首页 > 最新文献

New Carbon Materials最新文献

英文 中文
A carbon material doped with both porous FeOx and N as an efficient catalyst for oxygen reduction reactions
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-12-01 DOI: 10.1016/S1872-5805(24)60876-0
Jian Gao , Xin-yao Wang , Ling-xin Meng , Zhen Yin , Na Ma , Xiao-yao Tan , Peng Zhang
To replace precious metal oxygen reduction reaction (ORR) electrocatalysts, many transition metals and N-doped carbon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts. We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid (PIL) of [Hvim]NO3 and Fe(NO3)3, which was thermally calcined at 900 °C to produce a porous FeOx, N co-doped carbon material denoted FeOx-N/C. Because the PIL of [Hvim]NO3 strongly combines with and disperses Fe3+ ions, and NO3− is thermally pyrolyzed to form the porous structure, the FeOx-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L−1 KOH and 0.5 mol L−1 H2SO4 electrolytes. It was used as the catalyst to assemble a zinc-air battery, which had a peak power density of 185 mW·cm−2. Its superior electrocatalytic activity, wide pH range, and easy preparation make FeOx-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
{"title":"A carbon material doped with both porous FeOx and N as an efficient catalyst for oxygen reduction reactions","authors":"Jian Gao ,&nbsp;Xin-yao Wang ,&nbsp;Ling-xin Meng ,&nbsp;Zhen Yin ,&nbsp;Na Ma ,&nbsp;Xiao-yao Tan ,&nbsp;Peng Zhang","doi":"10.1016/S1872-5805(24)60876-0","DOIUrl":"10.1016/S1872-5805(24)60876-0","url":null,"abstract":"<div><div>To replace precious metal oxygen reduction reaction (ORR) electrocatalysts, many transition metals and N-doped carbon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts. We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid (PIL) of [Hvim]NO<sub>3</sub> and Fe(NO<sub>3</sub>)<sub>3</sub>, which was thermally calcined at 900 °C to produce a porous FeO<sub><em>x</em></sub>, N co-doped carbon material denoted FeO<sub><em>x</em></sub>-N/C. Because the PIL of [Hvim]NO<sub>3</sub> strongly combines with and disperses Fe<sup>3+</sup> ions, and NO<sup>3−</sup> is thermally pyrolyzed to form the porous structure, the FeO<sub><em>x</em></sub>-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L<sup>−1</sup> KOH and 0.5 mol L<sup>−1</sup> H<sub>2</sub>SO<sub>4</sub> electrolytes. It was used as the catalyst to assemble a zinc-air battery, which had a peak power density of 185 mW·cm<sup>−2</sup>. Its superior electrocatalytic activity, wide pH range, and easy preparation make FeO<sub><em>x</em></sub>-N/C a promising electrocatalyst for fuel cells and metal-air batteries.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1202-1212"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143311672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic wave absorption performance of Fe3O4/activated carbon-natural resin nanocomposite
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-12-01 DOI: 10.1016/S1872-5805(24)60888-7
Mahsa Mahmoodi , Bagher Aslibeiki , Reza Peymanfar , Hamid Naghshara , Rajesh Kumar Rajagopal , Yue Zhao , Davide Peddis , Tapati Sarkar
There has recently been a fundamental need to develop high efficiency microwave absorbers to reduce electro-magnetic pollution. It is often very difficult to obtain superior absorption with only one material, so we have explored composites using fillers of activated carbon derived from biological material (oleaster seeds) and resin (apricot tree gum) with Fe3O4 in a paraffin wax matrix to improve the dielectric properties and achieve a high specific surface area. A 1 mm thick layer of a Fe3O4 + resin (FEOR), with the magnetic nanoparticles anchored to the gum, resulted in a reflection loss of −71.09 dB. We compared this with the results for composites using a filler of Fe3O4 + activated carbon, and one with a three-component filler of Fe3O4 + activated carbon + resin which had a very porous structure that had a direct effect on the surface polarization. However, the FEOR sample had near-ideal impedance matching, close to 1, which resulted in high absorption performance. In addition, the presence of defects improves microwave attenuation by dipole polarization and charge carrier trapping. This work suggests the use of new types of biomaterials to increase microwave absorption.
{"title":"Electromagnetic wave absorption performance of Fe3O4/activated carbon-natural resin nanocomposite","authors":"Mahsa Mahmoodi ,&nbsp;Bagher Aslibeiki ,&nbsp;Reza Peymanfar ,&nbsp;Hamid Naghshara ,&nbsp;Rajesh Kumar Rajagopal ,&nbsp;Yue Zhao ,&nbsp;Davide Peddis ,&nbsp;Tapati Sarkar","doi":"10.1016/S1872-5805(24)60888-7","DOIUrl":"10.1016/S1872-5805(24)60888-7","url":null,"abstract":"<div><div>There has recently been a fundamental need to develop high efficiency microwave absorbers to reduce electro-magnetic pollution. It is often very difficult to obtain superior absorption with only one material, so we have explored composites using fillers of activated carbon derived from biological material (oleaster seeds) and resin (apricot tree gum) with Fe<sub>3</sub>O<sub>4</sub> in a paraffin wax matrix to improve the dielectric properties and achieve a high specific surface area. A 1 mm thick layer of a Fe<sub>3</sub>O<sub>4</sub> + resin (FEOR), with the magnetic nanoparticles anchored to the gum, resulted in a reflection loss of −71.09 dB. We compared this with the results for composites using a filler of Fe<sub>3</sub>O<sub>4</sub> + activated carbon, and one with a three-component filler of Fe<sub>3</sub>O<sub>4</sub> + activated carbon + resin which had a very porous structure that had a direct effect on the surface polarization. However, the FEOR sample had near-ideal impedance matching, close to 1, which resulted in high absorption performance. In addition, the presence of defects improves microwave attenuation by dipole polarization and charge carrier trapping. This work suggests the use of new types of biomaterials to increase microwave absorption.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1157-1177"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of petroleum asphalt-based carbon materials in electrochemical energy storage
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-12-01 DOI: 10.1016/S1872-5805(24)60883-8
Shao-xiong Du , Ling-yu Kong , Lu Liu , Zi-yang Cao , Xi Wu , Bo Sun , Zheng-xuan Li , Wang Yang , Yong-feng Li
Petroleum asphalt, an important by-product of the petrochemical industry, has diverse applications but often suffers from low industrial added value. Because of its low cost, high carbon content, and high polycyclic aromatic hydrocarbon content, appropriate modification can increase its value and expand its energy storage applications. Current research progress on the common preparation methods of petroleum asphalt-based carbon materials, including template-assisted pyrolysis, molten salt treatment, activation, heteroatom doping, and pre-oxidation is reviewed, and its use in supercapacitors and alkali metal ion batteries, is also elaborated. Feasible solutions for the current problems with petroleum asphalt are proposed, with the aim of providing insights into its high value-added utilization.
{"title":"A review of petroleum asphalt-based carbon materials in electrochemical energy storage","authors":"Shao-xiong Du ,&nbsp;Ling-yu Kong ,&nbsp;Lu Liu ,&nbsp;Zi-yang Cao ,&nbsp;Xi Wu ,&nbsp;Bo Sun ,&nbsp;Zheng-xuan Li ,&nbsp;Wang Yang ,&nbsp;Yong-feng Li","doi":"10.1016/S1872-5805(24)60883-8","DOIUrl":"10.1016/S1872-5805(24)60883-8","url":null,"abstract":"<div><div>Petroleum asphalt, an important by-product of the petrochemical industry, has diverse applications but often suffers from low industrial added value. Because of its low cost, high carbon content, and high polycyclic aromatic hydrocarbon content, appropriate modification can increase its value and expand its energy storage applications. Current research progress on the common preparation methods of petroleum asphalt-based carbon materials, including template-assisted pyrolysis, molten salt treatment, activation, heteroatom doping, and pre-oxidation is reviewed, and its use in supercapacitors and alkali metal ion batteries, is also elaborated. Feasible solutions for the current problems with petroleum asphalt are proposed, with the aim of providing insights into its high value-added utilization.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1088-1107"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143312586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-12-01 DOI: 10.1016/S1872-5805(24)60855-3
Jing Li, Yi-quan Qi, Shi-xiang Zhao, Han-xun Qiu, Jun-he Yang, Guang-zhi Yang
Developing lightweight and flexible thin films for electromagnetic interference (EMI) shielding is of great importance. Porous thin films of reduced graphene oxide containing SiC whiskers (SiC@RGO) for EMI shielding were prepared by a two-step reduction of graphene oxide (GO), in which the two steps were chemical reduction by HI and the solid phase microwave irradiation. A significant increase of the film thickness from around 20 to 200 μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation. The total shielding effectiveness (SET) and the reflective SE (SER) of the SiC@RGO porous thin films depended on the GO/SiC mass ratio. The highest SET achieved was 35.6 dB while the SER was only 2.8 dB, when the GO/SiC mass ratio was 4:1. The addition of SiC whiskers was critical for the multi-reflection, interfacial polarization and dielectric attenuation of EM waves. A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers. The highest SET of the multilayer films reached 75.1 dB with a SER of 2.7 dB for a film thickness of about 1.5 mm. These porous SiC@RGO thin films should find use in multilayer or sandwich structures for EMI absorption in packaging or lining.
{"title":"Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields","authors":"Jing Li,&nbsp;Yi-quan Qi,&nbsp;Shi-xiang Zhao,&nbsp;Han-xun Qiu,&nbsp;Jun-he Yang,&nbsp;Guang-zhi Yang","doi":"10.1016/S1872-5805(24)60855-3","DOIUrl":"10.1016/S1872-5805(24)60855-3","url":null,"abstract":"<div><div>Developing lightweight and flexible thin films for electromagnetic interference (EMI) shielding is of great importance. Porous thin films of reduced graphene oxide containing SiC whiskers (SiC@RGO) for EMI shielding were prepared by a two-step reduction of graphene oxide (GO), in which the two steps were chemical reduction by HI and the solid phase microwave irradiation. A significant increase of the film thickness from around 20 to 200 μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation. The total shielding effectiveness (SE<sub><em>T</em></sub>) and the reflective SE (SE<sub><em>R</em></sub>) of the SiC@RGO porous thin films depended on the GO/SiC mass ratio. The highest SE<sub><em>T</em></sub> achieved was 35.6 dB while the SE<sub><em>R</em></sub> was only 2.8 dB, when the GO/SiC mass ratio was 4:1. The addition of SiC whiskers was critical for the multi-reflection, interfacial polarization and dielectric attenuation of EM waves. A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers. The highest SE<sub><em>T</em></sub> of the multilayer films reached 75.1 dB with a SE<sub><em>R</em></sub> of 2.7 dB for a film thickness of about 1.5 mm. These porous SiC@RGO thin films should find use in multilayer or sandwich structures for EMI absorption in packaging or lining.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1191-1201"},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143311673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode 超级电容器的高频性能与碳电极中的掺氮类型之间的关系
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60849-8
Ya-feng Fan , Zong-lin Yi , Yi Zhou , Li-jing Xie , Guo-hua Sun , Zhen-bing Wang , Xian-hong Huang , Fang-yuan Su , Cheng-meng Chen
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors, particularly in terms of their high-frequency response. However, the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear. In this study, melamine foam carbons with different configurations of surface-doped N were formed by gradient carbonization, and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed. Using a combination of experiments and first-principle calculations, we found that pyrrolic N, characterized by a higher adsorption energy, increases the charge storage capacity of the electrode at high frequencies. On the other hand, graphitic N, with a lower adsorption energy, increases the speed of ion response. We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications, offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors
掺氮已被广泛用于提高超级电容器中碳电极的性能,尤其是在高频响应方面。然而,不同氮掺杂物在高频下的电荷存储和电解质离子响应机制仍不清楚。本研究通过梯度碳化法形成了具有不同表面掺氮构型的三聚氰胺泡沫碳,并分析了不同构型对超级电容器高频响应行为的影响。通过实验和第一原理计算相结合的方法,我们发现吡咯烷酮 N 具有较高的吸附能,可提高电极在高频下的电荷存储容量。另一方面,吸附能较低的石墨化 N 可提高离子响应速度。我们建议将吸附能作为高频应用中电极/电解质设计的实用描述指标,为提高超级电容器中掺杂 N 的碳材料的性能提供更通用的方法。
{"title":"The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode","authors":"Ya-feng Fan ,&nbsp;Zong-lin Yi ,&nbsp;Yi Zhou ,&nbsp;Li-jing Xie ,&nbsp;Guo-hua Sun ,&nbsp;Zhen-bing Wang ,&nbsp;Xian-hong Huang ,&nbsp;Fang-yuan Su ,&nbsp;Cheng-meng Chen","doi":"10.1016/S1872-5805(24)60849-8","DOIUrl":"10.1016/S1872-5805(24)60849-8","url":null,"abstract":"<div><div>Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors, particularly in terms of their high-frequency response. However, the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear. In this study, melamine foam carbons with different configurations of surface-doped N were formed by gradient carbonization, and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed. Using a combination of experiments and first-principle calculations, we found that pyrrolic N, characterized by a higher adsorption energy, increases the charge storage capacity of the electrode at high frequencies. On the other hand, graphitic N, with a lower adsorption energy, increases the speed of ion response. We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications, offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 1015-1026"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The preparation and properties of N-doped carbon materials and their use for sodium storage 掺氮碳材料的制备、特性及其在钠储存中的应用
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60877-2
Ren-lu Yuan, Ruo-yang Hou, Lei Shang, Xue-wei Liu, Ang Li, Xiao-hong Chen, Huai-he Song
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity, making them suitable for high-performance applications. N-doping has been widely investigated because of its similar atom radius to carbon, high electronegativity as well as many different configurations. We summarize the preparation methods and properties of N-doped carbon materials, and discuss their possible use in sodium ion storage. The relationships between N content/configuration and crystallinity, electronic conductivity, wettability, chemical reactivity as well as sodium ion storage performance are discussed.
通过掺杂杂原子进行缺陷工程可赋予碳材料一些新特性,如不同的电子结构和高电化学活性,使其适用于高性能应用。由于 N 原子半径与碳相近、电负性高且具有多种不同的构型,因此 N 掺杂已被广泛研究。我们总结了掺 N 碳材料的制备方法和特性,并讨论了它们在钠离子存储中的可能用途。讨论了 N 含量/构型与结晶度、电子导电性、润湿性、化学反应性以及钠离子存储性能之间的关系。
{"title":"The preparation and properties of N-doped carbon materials and their use for sodium storage","authors":"Ren-lu Yuan,&nbsp;Ruo-yang Hou,&nbsp;Lei Shang,&nbsp;Xue-wei Liu,&nbsp;Ang Li,&nbsp;Xiao-hong Chen,&nbsp;Huai-he Song","doi":"10.1016/S1872-5805(24)60877-2","DOIUrl":"10.1016/S1872-5805(24)60877-2","url":null,"abstract":"<div><div>Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity, making them suitable for high-performance applications. N-doping has been widely investigated because of its similar atom radius to carbon, high electronegativity as well as many different configurations. We summarize the preparation methods and properties of N-doped carbon materials, and discuss their possible use in sodium ion storage. The relationships between N content/configuration and crystallinity, electronic conductivity, wettability, chemical reactivity as well as sodium ion storage performance are discussed.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 770-795"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of highly graphitized porous carbon and its ethane/ethylene separation performance 高石墨化多孔碳的制备及其乙烷/乙烯分离性能
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60859-0
Ru-shuai Liu, Fan Tang, Xiao-dong Shi, Guang-ping Hao, An-hui Lu
The efficient separation of ethane (C2H6) and ethylene (C2H4) is crucial for the preparation of polymer-grade C2H4, necessitating the development of highly selective and stable C2H6/C2H4 adsorbents. Highly graphitized porous carbon, denoted GC-800, was synthesized by polymerization at room temperature followed by carbonization at 800 °C using phenolic resin as the precursor and FeCl3 as the iron source. Vienna Ab-initio Simulation Package (VASP) calculations confirmed a higher binding energy between C2H6 molecules and graphitized porous carbon surfaces, so that a high degree of graphitization increased the adsorption capacity of porous carbon for C2H6. However, catalytic graphitization using Fe at high temperatures disrupted the microporous structure of the carbon, thereby reducing its ability to separate C2H6/C2H4. By controlling the carbonization temperature, the degree of graphitization and pore structure of the porous carbon could be changed. Raman spectra and XPS spectra showed that the GC-800 had a high degree of graphitization, with a sp2 C content as high as 73%. Low-temperature N2 physical adsorption measurements estimated the specific surface area of GC-800 to be as high as 574 m2·g−1. At 298 K and 1 bar, it had an equilibrium adsorption capacity of 2.16 mmol·g−1 for C2H6, with the C2H6/C2H4 (1:1 and 1:9, v/v) ideal adsorbed solution theory selectivity respectively reaching 2.4 and 3.8, significantly higher than the values of most reported high-performance C2H6 selective adsorbents. Dynamic breakthrough experiments showed that GC-800 could produce high-purity C2H4 in a single step from a mixture of C2H6 and C2H4. Dynamic cycling tests confirmed its good cyclic stability, and that it could efficiently separate C2H6/C2H4 even under humid conditions.
高效分离乙烷(C2H6)和乙烯(C2H4)对于制备聚合物级 C2H4 至关重要,因此需要开发高选择性和高稳定性的 C2H6/C2H4 吸附剂。以酚醛树脂为前驱体,FeCl3 为铁源,在室温下聚合,然后在 800 °C 下碳化,合成了高石墨化多孔碳,命名为 GC-800。维也纳模拟仿真软件包(VASP)的计算证实,C2H6 分子与石墨化多孔碳表面之间的结合能更高,因此高度石墨化提高了多孔碳对 C2H6 的吸附能力。然而,在高温下使用铁进行催化石墨化会破坏碳的微孔结构,从而降低其分离 C2H6/C2H4 的能力。通过控制碳化温度,可以改变多孔碳的石墨化程度和孔隙结构。拉曼光谱和 XPS 光谱显示,GC-800 的石墨化程度很高,sp2 C 含量高达 73%。据低温 N2 物理吸附测量估计,GC-800 的比表面积高达 574 m2-g-1。在 298 K 和 1 bar 条件下,它对 C2H6 的平衡吸附容量为 2.16 mmol-g-1,C2H6/C2H4(1:1 和 1:9,v/v)理想吸附溶液理论选择性分别达到 2.4 和 3.8,明显高于大多数已报道的高性能 C2H6 选择性吸附剂的数值。动态突破实验表明,GC-800 可以一次性从 C2H6 和 C2H4 的混合物中生产出高纯度的 C2H4。动态循环测试证实其具有良好的循环稳定性,即使在潮湿条件下也能有效分离 C2H6/C2H4。
{"title":"Preparation of highly graphitized porous carbon and its ethane/ethylene separation performance","authors":"Ru-shuai Liu,&nbsp;Fan Tang,&nbsp;Xiao-dong Shi,&nbsp;Guang-ping Hao,&nbsp;An-hui Lu","doi":"10.1016/S1872-5805(24)60859-0","DOIUrl":"10.1016/S1872-5805(24)60859-0","url":null,"abstract":"<div><div>The efficient separation of ethane (C<sub>2</sub>H<sub>6</sub>) and ethylene (C<sub>2</sub>H<sub>4</sub>) is crucial for the preparation of polymer-grade C<sub>2</sub>H<sub>4</sub>, necessitating the development of highly selective and stable C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> adsorbents. Highly graphitized porous carbon, denoted GC-800, was synthesized by polymerization at room temperature followed by carbonization at 800 °C using phenolic resin as the precursor and FeCl<sub>3</sub> as the iron source. Vienna Ab-initio Simulation Package (VASP) calculations confirmed a higher binding energy between C<sub>2</sub>H<sub>6</sub> molecules and graphitized porous carbon surfaces, so that a high degree of graphitization increased the adsorption capacity of porous carbon for C<sub>2</sub>H<sub>6</sub>. However, catalytic graphitization using Fe at high temperatures disrupted the microporous structure of the carbon, thereby reducing its ability to separate C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>. By controlling the carbonization temperature, the degree of graphitization and pore structure of the porous carbon could be changed. Raman spectra and XPS spectra showed that the GC-800 had a high degree of graphitization, with a sp<sup>2</sup> C content as high as 73%. Low-temperature N<sub>2</sub> physical adsorption measurements estimated the specific surface area of GC-800 to be as high as 574 m<sup>2</sup>·g<sup>−1</sup>. At 298 K and 1 bar, it had an equilibrium adsorption capacity of 2.16 mmol·g<sup>−1</sup> for C<sub>2</sub>H<sub>6</sub>, with the C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> (1:1 and 1:9, <em>v</em>/<em>v</em>) ideal adsorbed solution theory selectivity respectively reaching 2.4 and 3.8, significantly higher than the values of most reported high-performance C<sub>2</sub>H<sub>6</sub> selective adsorbents. Dynamic breakthrough experiments showed that GC-800 could produce high-purity C<sub>2</sub>H<sub>4</sub> in a single step from a mixture of C<sub>2</sub>H<sub>6</sub> and C<sub>2</sub>H<sub>4</sub>. Dynamic cycling tests confirmed its good cyclic stability, and that it could efficiently separate C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> even under humid conditions.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 1027-1036"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries 生产钠硫电池和钾硫电池用空心碳球的最新进展
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60879-6
Zi-xin Qi , Sai-nan Luo , Jia-feng Ruan , Tao Yuan , Yue-peng Pang , Jun-he Yang , Shi-you Zheng
Sodium-sulfur (Na-S) and potassium-sulfur (K-S) batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density. However, their development is restricted by the shuttling of polysulfides, large volume expansion and poor conductivity. To overcome these obstacles, an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it, and a high electrical conductivity. Hollow carbon spheres (HCSs) with a controllable structure and composition are promising for this purpose. We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials. First, the advantages of HCSs, their synthesis methods, and strategies for preparing HCSs/sulfur composite materials are reviewed. Second, the use of HCSs in Na-/K-S batteries, along with mechanisms underlying the resulting performance improvement, are discussed. Finally, prospects for the further development of HCSs for metal−S batteries are presented.
室温下使用的钠硫(Na-S)和钾硫(K-S)电池因其原材料丰富、成本低廉、能量密度高而受到广泛关注。然而,多硫化物的穿梭、巨大的体积膨胀和较差的导电性限制了它们的发展。为了克服这些障碍,一种有效的方法是使用碳基材料,这种材料具有丰富的硫空间,具有固定硫的巯基位点,并且具有高导电性。具有可控结构和成分的空心碳球(HCSs)在这方面大有可为。我们探讨了利用这些材料优化 Na-/K-S 电池电化学性能的最新进展。首先,回顾了 HCSs 的优点、合成方法以及制备 HCSs/硫复合材料的策略。其次,讨论了 HCSs 在 Na-/K-S 电池中的应用,以及由此产生的性能改善机制。最后,介绍了进一步开发 HCSs 用于金属-S 电池的前景。
{"title":"Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries","authors":"Zi-xin Qi ,&nbsp;Sai-nan Luo ,&nbsp;Jia-feng Ruan ,&nbsp;Tao Yuan ,&nbsp;Yue-peng Pang ,&nbsp;Jun-he Yang ,&nbsp;Shi-you Zheng","doi":"10.1016/S1872-5805(24)60879-6","DOIUrl":"10.1016/S1872-5805(24)60879-6","url":null,"abstract":"<div><div>Sodium-sulfur (Na-S) and potassium-sulfur (K-S) batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density. However, their development is restricted by the shuttling of polysulfides, large volume expansion and poor conductivity. To overcome these obstacles, an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it, and a high electrical conductivity. Hollow carbon spheres (HCSs) with a controllable structure and composition are promising for this purpose. We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials. First, the advantages of HCSs, their synthesis methods, and strategies for preparing HCSs/sulfur composite materials are reviewed. Second, the use of HCSs in Na-/K-S batteries, along with mechanisms underlying the resulting performance improvement, are discussed. Finally, prospects for the further development of HCSs for metal−S batteries are presented.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 824-843"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and challenges in the use of carbon anodes for high-energy and fast-charging sodium-ion batteries 将碳阳极用于高能快速充电钠离子电池的进展与挑战
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60870-X
Jing-hong Li , Yi-bo Zhang , Yi-ran Jia , Chen-xu Yang , Yue Chu , Jun Zhang , Ying Tao , Quan-Hong Yang
Sodium-ion batteries (SIBs) are widely recognized as most promising candidates for the next generation of low-cost and high-efficiency energy storage systems. Disordered carbons are the most practical anode materials for SIBs, because of their high reversibility of sodium storage and low sodium intercalation potential. However, current disordered carbon anodes face challenges in the incompatibility of their high plateau capacity and high safety operating voltages, as well as sluggish kinetics of sodium storage, leading to trade-offs in energy density, fast-charging performance, and safety characteristics which severely limit their commercialization. This review focuses on the key factors that restrict the development of carbon anodes in SIBs and analyzes the kinetic behavior of each step in the plateau sodium storage process. The progress in building high-energy and fast-charging SIBs is reviewed from two perspectives: the electrode-electrolyte interface and the microstructural control of the disordered carbon. Critical factors influencing the kinetics of sodium storage and the plateau potential are discussed. Finally, prospects for the development of practical carbon anode materials for SIBs are considered.
钠离子电池(SIB)被公认为下一代低成本、高效率储能系统最有前途的候选材料。无序碳是 SIB 最实用的阳极材料,因为它们具有高钠存储可逆性和低钠插层电位。然而,目前的无序碳阳极面临着高平台容量和高安全工作电压不兼容的挑战,以及钠存储动力学迟缓的问题,导致能量密度、快速充电性能和安全特性的权衡,严重限制了其商业化。本综述重点探讨了限制 SIB 中碳阳极发展的关键因素,并分析了高原钠存储过程中每个步骤的动力学行为。文章从电极-电解质界面和无序碳的微观结构控制这两个角度综述了在构建高能量和快速充电 SIB 方面取得的进展。讨论了影响钠储存动力学和高原电位的关键因素。最后,考虑了开发用于 SIB 的实用碳阳极材料的前景。
{"title":"Progress and challenges in the use of carbon anodes for high-energy and fast-charging sodium-ion batteries","authors":"Jing-hong Li ,&nbsp;Yi-bo Zhang ,&nbsp;Yi-ran Jia ,&nbsp;Chen-xu Yang ,&nbsp;Yue Chu ,&nbsp;Jun Zhang ,&nbsp;Ying Tao ,&nbsp;Quan-Hong Yang","doi":"10.1016/S1872-5805(24)60870-X","DOIUrl":"10.1016/S1872-5805(24)60870-X","url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) are widely recognized as most promising candidates for the next generation of low-cost and high-efficiency energy storage systems. Disordered carbons are the most practical anode materials for SIBs, because of their high reversibility of sodium storage and low sodium intercalation potential. However, current disordered carbon anodes face challenges in the incompatibility of their high plateau capacity and high safety operating voltages, as well as sluggish kinetics of sodium storage, leading to trade-offs in energy density, fast-charging performance, and safety characteristics which severely limit their commercialization. This review focuses on the key factors that restrict the development of carbon anodes in SIBs and analyzes the kinetic behavior of each step in the plateau sodium storage process. The progress in building high-energy and fast-charging SIBs is reviewed from two perspectives: the electrode-electrolyte interface and the microstructural control of the disordered carbon. Critical factors influencing the kinetics of sodium storage and the plateau potential are discussed. Finally, prospects for the development of practical carbon anode materials for SIBs are considered.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 729-742"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of the carbon components on the performance of carbon-based transition metal electrocatalysts for the hydrogen evolution reaction 碳成分对用于氢气进化反应的碳基过渡金属电催化剂性能的影响
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-10-01 DOI: 10.1016/S1872-5805(24)60880-2
Guo-hua Li, Jing Wang, Jin-tian Ren, Hong-chen Liu, Jin-xiu Qian, Jia-ting Cheng, Mei-tong Zhao, Fan Yang, Yong-feng Li
The hydrogen evolution reaction (HER) is a promising way to produce hydrogen, and the use of non-precious metals with an excellent electrochemical performance is vital for this. Carbon-based transition metal catalysts have high activity and stability, which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry. However, there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts. This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance, including electronic structure control by heteroatom doping, morphology adjustment, and the influence of self-supporting materials. It not only analyzes the progress in HER, but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.
氢进化反应(HER)是一种前景广阔的制氢方法,使用电化学性能优异的非贵金属对此至关重要。碳基过渡金属催化剂具有高活性和高稳定性,对降低制氢成本和促进制氢工业的发展具有重要意义。然而,关于碳成分对这些电催化剂性能的影响还缺乏讨论。这篇文献综述讨论了这些催化剂中碳成分的选择及其对催化性能的影响,包括杂原子掺杂的电子结构控制、形貌调整以及自支撑材料的影响。它不仅分析了 HER 的研究进展,还为合成高性能碳基过渡金属催化剂提供了指导。
{"title":"The effect of the carbon components on the performance of carbon-based transition metal electrocatalysts for the hydrogen evolution reaction","authors":"Guo-hua Li,&nbsp;Jing Wang,&nbsp;Jin-tian Ren,&nbsp;Hong-chen Liu,&nbsp;Jin-xiu Qian,&nbsp;Jia-ting Cheng,&nbsp;Mei-tong Zhao,&nbsp;Fan Yang,&nbsp;Yong-feng Li","doi":"10.1016/S1872-5805(24)60880-2","DOIUrl":"10.1016/S1872-5805(24)60880-2","url":null,"abstract":"<div><div>The hydrogen evolution reaction (HER) is a promising way to produce hydrogen, and the use of non-precious metals with an excellent electrochemical performance is vital for this. Carbon-based transition metal catalysts have high activity and stability, which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry. However, there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts. This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance, including electronic structure control by heteroatom doping, morphology adjustment, and the influence of self-supporting materials. It not only analyzes the progress in HER, but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 946-972"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Carbon Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1