首页 > 最新文献

New Astronomy Reviews最新文献

英文 中文
Kepler-62f: Kepler's first small planet in the habitable zone, but is it real? 开普勒-62f:开普勒发现的第一颗位于宜居带的小行星,但它是真的吗?
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-11-01 DOI: 10.1016/j.newar.2019.03.002
William Borucki , Susan E. Thompson , Eric Agol , Christina Hedges

Kepler-62f is the first exoplanet small enough to plausibly have a rocky composition orbiting within the habitable zone (HZ) discovered by the Kepler Mission. The planet is 1.4 times the size of the Earth and has an orbital period of 267 days. At the time of its discovery, it had the longest period of any small planet in the habitable zone of a multi-planet system. Because of its long period, only four transits were observed during Kepler's interval of observations. It was initially missed by the Kepler pipeline, but the first three transits were identified by an independent search by Eric Agol, and it was identified as a planet candidate in subsequent Kepler catalogs. However in the latest catalog of exoplanets (Thompson et al., 2018), it is labeled as a false positive. Recent exoplanet catalogues have evolved from subjective classification to automatic classifications of planet candidates by algorithms (such as ‘Robovetter’). While exceptionally useful for producing a uniform catalogue, these algorithms sometimes misclassify planet candidates as a false positive, as is the case of Kepler-62f. In particularly valuable cases, i.e., when a small planet has been found orbiting in the habitable zone (HZ), it is important to conduct comprehensive analyses of the data and classification protocols to provide the best estimate of the true status of the detection. In this paper we conduct such analyses and show that Kepler-62f is a true planet and not a false positive. The table of stellar and planet properties has been updated based on GAIA results.

开普勒-62f是第一颗足够小的系外行星,可能在开普勒任务发现的宜居带(HZ)内有岩石组成的轨道。这颗行星的大小是地球的1.4倍,公转周期为267天。在它被发现的时候,它在多行星系统的宜居带中存在的时间是最长的。由于它的周期很长,在开普勒的观测间隔中只观测到四次凌日。它最初没有被开普勒管道发现,但前三次凌日被埃里克·阿戈尔(Eric Agol)的独立搜索发现,并在随后的开普勒星表中被确定为候选行星。然而,在最新的系外行星目录中(Thompson et al., 2018),它被标记为假阳性。最近的系外行星目录已经从主观分类发展到通过算法(如“Robovetter”)对候选行星进行自动分类。虽然这些算法在生成统一的目录方面非常有用,但有时会将候选行星错误地分类为假阳性,就像开普勒-62f的情况一样。在特别有价值的情况下,例如,当发现一颗小行星在宜居带(HZ)轨道上运行时,重要的是对数据和分类方案进行全面分析,以提供对探测真实状况的最佳估计。在本文中,我们进行了这样的分析,并表明开普勒-62f是一颗真正的行星,而不是假阳性。恒星和行星的属性表已经根据GAIA的结果进行了更新。
{"title":"Kepler-62f: Kepler's first small planet in the habitable zone, but is it real?","authors":"William Borucki ,&nbsp;Susan E. Thompson ,&nbsp;Eric Agol ,&nbsp;Christina Hedges","doi":"10.1016/j.newar.2019.03.002","DOIUrl":"10.1016/j.newar.2019.03.002","url":null,"abstract":"<div><p><span>Kepler-62f is the first exoplanet<span> small enough to plausibly have a rocky composition orbiting within the habitable zone (HZ) discovered by the </span></span><span><em>Kepler Mission</em></span>. The planet is 1.4 times the size of the Earth and has an orbital period of 267 days. At the time of its discovery, it had the longest period of any small planet in the habitable zone of a multi-planet system. Because of its long period, only four transits were observed during <em>Kepler's</em> interval of observations. It was initially missed by the <em>Kepler</em> pipeline, but the first three transits were identified by an independent search by Eric Agol, and it was identified as a planet candidate in subsequent <em>Kepler</em> catalogs. However in the latest catalog of exoplanets (Thompson et al., 2018), it is labeled as a false positive. Recent exoplanet catalogues have evolved from subjective classification to automatic classifications of planet candidates by algorithms (such as ‘Robovetter’). While exceptionally useful for producing a uniform catalogue, these algorithms sometimes misclassify planet candidates as a false positive, as is the case of Kepler-62f. In particularly valuable cases, i.e., when a small planet has been found orbiting in the habitable zone (HZ), it is important to conduct comprehensive analyses of the data and classification protocols to provide the best estimate of the true status of the detection. In this paper we conduct such analyses and show that Kepler-62f is a true planet and not a false positive. The table of stellar and planet properties has been updated based on GAIA results.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2019.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90925261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Kepler-9: The first multi-transiting system and the first transit timing variations 开普勒-9:第一个多凌日系统和第一个凌日时间变化
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-11-01 DOI: 10.1016/j.newar.2019.03.003
Darin Ragozzine , Matthew J. Holman

Kepler-9, discovered by Holman et al. (2010), was the first system with multiple confirmed transiting planets and the first system to clearly show long-anticipated transit timing variations (TTVs). It was the first major novel exoplanet discovery of the Kepler Space Telescope mission. The Kepler pipeline identified two Saturn-radius candidates (called Kepler Objects of Interest or KOIs): KOI-377.01 with a 19-day period and KOI-377.02 with a 39-day period. Even with only 9 transits for KOI-377.01 and 6 of KOI-377.02, the transit times were completely inconsistent with a linear ephemeris and showed strongly anti-correlated variations in transit times. Holman et al. (2010) were able to readily show that these objects were planetary mass, confirming them as bona fide planets Kepler-9b and Kepler-9c. As a multi-transiting system exhibiting strong TTVs, the relative planetary properties (e.g., mass ratio, radius ratio) were strongly constrained, opening a new chapter in comparative planetology. KOI-377.03, a small planet with a 1.5-day period, was not initially discovered by the Kepler pipeline, but was identified during the analysis of the other planets and was later confirmed as Kepler-9d through the BLENDER technique by Torres et al. 2011. Holman et al. (2010) included significant dynamical analysis to characterize Kepler-9’s particular TTVs: planets near resonance show large amplitude anti-correlated TTVs with a period corresponding to the rotation of the line of conjunctions and an additional “chopping” signal due to the changing positions of the planets. We review the historical circumstances behind the discovery and characterization of these planets and the publication of Holman et al. (2010). We also review the updated properties of this system and propose ideas for future investigations.

由Holman et al.(2010)发现的Kepler-9是第一个确认有多个过境行星的系统,也是第一个清楚地显示长期预期的过境时间变化(ttv)的系统。这是开普勒太空望远镜任务首次重大的系外行星新发现。开普勒管道确定了两个土星半径的候选者(称为开普勒感兴趣的物体或koi): KOI-377.01和KOI-377.02的周期分别为19天和39天。即使KOI-377.01和KOI-377.02只有9次和6次凌日,凌日时间也与线性星历表完全不一致,并表现出强烈的反相关变化。Holman等人(2010)能够很容易地证明这些物体具有行星质量,确认它们是真正的行星Kepler-9b和Kepler-9c。作为一个表现出强烈ttv的多行星系统,其相对行星性质(如质量比、半径比)得到了强有力的约束,开启了比较行星学的新篇章。KOI-377.03是一颗周期为1.5天的小行星,最初不是由开普勒管道发现的,而是在分析其他行星时发现的,后来由Torres等人于2011年通过BLENDER技术确认为Kepler-9d。Holman等人(2010)对Kepler-9特殊的ttv进行了重要的动力学分析:靠近共振的行星显示出振幅较大的反相关ttv,其周期与连接线的旋转相对应,并且由于行星位置的变化而产生额外的“斩波”信号。我们回顾了这些行星的发现和特征背后的历史环境,以及Holman等人(2010)的发表。我们还回顾了该系统的最新特性,并提出了未来研究的思路。
{"title":"Kepler-9: The first multi-transiting system and the first transit timing variations","authors":"Darin Ragozzine ,&nbsp;Matthew J. Holman","doi":"10.1016/j.newar.2019.03.003","DOIUrl":"10.1016/j.newar.2019.03.003","url":null,"abstract":"<div><p><span><span>Kepler-9, discovered by Holman et al. (2010), was the first system with multiple confirmed transiting planets and the first system to clearly show long-anticipated transit timing variations (TTVs). It was the first major novel exoplanet discovery of the Kepler Space Telescope mission. The Kepler pipeline identified two Saturn-radius candidates (called Kepler Objects of Interest or KOIs): KOI-377.01 with a 19-day period and KOI-377.02 with a 39-day period. Even with only 9 transits for KOI-377.01 and 6 of KOI-377.02, the transit times were completely inconsistent with a linear </span>ephemeris<span> and showed strongly anti-correlated variations in transit times. Holman et al. (2010) were able to readily show that these objects were planetary mass, confirming them as </span></span><em>bona fide</em><span> planets Kepler-9b and Kepler-9c. As a multi-transiting system exhibiting strong TTVs, the relative planetary properties (e.g., mass ratio, radius ratio) were strongly constrained, opening a new chapter in comparative planetology. KOI-377.03, a small planet with a 1.5-day period, was not initially discovered by the Kepler pipeline, but was identified during the analysis of the other planets and was later confirmed as Kepler-9d through the BLENDER technique by Torres et al. 2011. Holman et al. (2010) included significant dynamical analysis to characterize Kepler-9’s particular TTVs: planets near resonance show large amplitude anti-correlated TTVs with a period corresponding to the rotation of the line of conjunctions and an additional “chopping” signal due to the changing positions of the planets. We review the historical circumstances behind the discovery and characterization of these planets and the publication of Holman et al. (2010). We also review the updated properties of this system and propose ideas for future investigations.</span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2019.03.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88232398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthetic observations of star formation and the interstellar medium 恒星形成和星际介质的综合观测
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-08-01 DOI: 10.1016/j.newar.2018.06.001
Thomas J. Haworth , Simon C.O. Glover , Christine M. Koepferl , Thomas G. Bisbas , James E. Dale

Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used for generating, manipulating and analysing synthetic observations and their application to problems involving star formation and the interstellar medium. We also discuss some possible directions for future research using synthetic observations.

综合观测在天体物理学中扮演着越来越重要的角色,既可以解释实际观测,也可以从模型中做出有意义的预测。在这篇综述中,我们概述了用于生成、操作和分析合成观测的方法和工具,以及它们在涉及恒星形成和星际介质的问题中的应用。我们还讨论了未来利用综合观测进行研究的一些可能方向。
{"title":"Synthetic observations of star formation and the interstellar medium","authors":"Thomas J. Haworth ,&nbsp;Simon C.O. Glover ,&nbsp;Christine M. Koepferl ,&nbsp;Thomas G. Bisbas ,&nbsp;James E. Dale","doi":"10.1016/j.newar.2018.06.001","DOIUrl":"10.1016/j.newar.2018.06.001","url":null,"abstract":"<div><p>Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used for generating, manipulating and analysing synthetic observations and their application to problems involving star formation and the interstellar medium. We also discuss some possible directions for future research using synthetic observations.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2018.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87726431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
The terrestrial record of Late Heavy Bombardment 晚期重轰炸的陆地记录
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-04-01 DOI: 10.1016/j.newar.2018.03.002
Donald R. Lowe , Gary R. Byerly

Until recently, the known impact record of the early Solar System lay exclusively on the surfaces of the Moon, Mars, and other bodies where it has not been erased by later weathering, erosion, impact gardening, and/or tectonism. Study of the cratered surfaces of these bodies led to the concept of the Late Heavy Bombardment (LHB), an interval from about 4.1 to 3.8 billion years ago (Ga) during which the surfaces of the planets and moons in the inner Solar System were subject to unusually high rates of bombardment followed by a decline to present low impact rates by about 3.5 Ga. Over the past 30 years, however, it has become apparent that there is a terrestrial record of large impacts from at least 3.47 to 3.22 Ga and from 2.63 to 2.49 Ga. The present paper explores the earlier of these impact records, providing details about the nature of the 8 known ejecta layers that constitute the evidence for large terrestrial impacts during the earlier of these intervals, the inferred size of the impactors, and the potential effects of these impacts on crustal development and life. The existence of this record implies that LHB did not end abruptly at 3.8–3.7 Ga but rather that high impact rates, either continuous or as impact clusters, persisted until at least the close of the Archean at 2.5 Ga. It implies that the shift from external, impact-related controls on the long-term development of the surface system on the Earth to more internal, geodynamic controls may have occurred much later in geologic history than has been supposed previously.

直到最近,已知的早期太阳系的撞击记录只存在于月球、火星和其他天体的表面,这些表面没有被后来的风化、侵蚀、撞击园艺和/或构造运动抹去。对这些天体的陨石坑表面的研究导致了晚期重轰击(LHB)的概念,这是一个大约41亿到38亿年前(Ga)的间隔,在此期间,太阳系内部的行星和卫星表面受到异常高的轰击率,随后在大约3.5 Ga时下降到低的撞击率。然而,在过去的30年里,已经变得明显的是,至少在3.47至3.22 Ga和2.63至2.49 Ga之间,有陆地上的大影响记录。本文探讨了这些早期的撞击记录,提供了8个已知的喷出物层的性质的细节,这些层构成了这些早期间隔中大型陆地撞击的证据,推断了撞击物的大小,以及这些撞击对地壳发育和生命的潜在影响。这一记录的存在意味着LHB并不是在3.8-3.7 Ga突然结束的,而是高撞击率,无论是连续的还是成群的撞击,至少持续到太古宙末期的2.5 Ga。这意味着,从对地球表面系统长期发展的外部、与冲击有关的控制转向更内部的、地球动力学的控制,在地质历史上发生的时间可能比以前假设的要晚得多。
{"title":"The terrestrial record of Late Heavy Bombardment","authors":"Donald R. Lowe ,&nbsp;Gary R. Byerly","doi":"10.1016/j.newar.2018.03.002","DOIUrl":"10.1016/j.newar.2018.03.002","url":null,"abstract":"<div><p><span><span>Until recently, the known impact record of the early Solar System lay exclusively on the surfaces of the Moon, Mars, and other bodies where it has not been erased by later weathering, erosion, impact gardening, and/or tectonism. Study of the cratered surfaces of these bodies led to the concept of the Late Heavy Bombardment (LHB), an interval from about 4.1 to 3.8 billion years ago (Ga) during which the surfaces of the planets and moons in the inner Solar System were subject to unusually high rates of bombardment followed by a decline to present low impact rates by about 3.5 Ga. Over the past 30 years, however, it has become apparent that there is a terrestrial record of large impacts from at least 3.47 to 3.22 Ga and from 2.63 to 2.49 Ga. The present paper explores the earlier of these impact records, providing details about the nature of the 8 known </span>ejecta layers that constitute the evidence for large terrestrial impacts during the earlier of these intervals, the inferred size of the impactors, and the potential effects of these impacts on crustal development and life. The existence of this record implies that LHB did not end abruptly at 3.8–3.7 Ga but rather that high impact rates, either continuous or as impact clusters, persisted until at least the close of the Archean at 2.5 Ga. It implies that the shift from external, impact-related controls on the long-term development of the surface system on the Earth to more internal, </span>geodynamic controls may have occurred much later in geologic history than has been supposed previously.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2018.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81357292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Star clusters in evolving galaxies 演化星系中的星团
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-04-01 DOI: 10.1016/j.newar.2018.03.001
Florent Renaud

Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

它们的普遍性和极高的密度使星团探测器成为星系演化的首要任务。古老的球状星团保留了它们在早期宇宙中聚集的物理条件的印记,而更年轻的恒星物体,通过观测解决,告诉我们它们形成过程中的危险机制。然而,我们仍然不理解其中的多样性:为什么星团的形成仅限于银河系中105M⊙的物体,而一些像ngc1705这样的矮星系却能够产生10倍于此的星团?为什么矮星通常比大星系拥有更高的星系团的特定频率?如何将现今的恒星系统与高红移球状星团的形成联系起来?这些联系是如何依赖于这些星系团的星系和宇宙环境的?在这篇综述中,我介绍了在银河系和宇宙学背景下星团形成和演化的最新进展。重点是理论,形成情景和环境对集群整体属性演变的影响。确定了几个悬而未决的问题。
{"title":"Star clusters in evolving galaxies","authors":"Florent Renaud","doi":"10.1016/j.newar.2018.03.001","DOIUrl":"10.1016/j.newar.2018.03.001","url":null,"abstract":"<div><p><span>Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution<span><span>. Old globular clusters<span> keep imprints of the physical conditions of their assembly in the early Universe, and </span></span>younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 10</span></span><sup>5</sup>M<sub>⊙</sub><span><span> objects in the Milky Way<span>, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, </span></span>stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.</span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2018.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82214151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
The State-of-Play of Anomalous Microwave Emission (AME) research 异常微波发射(AME)研究现状
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2018-02-01 DOI: 10.1016/j.newar.2018.02.001
Clive Dickinson , Y. Ali-Haïmoud , A. Barr , E.S. Battistelli , A. Bell , L. Bernstein , S. Casassus , K. Cleary , B.T. Draine , R. Génova-Santos , S.E. Harper , B. Hensley , J. Hill-Valler , Thiem Hoang , F.P. Israel , L. Jew , A. Lazarian , J.P. Leahy , J. Leech , C.H. López-Caraballo , Matias Vidal

Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range  ≈ 10–60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free–free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains (“spinning dust”), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

反常微波发射(AME)是在 ≈ 10-60 GHz频率范围内观测到的漫射银河系辐射的一个组成部分。AME于1996年首次被发现,并于1997年被确认为排放的额外成分。从那时起,AME已经通过一系列实验和各种环境进行了观察。AME在空间上与远红外热尘发射相关,但不能用同步加速器或自由-自由发射机制来解释,并且远远超过热尘发射所贡献的发射,其幂律不透明与观测到的亚毫米波长发射一致。极化观测表明,AME的极化非常弱( > 1%)。对AME最自然的解释是超小尘埃颗粒(“旋转尘埃”)的旋转发射,这是1957年首次提出的假设。磁性颗粒材料磁化过程中的热波动产生的磁偶极子辐射也可能导致AME,特别是在较高频率(  ̄ 50 GHz)。AME也是宇宙微波背景分析的重要前景。本文介绍了2016年6月在荷兰ESTEC举行的AME研讨会上对AME研究的回顾和现状。
{"title":"The State-of-Play of Anomalous Microwave Emission (AME) research","authors":"Clive Dickinson ,&nbsp;Y. Ali-Haïmoud ,&nbsp;A. Barr ,&nbsp;E.S. Battistelli ,&nbsp;A. Bell ,&nbsp;L. Bernstein ,&nbsp;S. Casassus ,&nbsp;K. Cleary ,&nbsp;B.T. Draine ,&nbsp;R. Génova-Santos ,&nbsp;S.E. Harper ,&nbsp;B. Hensley ,&nbsp;J. Hill-Valler ,&nbsp;Thiem Hoang ,&nbsp;F.P. Israel ,&nbsp;L. Jew ,&nbsp;A. Lazarian ,&nbsp;J.P. Leahy ,&nbsp;J. Leech ,&nbsp;C.H. López-Caraballo ,&nbsp;Matias Vidal","doi":"10.1016/j.newar.2018.02.001","DOIUrl":"10.1016/j.newar.2018.02.001","url":null,"abstract":"<div><p><span>Anomalous Microwave Emission (AME) is a component of diffuse </span>Galactic radiation<span> observed at frequencies in the range  ≈ 10–60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron<span> or free–free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains (“spinning dust”), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.</span></span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2018.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78784306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
The Chandra deep fields: Lifting the veil on distant active galactic nuclei and X-ray emitting galaxies 钱德拉深场:揭开遥远活动星系核和x射线发射星系的面纱
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2017-11-01 DOI: 10.1016/j.newar.2017.09.002
Y.Q. Xue

The Chandra Deep Fields (CDFs), being a major thrust among extragalactic X-ray surveys and complemented effectively by multiwavelength observations, have critically contributed to our dramatically improved characterization of the 0.5–8 keV cosmic X-ray background sources, the vast majority of which are distant active galactic nuclei (AGNs) and starburst and normal galaxies. In this review, I highlight some recent key observational results, mostly from the CDFs, on the AGN demography, the interactions between AGNs and their host galaxies, the evolution of non-active galaxy X-ray emission, and the census of X-ray galaxy groups and clusters through cosmic time, after providing the necessary background information. I then conclude by summarizing some significant open questions and discussing future prospects for moving forward.

钱德拉深场(CDFs)是银河系外x射线调查的主要推动力,并得到了多波长观测的有效补充,对我们显著改善0.5-8 keV宇宙x射线背景源的特征做出了重要贡献,其中绝大多数是遥远的活动星系核(agn)、星暴和正常星系。本文在提供必要的背景资料后,重点介绍了近年来主要来自CDFs的一些关键观测结果,包括AGN人口统计、AGN与宿主星系之间的相互作用、非活动星系x射线发射的演化以及x射线星系群和星系团在宇宙时间中的普查。最后,我总结了一些重要的悬而未决的问题,并讨论了未来的发展前景。
{"title":"The Chandra deep fields: Lifting the veil on distant active galactic nuclei and X-ray emitting galaxies","authors":"Y.Q. Xue","doi":"10.1016/j.newar.2017.09.002","DOIUrl":"10.1016/j.newar.2017.09.002","url":null,"abstract":"<div><p>The <em>Chandra</em> Deep Fields (CDFs), being a major thrust among extragalactic X-ray surveys and complemented effectively by multiwavelength observations, have critically contributed to our dramatically improved characterization of the 0.5–8 keV cosmic X-ray background sources, the vast majority of which are distant active galactic nuclei (AGNs) and starburst and normal galaxies. In this review, I highlight some recent key observational results, mostly from the CDFs, on the AGN demography, the interactions between AGNs and their host galaxies, the evolution of non-active galaxy X-ray emission, and the census of X-ray galaxy groups and clusters through cosmic time, after providing the necessary background information. I then conclude by summarizing some significant open questions and discussing future prospects for moving forward.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2017.09.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85030577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Constraining the pitch angle of the galactic spiral arms in the Milky Way 限制银河系旋臂的俯仰角
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2017-11-01 DOI: 10.1016/j.newar.2017.09.001
Jacques P. Vallée

We carry out analyses of some parameters of the galactic spiral arms, in the currently available samples.

We present a catalog of the observed pitch angle for each spiral arm in the Milky Way disk. For each long spiral arm in the Milky Way, we investigate for each individual arm its pitch angle, as measured through different methods (parallaxes, twin-tangent arm, kinematical, etc), and assess their answers.

Second, we catalog recent advances in the cartography of the Galaxy (global mean arm pitch, arm number, arm shape, interarm distance at the Sun). We statistically compare the results over a long time frame, from 1980 to 2017. Histograms of about 90 individual results published in recent years (since mid-2015) are compared to 66 earlier results (from 1980 to 2005), showing the ratio of primary to secondary peaks to have increased by almost a factor of 3. Similarly, many earlier discrepancies (expressed in r.m.s.) have been reduced by almost a factor 3.

我们在现有的样本中对星系旋臂的一些参数进行了分析。我们给出了观测到的银河系中每个螺旋臂的俯仰角的目录。对于银河系中的每条长旋臂,我们通过不同的方法(视差、双切臂、运动学等)来研究每条旋臂的螺距角,并评估它们的答案。其次,我们编目了银河系制图的最新进展(全球平均臂距、臂数、臂形、臂距)。我们对1980年至2017年的长期结果进行了统计比较。将近年来(自2015年年中以来)发表的约90个单独结果的直方图与早期(1980年至2005年)的66个结果进行比较,显示主峰与次峰的比例几乎增加了3倍。类似地,许多早期的差异(以均方根表示)几乎减少了1倍。
{"title":"Constraining the pitch angle of the galactic spiral arms in the Milky Way","authors":"Jacques P. Vallée","doi":"10.1016/j.newar.2017.09.001","DOIUrl":"10.1016/j.newar.2017.09.001","url":null,"abstract":"<div><p>We carry out analyses of some parameters of the galactic spiral arms, in the currently available samples.</p><p>We present a catalog of the observed pitch angle for each spiral arm in the Milky Way disk. For each long spiral arm in the Milky Way, we investigate for each individual arm its pitch angle, as measured through different methods (parallaxes, twin-tangent arm, kinematical, etc), and assess their answers.</p><p>Second, we catalog recent advances in the cartography of the Galaxy (global mean arm pitch, arm number, arm shape, interarm distance at the Sun). We statistically compare the results over a long time frame, from 1980 to 2017. Histograms of about 90 individual results published in recent years (since mid-2015) are compared to 66 earlier results (from 1980 to 2005), showing the ratio of primary to secondary peaks to have increased by almost a factor of 3. Similarly, many earlier discrepancies (expressed in r.m.s.) have been reduced by almost a factor 3.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2017.09.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89453532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Paving the way to simultaneous multi-wavelength astronomy 为同时多波长天文学铺平了道路
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2017-11-01 DOI: 10.1016/j.newar.2017.07.002
M.J. Middleton, P. Casella, P. Gandhi, E. Bozzo, G. Anderson, N. Degenaar, I. Donnarumma, G. Israel, C. Knigge, A. Lohfink, S. Markoff, T. Marsh, N. Rea, S. Tingay, K. Wiersema, D. Altamirano, D. Bhattacharya, W.N. Brandt, S. Carey, P. Charles, P. Woudt
{"title":"Paving the way to simultaneous multi-wavelength astronomy","authors":"M.J. Middleton,&nbsp;P. Casella,&nbsp;P. Gandhi,&nbsp;E. Bozzo,&nbsp;G. Anderson,&nbsp;N. Degenaar,&nbsp;I. Donnarumma,&nbsp;G. Israel,&nbsp;C. Knigge,&nbsp;A. Lohfink,&nbsp;S. Markoff,&nbsp;T. Marsh,&nbsp;N. Rea,&nbsp;S. Tingay,&nbsp;K. Wiersema,&nbsp;D. Altamirano,&nbsp;D. Bhattacharya,&nbsp;W.N. Brandt,&nbsp;S. Carey,&nbsp;P. Charles,&nbsp;P. Woudt","doi":"10.1016/j.newar.2017.07.002","DOIUrl":"10.1016/j.newar.2017.07.002","url":null,"abstract":"","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2017.07.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81943532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
The science case for simultaneous mm-wavelength receivers in radio astronomy 射电天文学中同时使用毫米波长接收器的科学案例
IF 6 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2017-11-01 DOI: 10.1016/j.newar.2017.09.003
Richard Dodson , María J. Rioja , Taehyun Jung , José L. Goméz , Valentin Bujarrabal , Luca Moscadelli , James C.A. Miller-Jones , Alexandra J. Tetarenko , Gregory R. Sivakoff

This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.

Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries.

Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.

这篇综述源于2015年10月在佛罗伦萨举行的欧洲射电天文学技术论坛(ERATec)会议,旨在强调高影响力科学的广度和深度,这将得益于同时使用毫米波长接收器。从连续体VLBI(弱源观测、天体测量、AGN核心光谱指数和法拉第旋转观测)、谱线VLBI(演化恒星和大质量恒星形成区域观测)和x射线双星致密射流中通量变化的时域观测等领域介绍和讨论了最近的结果和机会。我们的调查汇集了大量重要的科学应用,这将极大地受益于同时观测毫米波长。这些设施对于提高这些应用的效率、灵敏度和科学可靠性至关重要。在某些情况下,如果没有同时的接受者,科学目标根本无法实现。类似的好处也存在于许多其他高频天文学领域的研究中。
{"title":"The science case for simultaneous mm-wavelength receivers in radio astronomy","authors":"Richard Dodson ,&nbsp;María J. Rioja ,&nbsp;Taehyun Jung ,&nbsp;José L. Goméz ,&nbsp;Valentin Bujarrabal ,&nbsp;Luca Moscadelli ,&nbsp;James C.A. Miller-Jones ,&nbsp;Alexandra J. Tetarenko ,&nbsp;Gregory R. Sivakoff","doi":"10.1016/j.newar.2017.09.003","DOIUrl":"10.1016/j.newar.2017.09.003","url":null,"abstract":"<div><p>This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.</p><p><span><span>Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, </span>astrometry, observations of </span>AGN<span><span><span> cores in spectral index and Faraday rotation), </span>spectral line VLBI (observations of </span>evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries.</span></p><p>Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2017.09.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76405311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
New Astronomy Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1