首页 > 最新文献

New Carbon Materials最新文献

英文 中文
Electrochemical methods for the removal of impurities from thegraphite anode in spent ternary lithium-ion batteries 去除废旧三元锂离子电池石墨负极中杂质的电化学方法
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60843-7
Rui Zhang , Yong Tian , Wei-li Zhang , Jia-yin Song , Jie Min , Bo Pang , Jian-jun Chen

The use of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number are reaching their end of life. The recycling and re-use of spent LIBs has attracted great attention. Because of the unchanged layer structure of the graphite anode in these batteries, their recycling does not require high-temperature graphitization, and only focuses on the removal of internal impurities. We used electrochemical treatment for the deep removal of internal metal impurities after the heat treatment, ultrasonic separation, and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it was found that the presence of organic impurities seriously affects the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but reduces the cycling stability of graphite. The content of the main metal impurities in the final recycled graphite was less than 20 mg/kg. The discharge specific capacity reached358.7 mAh/g at 0.1 C, and the capacity remained at 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can efficiently remove impurities in the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode has a good electrochemical performance. Our work provides a new recycling and regeneration path for spent LIB graphite anodes.

锂离子电池(LIB)的使用越来越广泛,大量电池即将报废。废旧锂离子电池的回收和再利用引起了人们的极大关注。由于这些电池中的石墨负极层结构不变,因此其回收利用不需要高温石墨化,只需要去除内部杂质即可。在对废石墨进行热处理、超声波分离和酸浸后,我们采用电化学处理方法深度去除内部金属杂质。通过对比分析不同回收阶段的石墨,发现有机杂质的存在严重影响了电化学性能。痕量无机杂质(如 Cu 和 Fe)的存在对初始放电比容量影响不大,但会降低石墨的循环稳定性。最终再生石墨中主要金属杂质的含量小于 20 mg/kg。放电比容量在 0.1 C 时达到 358.7 mAh/g,循环 150 次后容量保持在 95.85%。与已报道的废石墨回收方法相比,该方法能有效去除石墨中的杂质,解决了目前废石墨酸碱消耗高、杂质去除不彻底、能耗高等问题。回收后的石墨阳极具有良好的电化学性能。我们的工作为废 LIB 石墨阳极的回收和再生提供了一条新的途径。
{"title":"Electrochemical methods for the removal of impurities from thegraphite anode in spent ternary lithium-ion batteries","authors":"Rui Zhang ,&nbsp;Yong Tian ,&nbsp;Wei-li Zhang ,&nbsp;Jia-yin Song ,&nbsp;Jie Min ,&nbsp;Bo Pang ,&nbsp;Jian-jun Chen","doi":"10.1016/S1872-5805(24)60843-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60843-7","url":null,"abstract":"<div><p>The use of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number are reaching their end of life. The recycling and re-use of spent LIBs has attracted great attention. Because of the unchanged layer structure of the graphite anode in these batteries, their recycling does not require high-temperature graphitization, and only focuses on the removal of internal impurities. We used electrochemical treatment for the deep removal of internal metal impurities after the heat treatment, ultrasonic separation, and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it was found that the presence of organic impurities seriously affects the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but reduces the cycling stability of graphite. The content of the main metal impurities in the final recycled graphite was less than 20 mg/kg. The discharge specific capacity reached358.7 mAh/g at 0.1 C, and the capacity remained at 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can efficiently remove impurities in the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode has a good electrochemical performance. Our work provides a new recycling and regeneration path for spent LIB graphite anodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 573-582"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization 等离子体辅助制备碳布上具有较大层间距的镍钴铝层双氢氧化物的电化学去离子技术
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60854-1
Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang

Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g−1 at 1.2 V in a 1000 mg L−1 NaCl solution, a remarkable desalination rate of 0.27 mg g−1 s−1, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L−1 NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.

近年来,电容式去离子法一直被认为是一种新兴的海水淡化技术,特别是在苦咸水方面具有经济和节能的特点。然而,目前有关氯离子去除电极的研究很少,而且脱盐动力学缓慢,限制了其发展。通过在酸处理碳布(ACC)上原位生长镍钴铝-层状双氢氧化物(LDH)纳米片阵列并随后进行氩等离子处理,制备了层间距增大的氩镍钴铝-层状双氢氧化物(LDH)@ACC 材料。碳布抑制了镍钴铝-LDHs 纳米片的团聚并提高了导电性,而等离子体处理增加了镍钴铝-LDHs 的层间距并提高了其亲水性。这为氯离子提供了快速扩散通道和更多的层间活性位点,从而实现了较高的脱盐动力学性能。以 Ar-NiCoAl-LDHs@ACC 作为氯离子去除电极,以活性炭作为钠离子去除电极,组装了一个混合电容式去离子(HCDI)电池。在 1000 mg L-1 NaCl 溶液中,该 HCDI 电池在 1.2 V 电压下的脱盐容量高达 93.26 mg g-1,脱盐速率高达 0.27 mg g-1 s-1,充电效率高达 0.97。在 300 mg L-1 NaCl 溶液中以 0.8 V 的电压循环 100 次后,容量保持率仍在 85% 以上。该研究成果为控制制备具有较大层间距的二维金属氢氧化物材料和设计高性能电化学氯离子去除电极提供了新思路。
{"title":"Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization","authors":"Qiu-tong Jiang ,&nbsp;Guo-qing Wang ,&nbsp;Yi Li ,&nbsp;Hong-wei Huang ,&nbsp;Qian Li ,&nbsp;Jian Yang","doi":"10.1016/S1872-5805(24)60854-1","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60854-1","url":null,"abstract":"<div><p>Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g<sup>−1</sup> at 1.2 V in a 1000 mg L<sup>−1</sup> NaCl solution, a remarkable desalination rate of 0.27 mg g<sup>−1</sup> s<sup>−1</sup>, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L<sup>−1</sup> NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 561-572"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of graphdiyne in aqueous ion batteries 水离子电池中的石墨二炔综述
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60852-8
Xian-min Xu , Wen-cong Feng , Jing-ke Ren , Wen Luo

Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.

Graphdiyne 是一种新型碳材料,具有特殊的碳混合排列、独特的化学和电子结构以及众多孔隙,在电化学储能领域具有广阔的应用前景。新兴的水离子电池具有成本低、安全性高的优点,但高性能电极材料的开发、新型膜系统的设计以及稳定界面的方法仍是其制造过程中的主要挑战。石墨炔具有独特的多孔结构和优异的电化学性能,可在阳极保护、阴极包覆、膜设计和稳定界面 pH 值等方面改善离子传输、界面沉积行为和电解质不稳定性。自下而上的分子结构设计策略使石墨二炔易于改性和掺杂,改善了其类似物的性能,从而扩大了它们在水离子电池中的应用。我们系统地总结了石墨二炔的结构、性能和合成方法,并总结了石墨二炔在水离子电池中的研究。全面评估了石墨二炔在水离子电池中应用的现有问题和挑战,并提出了未来的趋势和发展。
{"title":"A review of graphdiyne in aqueous ion batteries","authors":"Xian-min Xu ,&nbsp;Wen-cong Feng ,&nbsp;Jing-ke Ren ,&nbsp;Wen Luo","doi":"10.1016/S1872-5805(24)60852-8","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60852-8","url":null,"abstract":"<div><p>Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 388-406"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonyl chloride-intensified metal chloride intercalation of graphite for efficient sodium storage 磺酰氯强化金属氯化物插层石墨,实现高效钠储存
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60851-6
Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu

Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO2Cl2 was used as a chlorine generator to intensify the intercalation of BiCl3 into graphite (BiCl3-GICs), which avoided the potential risks, such as Cl2 leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO2Cl2, BiCl3, and graphite at 200 oC for 20 h, the synthesized BiCl3-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl3 intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g−1 at 1 A g−1 and an excellent rate performance (170 mAh g−1 at 5 A g−1). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl3 is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.

具有优异导电性和较大层间距的金属氯化物插层石墨非常适合用于钠离子电池。然而,卤素蒸汽通常是启动插层过程不可或缺的因素,这使得设备设计和实验具有挑战性。在这项工作中,使用 SO2Cl2 作为氯气发生器来强化 BiCl3 在石墨中的插层(BiCl3-GICs),避免了传统方法中 Cl2 泄漏等潜在风险。实验的运行效率也得到了提高。将 SO2Cl2、BiCl3 和石墨在 200 oC 下反应 20 h 后,合成的 BiCl3-GICs 具有较大的层间距(1.26 nm)和较高的 BiCl3 插层量(42%),从而使 SIBs 在 1 A g-1 时具有 213 mAh g-1 的高比容量和优异的速率性能(5 A g-1 时为 170 mAh g-1)。原位拉曼光谱显示,石墨与插层 BiCl3 之间的电子相互作用在第一次放电过程中减弱,这有利于钠的储存。这项研究成果广泛地促进了其他金属氯化物插层石墨的插层,为开发先进的储能设备提供了可能性。
{"title":"Sulfonyl chloride-intensified metal chloride intercalation of graphite for efficient sodium storage","authors":"Shu-qin Lan ,&nbsp;Wei-cheng Ren ,&nbsp;Zhao Wang ,&nbsp;Chang Yu ,&nbsp;Jin-he Yu ,&nbsp;Ying-bin Liu ,&nbsp;Yuan-yang Xie ,&nbsp;Xiu-bo Zhang ,&nbsp;Jian-jian Wang ,&nbsp;Jie-shan Qiu","doi":"10.1016/S1872-5805(24)60851-6","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60851-6","url":null,"abstract":"<div><p>Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO<sub>2</sub>Cl<sub>2</sub> was used as a chlorine generator to intensify the intercalation of BiCl<sub>3</sub> into graphite (BiCl<sub>3</sub>-GICs), which avoided the potential risks, such as Cl<sub>2</sub> leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO<sub>2</sub>Cl<sub>2</sub>, BiCl<sub>3</sub>, and graphite at 200 <sup>o</sup>C for 20 h, the synthesized BiCl<sub>3</sub>-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl<sub>3</sub> intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate performance (170 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl<sub>3</sub> is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 538-548"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in graphene/molybdenum dichalcogenide-based van der Waals heterostructure photodetectors 基于石墨烯/二卤化钼的范德华异质结构光电探测器的研究进展
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60853-X
Xin-hua Zhang , Wei-di Liu , You-pin Gong , Qing-feng Liu , Zhi-gang Chen

Graphene is widely used in photodetection because of its high carrier mobility and wide spectral absorption range. However, its high dark current caused by its low light absorption severely limits its performance. Molybdenum dihalide (MoX2, X= S, Se and Te) has a high absorption coefficient, which can compensate for the high dark current in graphene-based photodetectors and result in outstanding photoelectronic properties of those based on a graphene/MoX2 van der Waals heterostructure (vdWH). In this review, we firstly review working principles, performance indicators, and structures of photodetectors. After that, the significance of graphene/MoX2vdWH photodetectors is highlighted from the fundamental perspective. Preparation methodologies and performance enhancement strategies of graphene/MoX2vdWH photodetectors are correspondingly summarized. In the end, we highlight the current challenges and future directions of the graphene/MoX2vdWH photodetectors. This review will guide the design of high-performance vdWH photodetectors.

石墨烯具有高载流子迁移率和宽光谱吸收范围,因此被广泛应用于光电探测领域。然而,石墨烯对光的吸收率低导致暗电流大,严重限制了其性能。二卤化钼(MoX2,X= S、Se 和 Te)具有较高的吸收系数,可以弥补石墨烯基光电探测器的高暗电流,从而使基于石墨烯/MoX2 范德华异质结构(vdWH)的光电探测器具有出色的光电特性。在这篇综述中,我们首先回顾了光电探测器的工作原理、性能指标和结构。然后,从基础角度强调了石墨烯/MoX2vdWH 光电探测器的意义。相应地总结了石墨烯/MoX2vdWH 光电探测器的制备方法和性能增强策略。最后,我们强调了石墨烯/MoX2vdWH 光电探测器目前面临的挑战和未来的发展方向。本综述将为高性能 vdWH 光电探测器的设计提供指导。
{"title":"Advances in graphene/molybdenum dichalcogenide-based van der Waals heterostructure photodetectors","authors":"Xin-hua Zhang ,&nbsp;Wei-di Liu ,&nbsp;You-pin Gong ,&nbsp;Qing-feng Liu ,&nbsp;Zhi-gang Chen","doi":"10.1016/S1872-5805(24)60853-X","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60853-X","url":null,"abstract":"<div><p>Graphene is widely used in photodetection because of its high carrier mobility and wide spectral absorption range. However, its high dark current caused by its low light absorption severely limits its performance. Molybdenum dihalide (MoX<sub>2</sub>, X= S, Se and Te) has a high absorption coefficient, which can compensate for the high dark current in graphene-based photodetectors and result in outstanding photoelectronic properties of those based on a graphene/MoX<sub>2</sub> van der Waals heterostructure (vdWH). In this review, we firstly review working principles, performance indicators, and structures of photodetectors. After that, the significance of graphene/MoX<sub>2</sub>vdWH photodetectors is highlighted from the fundamental perspective. Preparation methodologies and performance enhancement strategies of graphene/MoX<sub>2</sub>vdWH photodetectors are correspondingly summarized. In the end, we highlight the current challenges and future directions of the graphene/MoX<sub>2</sub>vdWH photodetectors. This review will guide the design of high-performance vdWH photodetectors.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 439-457"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction 电催化二氧化碳还原双金属催化剂的合成、表征和机理综述
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60860-7
Yin-li Liao , Heng-bo Huang , Ru-yu Zou , Shu-ling Shen , Xin-juan Liu , Zhi-hong Tang

The electrocatalytic CO2 reduction reaction (CO2RR) is an environmentally friendly way to convert CO2 into valuable chemicals. However, CO2 conversion is a complex process, which contains 2, 4, 6, 8 and 12 electron transfer processes. It is very important to develop efficient catalysts to precisely control the number of electron transfers for the chemicals required. Single-metal catalysts have some deficiencies, including slow reaction kinetics, low product selectivity and inadequate stability. In response to these challenges, bimetallic catalysts have received significant attention owing to their unique structure and improved performance. The introduction of secondary metals alters the catalyst’s electronic structure, and creates novel active sites, as well as optimizing their interaction with the intermediates. This review provides a comprehensive account of atomically distributed bimetals based on carbon materials and non-atomic distributed bimetals such as alloys and heterostructures, including their synthesis methods, characterization, and the outcomes of different catalysts. Catalytic mechanisms of different bimetallic catalysts are proposed and challenges encountered in the CO2RR are considered.

电催化二氧化碳还原反应(CO2RR)是一种将二氧化碳转化为有价值化学品的环保方法。然而,二氧化碳转化是一个复杂的过程,其中包含 2、4、6、8 和 12 个电子转移过程。开发高效催化剂以精确控制所需化学品的电子转移数量非常重要。单金属催化剂存在一些缺陷,包括反应动力学缓慢、产品选择性低和稳定性不足。为了应对这些挑战,双金属催化剂因其独特的结构和更高的性能而备受关注。二次金属的引入改变了催化剂的电子结构,创造了新的活性位点,并优化了它们与中间产物的相互作用。本综述全面介绍了基于碳材料的原子分布式双金属和非原子分布式双金属(如合金和异质结构),包括它们的合成方法、表征和不同催化剂的结果。提出了不同双金属催化剂的催化机理,并考虑了在 CO2RR 中遇到的挑战。
{"title":"A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction","authors":"Yin-li Liao ,&nbsp;Heng-bo Huang ,&nbsp;Ru-yu Zou ,&nbsp;Shu-ling Shen ,&nbsp;Xin-juan Liu ,&nbsp;Zhi-hong Tang","doi":"10.1016/S1872-5805(24)60860-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60860-7","url":null,"abstract":"<div><p>The electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is an environmentally friendly way to convert CO<sub>2</sub> into valuable chemicals. However, CO<sub>2</sub> conversion is a complex process, which contains 2, 4, 6, 8 and 12 electron transfer processes. It is very important to develop efficient catalysts to precisely control the number of electron transfers for the chemicals required. Single-metal catalysts have some deficiencies, including slow reaction kinetics, low product selectivity and inadequate stability. In response to these challenges, bimetallic catalysts have received significant attention owing to their unique structure and improved performance. The introduction of secondary metals alters the catalyst’s electronic structure, and creates novel active sites, as well as optimizing their interaction with the intermediates. This review provides a comprehensive account of atomically distributed bimetals based on carbon materials and non-atomic distributed bimetals such as alloys and heterostructures, including their synthesis methods, characterization, and the outcomes of different catalysts. Catalytic mechanisms of different bimetallic catalysts are proposed and challenges encountered in the CO<sub>2</sub>RR are considered.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 367-387"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable construction of CoP nanoparticles anchored on a nitrogen-doped porous carbon as an electrocatalyst for highly efficient oxygen reduction in Zn-air batteries 可控构建锚定在掺氮多孔碳上的 CoP 纳米粒子,作为锌-空气电池中高效氧气还原的电催化剂
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60848-6
Xiao-li Yan , Kui Wang , Shu-wei Hao , Guang-da Zhou , Hao-wei Yang , Hua Zhang , Jun-jie Guo

Exploring cost-efficient and highly-efficient noble metal-free catalysts for the oxygen reduction reactions (ORRs) involved in sustainable energy devices remains a great challenge. Transition-metal phosphides supported on heteroatom-doped carbons have shown potential as alternative candidates for precious metals because of their tunable electronic structures and higher catalytic performance. Phosphating was used to construct CoP nanoparticles (NPs) anchored on a nitrogen-doped porous carbon framework (CoP@NC) from Co NPs loaded on NC, using PH3 gas released from NaH2PO2 during heat treatment. The dodecahedral structure of Co NPs was retained in their transformation to CoP NPs. The CoP@NC electrocatalyst shows a remarkable ORR activity with a half-wave potential up to 0.92 V under alkaline conditions, which is attributed to the combined coupling between the well dispersed CoP nanoparticles on the nitrogen-doped carbon and the efficient mass transport in the porous structure. Zinc-air batteries assembled with the CoP@NC electrocatalyst as a cathode have a high open-circuit voltage of 1.51 V and power density of 210.1 mW cm−2. This work provides a novel strategy to develop low-cost catalysts with an excellent ORR performance to promote their practical use in metal-air batteries

为可持续能源装置所涉及的氧还原反应(ORR)探索具有成本效益和高效率的无贵金属催化剂仍然是一项巨大的挑战。掺杂杂原子的碳上支持的过渡金属磷化物因其可调的电子结构和更高的催化性能而显示出替代贵金属的潜力。在热处理过程中,利用从 NaH2PO2 中释放出的 PH3 气体,磷化法在掺氮多孔碳框架(CoP@NC)上锚定了 CoP 纳米颗粒(NPs)。Co NPs 在转化为 CoP NPs 的过程中保留了十二面体结构。在碱性条件下,CoP@NC 电催化剂显示出显著的 ORR 活性,半波电位高达 0.92 V,这归功于掺氮碳上分散良好的 CoP 纳米粒子与多孔结构中有效的质量传输之间的耦合作用。以 CoP@NC 电催化剂为阴极组装的锌-空气电池具有 1.51 V 的高开路电压和 210.1 mW cm-2 的功率密度。这项研究为开发具有优异 ORR 性能的低成本催化剂提供了一种新策略,从而促进了催化剂在金属空气电池中的实际应用。
{"title":"Controllable construction of CoP nanoparticles anchored on a nitrogen-doped porous carbon as an electrocatalyst for highly efficient oxygen reduction in Zn-air batteries","authors":"Xiao-li Yan ,&nbsp;Kui Wang ,&nbsp;Shu-wei Hao ,&nbsp;Guang-da Zhou ,&nbsp;Hao-wei Yang ,&nbsp;Hua Zhang ,&nbsp;Jun-jie Guo","doi":"10.1016/S1872-5805(24)60848-6","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60848-6","url":null,"abstract":"<div><p>Exploring cost-efficient and highly-efficient noble metal-free catalysts for the oxygen reduction reactions (ORRs) involved in sustainable energy devices remains a great challenge. Transition-metal phosphides supported on heteroatom-doped carbons have shown potential as alternative candidates for precious metals because of their tunable electronic structures and higher catalytic performance. Phosphating was used to construct CoP nanoparticles (NPs) anchored on a nitrogen-doped porous carbon framework (CoP@NC) from Co NPs loaded on NC, using PH<sub>3</sub> gas released from NaH<sub>2</sub>PO<sub>2</sub> during heat treatment. The dodecahedral structure of Co NPs was retained in their transformation to CoP NPs. The CoP@NC electrocatalyst shows a remarkable ORR activity with a half-wave potential up to 0.92 V under alkaline conditions, which is attributed to the combined coupling between the well dispersed CoP nanoparticles on the nitrogen-doped carbon and the efficient mass transport in the porous structure. Zinc-air batteries assembled with the CoP@NC electrocatalyst as a cathode have a high open-circuit voltage of 1.51 V and power density of 210.1 mW cm<sup>−2</sup>. This work provides a novel strategy to develop low-cost catalysts with an excellent ORR performance to promote their practical use in metal-air batteries</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 526-537"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of carbon-supported single-atom catalysts for electrochemical reactions 用于电化学反应的碳支撑单原子催化剂综述
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60863-2
Yi-cheng Wang , Xiao-bo Ma , Ayeza , Chen-xu Wang , Yang Li , Cheng-long Yang , Zhe-fan Wang , Chao Wang , Chao Hu , Ya-ting Zhang

Recent advances in the use of carbon-supported single-atom catalysts (SACs) for electrochemical reactions are comprehensively reviewed. The development and advantages of carbon-supported SACs are briefly introduced, followed by a detailed summary of the synthesis strategies used, including vapor phase transport, high temperature pyrolysis and wet chemical methods. Advanced characterization techniques for carbon-supported SACs are also reviewed. The use of carbon-supported SACs in different fields, such as the oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are summarized. Special emphasis is given to the modification strategies used to enable carbon-supported SACs to have an excellent electrocatalytic performance. Finally, the prospects and challenges associated with using carbon-supported SACs for electrochemical reactions are discussed.

本文全面综述了使用碳支撑单原子催化剂(SAC)进行电化学反应的最新进展。首先简要介绍了碳支撑单原子催化剂的发展和优势,然后详细总结了所使用的合成策略,包括气相传输、高温热解和湿化学方法。此外,还回顾了碳支撑 SAC 的先进表征技术。总结了碳支撑 SAC 在不同领域的应用,如氧还原反应、二氧化碳还原反应、氮还原反应、氢进化反应和氧进化反应。特别强调了为使碳支撑 SAC 具有优异的电催化性能而采用的改性策略。最后,讨论了将碳支撑 SAC 用于电化学反应的前景和挑战。
{"title":"A review of carbon-supported single-atom catalysts for electrochemical reactions","authors":"Yi-cheng Wang ,&nbsp;Xiao-bo Ma ,&nbsp;Ayeza ,&nbsp;Chen-xu Wang ,&nbsp;Yang Li ,&nbsp;Cheng-long Yang ,&nbsp;Zhe-fan Wang ,&nbsp;Chao Wang ,&nbsp;Chao Hu ,&nbsp;Ya-ting Zhang","doi":"10.1016/S1872-5805(24)60863-2","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60863-2","url":null,"abstract":"<div><p>Recent advances in the use of carbon-supported single-atom catalysts (SACs) for electrochemical reactions are comprehensively reviewed. The development and advantages of carbon-supported SACs are briefly introduced, followed by a detailed summary of the synthesis strategies used, including vapor phase transport, high temperature pyrolysis and wet chemical methods. Advanced characterization techniques for carbon-supported SACs are also reviewed. The use of carbon-supported SACs in different fields, such as the oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are summarized. Special emphasis is given to the modification strategies used to enable carbon-supported SACs to have an excellent electrocatalytic performance. Finally, the prospects and challenges associated with using carbon-supported SACs for electrochemical reactions are discussed.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 407-438"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron and nitrogen co-doped sodium alginate-based porous carbons for durable and fast Zn-ion hybrid capacitors 硼和氮共掺杂海藻酸钠基多孔碳,用于制造耐用、快速的 Zn 离子混合电容器
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60847-4
Ya-ping Lu , Hong-xing Wang , Lan-tao Liu , Wei-wei Pang , Xiao-hong Chen

In recent years, zinc-ion hybrid capacitors (ZIHCs) have attracted increasing attention due to their environmental friendliness and excellent electrochemical properties. However, their performance is mainly limited by the electrochemical performance of the cathode, so it is necessary to develop an advanced cathode material. N, B co-doped sodium alginate-based porous carbon (NBSPC) was prepared by one-step co-carbonization using sodium alginate as the matrix and NH4B5O8 as the N and B source. This N, B co-doping strategy improves the pore structure of the carbon materials and increases the number of surface functional groups, greatly improving the capacitive behavior of the raw materials and thus improving their electrochemical performance. When used as the cathode in ZIHCs, the NBSPC had an excellent rate performance (85.4 mAh g−1 even at ultra-high current density of 40 A g−1) and good cycling stability (15 000 cycles at 20 A g−1 with a capacity retention rate of 94.5%).

近年来,锌离子混合电容器(ZIHC)因其环保性和优异的电化学性能而日益受到关注。然而,其性能主要受限于阴极的电化学性能,因此有必要开发一种先进的阴极材料。以海藻酸钠为基质,NH4B5O8 为 N 和 B 源,通过一步共碳化法制备了 N、B 共掺杂海藻酸钠基多孔碳(NBSPC)。这种 N、B 共掺杂策略改善了碳材料的孔隙结构,增加了表面官能团的数量,大大改善了原材料的电容行为,从而提高了其电化学性能。在用作 ZIHC 的阴极时,NBSPC 具有优异的速率性能(即使在 40 A g-1 的超高电流密度下也能达到 85.4 mAh g-1)和良好的循环稳定性(在 20 A g-1 下循环 15000 次,容量保持率为 94.5%)。
{"title":"Boron and nitrogen co-doped sodium alginate-based porous carbons for durable and fast Zn-ion hybrid capacitors","authors":"Ya-ping Lu ,&nbsp;Hong-xing Wang ,&nbsp;Lan-tao Liu ,&nbsp;Wei-wei Pang ,&nbsp;Xiao-hong Chen","doi":"10.1016/S1872-5805(24)60847-4","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60847-4","url":null,"abstract":"<div><p>In recent years, zinc-ion hybrid capacitors (ZIHCs) have attracted increasing attention due to their environmental friendliness and excellent electrochemical properties. However, their performance is mainly limited by the electrochemical performance of the cathode, so it is necessary to develop an advanced cathode material. N, B co-doped sodium alginate-based porous carbon (NBSPC) was prepared by one-step co-carbonization using sodium alginate as the matrix and NH<sub>4</sub>B<sub>5</sub>O<sub>8</sub> as the N and B source. This N, B co-doping strategy improves the pore structure of the carbon materials and increases the number of surface functional groups, greatly improving the capacitive behavior of the raw materials and thus improving their electrochemical performance. When used as the cathode in ZIHCs, the NBSPC had an excellent rate performance (85.4 mAh g<sup>−1</sup> even at ultra-high current density of 40 A g<sup>−1</sup>) and good cycling stability (15 000 cycles at 20 A g<sup>−1</sup> with a capacity retention rate of 94.5%).</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 506-514"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation 用于光催化清洁能源发电的基于碳材料的 Z 型和 S 型异质结综述
IF 5.7 3区 材料科学 Q2 Materials Science Pub Date : 2024-06-01 DOI: 10.1016/S1872-5805(24)60857-7
Sahil Rana , Amit Kumar , Tong-tong Wang , Gaurav Sharma , Pooja Dhiman , Alberto García-Penas

Carbon materials, including carbon nanotubes/nanofibers, graphene, graphene oxide, reduced graphene oxide, graphyne, graphdiyne, carbon quantum dots and fullerenes, have received considerable attention in recent years because of their unique properties such as high conductivity, excellent stability and biocompatibility. The integration of these materials into Z-scheme and S-scheme heterojunctions has emerged as a transformative strategy to increase their photocatalytic efficiency for energy conversion applications. We first consider the fundamental principles of clean energy generation such as photocatalytic H2 generation and CO2 reduction, elucidating their respective mechanisms and advantages. Various types of carbon materials, their synthesis and construction of Z-scheme and S-scheme heterojunctions are then discussed, emphasizing their role in promoting charge separation, reducing recombination losses and extending the spectral response range. With a focus on solar energy production, recent advances in carbon-based Z-scheme and S-scheme heterojunctions are discussed and summarized for photocatalytic H2 generation and CO2 reduction. Lastly, the current problems in the field of carbon-based photocatalysts are discussed with insights for the future development of this field.

碳材料,包括碳纳米管/纳米纤维、石墨烯、氧化石墨烯、还原氧化石墨烯、石墨炔、石墨二炔、碳量子点和富勒烯,由于具有高导电性、优异的稳定性和生物相容性等独特性能,近年来受到了广泛关注。将这些材料集成到 Z 型和 S 型异质结中已成为一种变革性战略,可提高它们在能源转换应用中的光催化效率。我们首先探讨了光催化产生 H2 和还原 CO2 等清洁能源的基本原理,阐明了它们各自的机理和优势。然后讨论了各种类型的碳材料、其合成以及 Z 型和 S 型异质结的构建,强调了它们在促进电荷分离、减少重组损耗和扩展光谱响应范围方面的作用。以太阳能生产为重点,讨论并总结了碳基 Z 型和 S 型异质结在光催化产生 H2 和还原 CO2 方面的最新进展。最后,讨论了当前碳基光催化剂领域存在的问题,并对该领域的未来发展提出了见解。
{"title":"A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation","authors":"Sahil Rana ,&nbsp;Amit Kumar ,&nbsp;Tong-tong Wang ,&nbsp;Gaurav Sharma ,&nbsp;Pooja Dhiman ,&nbsp;Alberto García-Penas","doi":"10.1016/S1872-5805(24)60857-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60857-7","url":null,"abstract":"<div><p>Carbon materials, including carbon nanotubes/nanofibers, graphene, graphene oxide, reduced graphene oxide, graphyne, graphdiyne, carbon quantum dots and fullerenes, have received considerable attention in recent years because of their unique properties such as high conductivity, excellent stability and biocompatibility. The integration of these materials into Z-scheme and S-scheme heterojunctions has emerged as a transformative strategy to increase their photocatalytic efficiency for energy conversion applications. We first consider the fundamental principles of clean energy generation such as photocatalytic H<sub>2</sub> generation and CO<sub>2</sub> reduction, elucidating their respective mechanisms and advantages. Various types of carbon materials, their synthesis and construction of Z-scheme and S-scheme heterojunctions are then discussed, emphasizing their role in promoting charge separation, reducing recombination losses and extending the spectral response range. With a focus on solar energy production, recent advances in carbon-based Z-scheme and S-scheme heterojunctions are discussed and summarized for photocatalytic H<sub>2</sub> generation and CO<sub>2</sub> reduction. Lastly, the current problems in the field of carbon-based photocatalysts are discussed with insights for the future development of this field.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 458-482"},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Carbon Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1