antibody prevented the inhibition of NSC neuronal differentiation by myelin. After transplantation into completely transected SCI animals, the scaffold-linked antibodies induced production of nascent neurons from endogenous and transplanted NSCs, which rebuilt the neuronal relay by forming connections with each other or host neurons to transmit electrophysiological signals and promote functional recovery. Thus, a scaffold-based strategy for rebuilding the neuronal differentiation microenvironment could be useful for SCI repair.

脊髓损伤(SCI)通常由于损伤部位以下的运动功能和感觉丧失而导致严重的残疾。神经干细胞(NSCs)是一种很有前途的脊髓损伤修复策略。然而,NSCs很少分化为神经元;由于脊髓损伤后存在不利的微环境,它们大多分化为星形胶质细胞。我们已经证明髓磷脂相关抑制剂(MAIs)抑制NSCs的神经元分化。考虑到MAIs激活表皮生长因子受体(EGFR)信号,我们使用胶原支架连接的抗EGFR抗体来减弱MAIs的抑制作用,并为脊髓损伤修复创造神经元分化微环境。抗egfr抗体修饰的胶原支架可阻止髓磷脂对NSC神经元分化的抑制。将支架连接抗体移植到完全横切的SCI动物体内后,诱导内源性和移植的NSCs产生新生神经元,这些新生神经元通过相互或与宿主神经元形成连接来重建神经元中继,传递电生理信号,促进功能恢复。因此,基于支架的重建神经元分化微环境的策略可能对脊髓损伤修复有用。
{"title":"The neuronal differentiation microenvironment is essential for spinal cord injury repair.","authors":"Yannan Zhao,&nbsp;Zhifeng Xiao,&nbsp;Bing Chen,&nbsp;Jianwu Dai","doi":"10.1080/15476278.2017.1329789","DOIUrl":"https://doi.org/10.1080/15476278.2017.1329789","url":null,"abstract":"<p><p>Spinal cord injury (SCI) often leads to substantial disability due to loss of motor function and sensation below the lesion. Neural stem cells (NSCs) are a promising strategy for SCI repair. However, NSCs rarely differentiate into neurons; they mostly differentiate into astrocytes because of the adverse microenvironment present after SCI. We have shown that myelin-associated inhibitors (MAIs) inhibited neuronal differentiation of NSCs. Given that MAIs activate epidermal growth factor receptor (EGFR) signaling, we used a collagen scaffold-tethered anti-EGFR antibody to attenuate the inhibitory effects of MAIs and create a neuronal differentiation microenvironment for SCI repair. The collagen scaffold modified with anti-EGFR antibody prevented the inhibition of NSC neuronal differentiation by myelin. After transplantation into completely transected SCI animals, the scaffold-linked antibodies induced production of nascent neurons from endogenous and transplanted NSCs, which rebuilt the neuronal relay by forming connections with each other or host neurons to transmit electrophysiological signals and promote functional recovery. Thus, a scaffold-based strategy for rebuilding the neuronal differentiation microenvironment could be useful for SCI repair.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1329789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35075995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Endometriosis origin from primordial germ cells. 子宫内膜异位症起源于原始生殖细胞。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-07-03 Epub Date: 2017-05-09 DOI: 10.1080/15476278.2017.1323162
Zograb Makiyan

Endometriosis is defined by the presence of endometrial ectopia. Multiple hypotheses have been postulated to explain the etiology of endometriosis to understand various clinical evidences. The etiology of endometriosis is still unclear.The primary question to understanding the etiology of endometrial ectopia (endometriosis) is determining the origin of eutopic (normally cited) endometrium.According to the new theory, primordial germ cells migrate from hypoblast (yolk sac close to the allantois) to the gonadal ridges. The gonadal ridges which composed of primordial germ cells derive to the: eutopic endometrium, ovary, ovarian ligament and ligamentum teres uteri.There are 2 principal processes in uterine organogenesis: the intersection of gonadal ridges with mesonephral ducts to form the uterine folds with an endometrial cavity and the fusion of the both uterine folds together to form the unicavital (normal) uterus. In the uterine folds there are closer cell-to-cell communications, polypotential germ cells differentiate and grow into myometrium and endometrial layers.Some of the polypotential germ cells fail to reach the ridges and stay in the peritoneal cavity, where they may be transforming into external endometrial heterotopies.The main insight in the etiology of endometriosis is polypotential germ cells origin, which may explain its potency, pathogenesis and expansion.

子宫内膜异位症的定义是存在子宫内膜异位。为了了解不同的临床证据,人们提出了多种假说来解释子宫内膜异位症的病因。子宫内膜异位症的病因尚不清楚。了解子宫内膜异位(子宫内膜异位症)病因的主要问题是确定异位(通常引用)子宫内膜的起源。根据新的理论,原始生殖细胞从下胚层(靠近尿囊的卵黄囊)迁移到性腺脊。由原始生殖细胞组成的性腺脊依次发育为异位子宫内膜、卵巢、卵巢韧带和子宫圆韧带。子宫器官发生有两个主要过程:性腺脊与肾系管相交形成子宫褶皱和子宫内膜腔,两个子宫褶皱融合在一起形成单腔(正常)子宫。在子宫褶皱中,细胞间的交流更紧密,多能生殖细胞分化并长成肌层和子宫内膜层。一些多能生殖细胞不能到达嵴并停留在腹腔内,在那里它们可能转化为外子宫内膜异位。子宫内膜异位症病因学的主要观点是多潜能生殖细胞的起源,这可能解释其效力、发病机制和扩张。
{"title":"Endometriosis origin from primordial germ cells.","authors":"Zograb Makiyan","doi":"10.1080/15476278.2017.1323162","DOIUrl":"https://doi.org/10.1080/15476278.2017.1323162","url":null,"abstract":"<p><p>Endometriosis is defined by the presence of endometrial ectopia. Multiple hypotheses have been postulated to explain the etiology of endometriosis to understand various clinical evidences. The etiology of endometriosis is still unclear.The primary question to understanding the etiology of endometrial ectopia (endometriosis) is determining the origin of eutopic (normally cited) endometrium.According to the new theory, primordial germ cells migrate from hypoblast (yolk sac close to the allantois) to the gonadal ridges. The gonadal ridges which composed of primordial germ cells derive to the: eutopic endometrium, ovary, ovarian ligament and ligamentum teres uteri.There are 2 principal processes in uterine organogenesis: the intersection of gonadal ridges with mesonephral ducts to form the uterine folds with an endometrial cavity and the fusion of the both uterine folds together to form the unicavital (normal) uterus. In the uterine folds there are closer cell-to-cell communications, polypotential germ cells differentiate and grow into myometrium and endometrial layers.Some of the polypotential germ cells fail to reach the ridges and stay in the peritoneal cavity, where they may be transforming into external endometrial heterotopies.The main insight in the etiology of endometriosis is polypotential germ cells origin, which may explain its potency, pathogenesis and expansion.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1323162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34978827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Corrigendum. 勘误表。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-07-03 DOI: 10.1080/15476278.2017.1369700
The manuscript describes the authors’ efforts to improve the processes for decellularization, preservation, and recellularization of porcine kidneys. The authors obtained what were originally labeled as an immortalized cell line of human renal cortical tubular epithelium (RCTE) cells from the Feinberg School of Medicine, Northwestern University to conduct their recellularization experiments. The RCTE cells were later discovered to actually be Madin-Darby Canine Kidney (MDCK) epithelial cells. Despite being of canine origin, MDCK cells are a distal tubule epithelial cell line that behave similarly to human RCTE cells. The conclusions regarding recellularization as reported in the paper are still sound.
{"title":"Corrigendum.","authors":"","doi":"10.1080/15476278.2017.1369700","DOIUrl":"https://doi.org/10.1080/15476278.2017.1369700","url":null,"abstract":"The manuscript describes the authors’ efforts to improve the processes for decellularization, preservation, and recellularization of porcine kidneys. The authors obtained what were originally labeled as an immortalized cell line of human renal cortical tubular epithelium (RCTE) cells from the Feinberg School of Medicine, Northwestern University to conduct their recellularization experiments. The RCTE cells were later discovered to actually be Madin-Darby Canine Kidney (MDCK) epithelial cells. Despite being of canine origin, MDCK cells are a distal tubule epithelial cell line that behave similarly to human RCTE cells. The conclusions regarding recellularization as reported in the paper are still sound.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1369700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39984153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The epidemiology of supernumerary teeth and the associated molecular mechanism. 多牙的流行病学及相关分子机制。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-07-03 Epub Date: 2017-06-09 DOI: 10.1080/15476278.2017.1332554
Xi Lu, Fang Yu, Junjun Liu, Wenping Cai, Yumei Zhao, Shouliang Zhao, Shangfeng Liu

Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.

多生牙齿是临床上常见的牙齿畸形。尽管各种研究已经提供了丰富的信息,包括Wnt、FGF、BMP和Shh等参与牙齿形态发生的基因和信号通路,但牙齿形成的分子机制,特别是多牙形成的分子机制仍不清楚。在人群中,有些多牙病例是散发的,而另一些则是与家族遗传有关的综合征。及时准确地诊断与综合征相关的多牙对某些特殊疾病是非常重要的。小鼠是研究多牙最常用的模型系统。小鼠牙上皮中Wnt和Shh信号的上调可导致多牙的形成。了解多生牙的分子机制也是全面了解牙齿形成的一个组成部分,为今后的早期诊断和治疗提供临床指导。
{"title":"The epidemiology of supernumerary teeth and the associated molecular mechanism.","authors":"Xi Lu,&nbsp;Fang Yu,&nbsp;Junjun Liu,&nbsp;Wenping Cai,&nbsp;Yumei Zhao,&nbsp;Shouliang Zhao,&nbsp;Shangfeng Liu","doi":"10.1080/15476278.2017.1332554","DOIUrl":"https://doi.org/10.1080/15476278.2017.1332554","url":null,"abstract":"<p><p>Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1332554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35073790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks. 肿瘤-类器官系统的微环境增强了肝细胞癌的恶性相关特征。
IF 2.3 4区 生物学 Q2 Medicine Pub Date : 2017-07-03 Epub Date: 2017-05-26 DOI: 10.1080/15476278.2017.1322243
Yang Wang, Kazuki Takeishi, Zhao Li, Eduardo Cervantes-Alvarez, Alexandra Collin de l'Hortet, Jorge Guzman-Lepe, Xiao Cui, Jiye Zhu

Organ-like microenviroment and 3-dimensional (3D) cell culture conformations have been suggested as promising approaches to mimic in a micro-scale a whole organ cellular functions and interactions present in vivo. We have used this approach to examine biologic features of hepatocellular carcinoma (HCC) cells. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells, fibroblasts, endothelial cells and extracellular matrix can generate organoid-like spheroids that enhanced numerous features of human HCC observed in vivo. We show that the addition of non-parenchymal cells such as fibroblast and endothelial cells is required for spheroid formation as well as the maintenance of the tissue-like structure. Furthermore, HCC cells cultured as spheroids with non-parenchymal cells express more neo-angiogenesis-related markers (VEGFR2, VEGF, HIF-α), tumor-related inflammatory factors (CXCR4, CXCL12, TNF-α) and molecules-related to induced epithelial-mesenchymal transition (TGFβ, Vimentin, MMP9) compared with organoids containing only HCC cells. These results demonstrate the importance of non-parenchymal cells in the cellular composition of HCC organoids. The novelty of the multicellular-based organotypic culture system strongly supports the integration of this approach in a high throughput approach to identified patient-specific HCC malignancy and accurate anti-tumor therapy screening after surgery.

类器官微环境和三维(3D)细胞培养构象被认为是在微观尺度上模拟整个器官细胞功能和体内相互作用的有前途的方法。我们使用这种方法来检查肝细胞癌(HCC)细胞的生物学特征。在这项研究中,我们证明肝细胞癌(HCC)细胞、成纤维细胞、内皮细胞和细胞外基质可以产生类器官样球体,这些球体增强了体内观察到的人类HCC的许多特征。我们发现非实质细胞如成纤维细胞和内皮细胞的加入是球体形成和维持组织样结构所必需的。此外,与仅含HCC细胞的类器官相比,非实质细胞球形培养的HCC细胞表达更多的新血管生成相关标志物(VEGFR2、VEGF、HIF-α)、肿瘤相关炎症因子(CXCR4、CXCL12、TNF-α)和诱导上皮-间质转化相关分子(TGFβ、Vimentin、MMP9)。这些结果表明非实质细胞在肝细胞癌类器官的细胞组成中的重要性。基于多细胞的器官型培养系统的新颖性有力地支持了该方法在高通量方法中的整合,以识别患者特异性HCC恶性肿瘤和手术后准确的抗肿瘤治疗筛查。
{"title":"Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks.","authors":"Yang Wang,&nbsp;Kazuki Takeishi,&nbsp;Zhao Li,&nbsp;Eduardo Cervantes-Alvarez,&nbsp;Alexandra Collin de l'Hortet,&nbsp;Jorge Guzman-Lepe,&nbsp;Xiao Cui,&nbsp;Jiye Zhu","doi":"10.1080/15476278.2017.1322243","DOIUrl":"https://doi.org/10.1080/15476278.2017.1322243","url":null,"abstract":"<p><p>Organ-like microenviroment and 3-dimensional (3D) cell culture conformations have been suggested as promising approaches to mimic in a micro-scale a whole organ cellular functions and interactions present in vivo. We have used this approach to examine biologic features of hepatocellular carcinoma (HCC) cells. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells, fibroblasts, endothelial cells and extracellular matrix can generate organoid-like spheroids that enhanced numerous features of human HCC observed in vivo. We show that the addition of non-parenchymal cells such as fibroblast and endothelial cells is required for spheroid formation as well as the maintenance of the tissue-like structure. Furthermore, HCC cells cultured as spheroids with non-parenchymal cells express more neo-angiogenesis-related markers (VEGFR2, VEGF, HIF-α), tumor-related inflammatory factors (CXCR4, CXCL12, TNF-α) and molecules-related to induced epithelial-mesenchymal transition (TGFβ, Vimentin, MMP9) compared with organoids containing only HCC cells. These results demonstrate the importance of non-parenchymal cells in the cellular composition of HCC organoids. The novelty of the multicellular-based organotypic culture system strongly supports the integration of this approach in a high throughput approach to identified patient-specific HCC malignancy and accurate anti-tumor therapy screening after surgery.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1322243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35033188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
期刊
Organogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1