Pub Date : 2024-08-01DOI: 10.1016/S1872-5805(22)60646-2
Interfacial adhesion between carbon fibers (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. It is therefore of great importance to impregnate the CF bundles with PEKK as efficiently as possible. We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280, 320, 340 and 360 °C. The excellent wettability or infiltration of the PEKK solution guarantees a full covering and its tight binding to CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. The interior of the CF bundles is completely and uniformly filled with PEKK by solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS reached 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.
{"title":"Polyetherketoneketone/carbon fiber composites with an amorphous interface prepared by solution impregnation","authors":"","doi":"10.1016/S1872-5805(22)60646-2","DOIUrl":"10.1016/S1872-5805(22)60646-2","url":null,"abstract":"<div><p>Interfacial adhesion between carbon fibers (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. It is therefore of great importance to impregnate the CF bundles with PEKK as efficiently as possible. We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280, 320, 340 and 360 °C. The excellent wettability or infiltration of the PEKK solution guarantees a full covering and its tight binding to CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. The interior of the CF bundles is completely and uniformly filled with PEKK by solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS reached 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/S1872-5805(24)60864-4
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecular level, which would be useful in fabrication. An isotropic synthetic pitch was prepared by a chlorine- and/or nitrogen-induced substitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N, which for this study were chloromethyl naphthalene and quinoline. This method was verified by investigating the structural changes under different synthesis conditions, and the synthesis mechanism induced by aromatics containing Cl was also probed. The result shows that the pyridinic N in quinoline contains a lone pair of electrons, and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl. The reaction between such free radicals causes strong homopolymerization and oligomerization. A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch. A linear molecular structure was formed by the Cl substitution reaction, which produced a highly spinnable pitch with a softening point of 258.6 °C, and carbon fibers with a tensile strength of 1 163.82 MPa were obtained. This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.
用芳香族单体制备合成沥青可以在分子水平上轻松调节结构取向,这在制造过程中非常有用。本研究采用氯和/或氮诱导的取代聚合反应方法,使用含 Cl 和 N 的芳香烃前体(本研究使用的是氯甲基萘和喹啉)制备了各向同性合成沥青。通过研究不同合成条件下的结构变化,验证了该方法的有效性,并探究了含 Cl 芳烃诱导的合成机理。结果表明,喹啉中的吡啶 N 含有一对孤对电子,是与含 Cl 的芳香烃偶联诱导聚合反应的有效活性位点。这种自由基之间的反应会引起强烈的均聚和低聚作用。较高的反应温度和较长的反应时间可显著提高聚合度,从而提高沥青的软化点。通过 Cl 取代反应形成了线性分子结构,产生了软化点为 258.6 °C 的高可纺性沥青,并获得了拉伸强度为 1 163.82 MPa 的碳纤维。这项研究为制备高质量可纺沥青提供了一种相对简单和安全的方法。
{"title":"Preparation of a high-performance synthetic pitch from aromatic hydrocarbons containing N/Cl","authors":"","doi":"10.1016/S1872-5805(24)60864-4","DOIUrl":"10.1016/S1872-5805(24)60864-4","url":null,"abstract":"<div><p>The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecular level, which would be useful in fabrication. An isotropic synthetic pitch was prepared by a chlorine- and/or nitrogen-induced substitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N, which for this study were chloromethyl naphthalene and quinoline. This method was verified by investigating the structural changes under different synthesis conditions, and the synthesis mechanism induced by aromatics containing Cl was also probed. The result shows that the pyridinic N in quinoline contains a lone pair of electrons, and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl. The reaction between such free radicals causes strong homopolymerization and oligomerization. A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch. A linear molecular structure was formed by the Cl substitution reaction, which produced a highly spinnable pitch with a softening point of 258.6 °C, and carbon fibers with a tensile strength of 1 163.82 MPa were obtained. This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/S1872-5805(24)60862-0
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance carbon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperatures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly improve the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pretreatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a catalyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.
{"title":"A review of the catalytic preparation of mesophase pitch","authors":"","doi":"10.1016/S1872-5805(24)60862-0","DOIUrl":"10.1016/S1872-5805(24)60862-0","url":null,"abstract":"<div><p>Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance carbon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperatures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly improve the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pretreatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a catalyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/S1872-5805(22)60643-7
Polyether ether ketone (PEEK) has good mechanical properties. However, its high viscosity when molten limits its use because it is hard to process. PEEK nanocomposites containing both carbon nanotubes (CNTs) and polyether imide (PEI) were prepared by a direct wet powder blending method using a vertical injection molding machine. The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50% while producing an increase in the toughness of the nanocomposites, whose strain to failure increased by 129%, and fracture energy increased by 97%. The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance. This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
{"title":"Increasing the toughness while reducing the viscosity of carbon nano-tube/polyether imide/polyether ether ketone nanocomposites","authors":"","doi":"10.1016/S1872-5805(22)60643-7","DOIUrl":"10.1016/S1872-5805(22)60643-7","url":null,"abstract":"<div><p>Polyether ether ketone (PEEK) has good mechanical properties. However, its high viscosity when molten limits its use because it is hard to process. PEEK nanocomposites containing both carbon nanotubes (CNTs) and polyether imide (PEI) were prepared by a direct wet powder blending method using a vertical injection molding machine. The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50% while producing an increase in the toughness of the nanocomposites, whose strain to failure increased by 129%, and fracture energy increased by 97%. The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance. This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/S1872-5805(24)60867-X
Graphitized carbon foams (GFms) were prepared using mesophase pitch (MP) as a raw material by foaming (450 °C), pre-oxidation (320 °C), carbonization (1 000 °C) and graphitization (2 800 °C). The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared, and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage. Semi-quantitative spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm derived from it. Combined with microscopic observations, the change from precursor to GFm was analyzed. The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch, which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties. Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores, giving the best compression resistance (2.47 MPa), the highest thermal conductivity (64.47 W/(m·K)) and the lowest electrical resistance (13.02 μΩ·m). Characterization combining semi-quantitative spectroscopic analysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
{"title":"Semi-quantitative analysis of the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy","authors":"","doi":"10.1016/S1872-5805(24)60867-X","DOIUrl":"10.1016/S1872-5805(24)60867-X","url":null,"abstract":"<div><p>Graphitized carbon foams (GFms) were prepared using mesophase pitch (MP) as a raw material by foaming (450 °C), pre-oxidation (320 °C), carbonization (1 000 °C) and graphitization (2 800 °C). The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared, and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage. Semi-quantitative spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm derived from it. Combined with microscopic observations, the change from precursor to GFm was analyzed. The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch, which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties. Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores, giving the best compression resistance (2.47 MPa), the highest thermal conductivity (64.47 W/(m·K)) and the lowest electrical resistance (13.02 μΩ·m). Characterization combining semi-quantitative spectroscopic analysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/S1872-5805(24)60858-9
Hong-kun Zhuang, Wen-cui Li, Bin He, Jia-he Lv, Jing-song Wang, Ming-yuan Shen, An-hui Lu
Petroleum coke (PC) is a valuable precursor for sodium-ion battery (SIB) anodes due to its high carbon content and low cost. The regulation of the microcrystalline state and pore structure of the easily-graphitized PC-based carbon is crucial for creating abundant Na+ storage sites. Here we used a precursor transformation strategy to increase the carbon interlayer spacing and generate abundant closed pores in PC-based carbon, significantly increasing its Na+ storage capacity in the plateau region. This was achieved by introducing a large number of oxygen functional groups through mixed acid treatment and then using high-temperature carbonization to decompose the oxygen functional groups and rearrange the carbon microcrystallites, resulting in a transition from open to closed pores. The optimized samples provide a large reversible capacity of 356.0 mAh g−1 at 0.02 A g−1, of which approximately 93% is below 1.0 V. Galvanostatic intermittent titration (GITT) and in-situ X-ray diffraction (XRD) analysis indicate that the sodium storage capacity in the low voltage plateau region involves a joint contribution of interlayer insertion and closed pore filling processes. This study presents a comprehensive method for the development of high-performance carbon anodes using low-cost and highly aromatic precursors.
石油焦(PC)含碳量高且成本低廉,是钠离子电池(SIB)阳极的重要前驱体。调节易石墨化 PC 基碳的微晶状态和孔隙结构对于创造丰富的 Na+ 储存位点至关重要。在此,我们采用了一种前驱体转化策略来增加碳层间间距,并在 PC 基碳中产生大量封闭孔隙,从而显著提高其在高原区的 Na+ 储存能力。这是通过混合酸处理引入大量氧官能团,然后利用高温碳化分解氧官能团并重新排列碳微晶,从而实现从开放孔隙到封闭孔隙的转变。优化后的样品在 0.02 A g-1 的电压下具有 356.0 mAh g-1 的大可逆容量,其中约 93% 的容量低于 1.0 V。电位静态间歇滴定(GITT)和原位 X 射线衍射(XRD)分析表明,低电压高原区的钠存储容量涉及层间插入和闭孔填充过程的共同作用。本研究提出了一种利用低成本高芳香族前驱体开发高性能碳阳极的综合方法。
{"title":"Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage","authors":"Hong-kun Zhuang, Wen-cui Li, Bin He, Jia-he Lv, Jing-song Wang, Ming-yuan Shen, An-hui Lu","doi":"10.1016/S1872-5805(24)60858-9","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60858-9","url":null,"abstract":"<div><p>Petroleum coke (PC) is a valuable precursor for sodium-ion battery (SIB) anodes due to its high carbon content and low cost. The regulation of the microcrystalline state and pore structure of the easily-graphitized PC-based carbon is crucial for creating abundant Na<sup>+</sup> storage sites. Here we used a precursor transformation strategy to increase the carbon interlayer spacing and generate abundant closed pores in PC-based carbon, significantly increasing its Na<sup>+</sup> storage capacity in the plateau region. This was achieved by introducing a large number of oxygen functional groups through mixed acid treatment and then using high-temperature carbonization to decompose the oxygen functional groups and rearrange the carbon microcrystallites, resulting in a transition from open to closed pores. The optimized samples provide a large reversible capacity of 356.0 mAh g<sup>−1</sup> at 0.02 A g<sup>−1</sup>, of which approximately 93% is below 1.0 V. Galvanostatic intermittent titration (GITT) and in-situ X-ray diffraction (XRD) analysis indicate that the sodium storage capacity in the low voltage plateau region involves a joint contribution of interlayer insertion and closed pore filling processes. This study presents a comprehensive method for the development of high-performance carbon anodes using low-cost and highly aromatic precursors.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/S1872-5805(24)60843-7
Rui Zhang , Yong Tian , Wei-li Zhang , Jia-yin Song , Jie Min , Bo Pang , Jian-jun Chen
The use of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number are reaching their end of life. The recycling and re-use of spent LIBs has attracted great attention. Because of the unchanged layer structure of the graphite anode in these batteries, their recycling does not require high-temperature graphitization, and only focuses on the removal of internal impurities. We used electrochemical treatment for the deep removal of internal metal impurities after the heat treatment, ultrasonic separation, and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it was found that the presence of organic impurities seriously affects the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but reduces the cycling stability of graphite. The content of the main metal impurities in the final recycled graphite was less than 20 mg/kg. The discharge specific capacity reached358.7 mAh/g at 0.1 C, and the capacity remained at 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can efficiently remove impurities in the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode has a good electrochemical performance. Our work provides a new recycling and regeneration path for spent LIB graphite anodes.
锂离子电池(LIB)的使用越来越广泛,大量电池即将报废。废旧锂离子电池的回收和再利用引起了人们的极大关注。由于这些电池中的石墨负极层结构不变,因此其回收利用不需要高温石墨化,只需要去除内部杂质即可。在对废石墨进行热处理、超声波分离和酸浸后,我们采用电化学处理方法深度去除内部金属杂质。通过对比分析不同回收阶段的石墨,发现有机杂质的存在严重影响了电化学性能。痕量无机杂质(如 Cu 和 Fe)的存在对初始放电比容量影响不大,但会降低石墨的循环稳定性。最终再生石墨中主要金属杂质的含量小于 20 mg/kg。放电比容量在 0.1 C 时达到 358.7 mAh/g,循环 150 次后容量保持在 95.85%。与已报道的废石墨回收方法相比,该方法能有效去除石墨中的杂质,解决了目前废石墨酸碱消耗高、杂质去除不彻底、能耗高等问题。回收后的石墨阳极具有良好的电化学性能。我们的工作为废 LIB 石墨阳极的回收和再生提供了一条新的途径。
{"title":"Electrochemical methods for the removal of impurities from thegraphite anode in spent ternary lithium-ion batteries","authors":"Rui Zhang , Yong Tian , Wei-li Zhang , Jia-yin Song , Jie Min , Bo Pang , Jian-jun Chen","doi":"10.1016/S1872-5805(24)60843-7","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60843-7","url":null,"abstract":"<div><p>The use of lithium-ion batteries (LIBs) is becoming increasingly widespread, and a large number are reaching their end of life. The recycling and re-use of spent LIBs has attracted great attention. Because of the unchanged layer structure of the graphite anode in these batteries, their recycling does not require high-temperature graphitization, and only focuses on the removal of internal impurities. We used electrochemical treatment for the deep removal of internal metal impurities after the heat treatment, ultrasonic separation, and acid leaching of spent graphite. By comparing and analyzing the graphite in different recovery stages, it was found that the presence of organic impurities seriously affects the electrochemical performance. The presence of trace inorganic impurities such as Cu and Fe has little effect on the initial discharge specific capacity, but reduces the cycling stability of graphite. The content of the main metal impurities in the final recycled graphite was less than 20 mg/kg. The discharge specific capacity reached358.7 mAh/g at 0.1 C, and the capacity remained at 95.85% after 150 cycles. Compared with the reported methods for recycling spent graphite, this method can efficiently remove impurities in the graphite, solve the current problems of high acid and alkali consumption, incomplete impurity removal and high energy consumption. The recycled graphite anode has a good electrochemical performance. Our work provides a new recycling and regeneration path for spent LIB graphite anodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/S1872-5805(24)60854-1
Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang
Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g−1 at 1.2 V in a 1000 mg L−1 NaCl solution, a remarkable desalination rate of 0.27 mg g−1 s−1, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L−1 NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.
{"title":"Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization","authors":"Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang","doi":"10.1016/S1872-5805(24)60854-1","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60854-1","url":null,"abstract":"<div><p>Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g<sup>−1</sup> at 1.2 V in a 1000 mg L<sup>−1</sup> NaCl solution, a remarkable desalination rate of 0.27 mg g<sup>−1</sup> s<sup>−1</sup>, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L<sup>−1</sup> NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.
{"title":"A review of graphdiyne in aqueous ion batteries","authors":"Xian-min Xu , Wen-cong Feng , Jing-ke Ren , Wen Luo","doi":"10.1016/S1872-5805(24)60852-8","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60852-8","url":null,"abstract":"<div><p>Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/S1872-5805(24)60851-6
Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu
Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO2Cl2 was used as a chlorine generator to intensify the intercalation of BiCl3 into graphite (BiCl3-GICs), which avoided the potential risks, such as Cl2 leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO2Cl2, BiCl3, and graphite at 200 oC for 20 h, the synthesized BiCl3-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl3 intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g−1 at 1 A g−1 and an excellent rate performance (170 mAh g−1 at 5 A g−1). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl3 is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.
具有优异导电性和较大层间距的金属氯化物插层石墨非常适合用于钠离子电池。然而,卤素蒸汽通常是启动插层过程不可或缺的因素,这使得设备设计和实验具有挑战性。在这项工作中,使用 SO2Cl2 作为氯气发生器来强化 BiCl3 在石墨中的插层(BiCl3-GICs),避免了传统方法中 Cl2 泄漏等潜在风险。实验的运行效率也得到了提高。将 SO2Cl2、BiCl3 和石墨在 200 oC 下反应 20 h 后,合成的 BiCl3-GICs 具有较大的层间距(1.26 nm)和较高的 BiCl3 插层量(42%),从而使 SIBs 在 1 A g-1 时具有 213 mAh g-1 的高比容量和优异的速率性能(5 A g-1 时为 170 mAh g-1)。原位拉曼光谱显示,石墨与插层 BiCl3 之间的电子相互作用在第一次放电过程中减弱,这有利于钠的储存。这项研究成果广泛地促进了其他金属氯化物插层石墨的插层,为开发先进的储能设备提供了可能性。
{"title":"Sulfonyl chloride-intensified metal chloride intercalation of graphite for efficient sodium storage","authors":"Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu","doi":"10.1016/S1872-5805(24)60851-6","DOIUrl":"https://doi.org/10.1016/S1872-5805(24)60851-6","url":null,"abstract":"<div><p>Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO<sub>2</sub>Cl<sub>2</sub> was used as a chlorine generator to intensify the intercalation of BiCl<sub>3</sub> into graphite (BiCl<sub>3</sub>-GICs), which avoided the potential risks, such as Cl<sub>2</sub> leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO<sub>2</sub>Cl<sub>2</sub>, BiCl<sub>3</sub>, and graphite at 200 <sup>o</sup>C for 20 h, the synthesized BiCl<sub>3</sub>-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl<sub>3</sub> intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate performance (170 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl<sub>3</sub> is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}