Pub Date : 2023-07-03DOI: 10.1186/s12989-023-00536-8
Angela J T Bosch, Theresa V Rohm, Shefaa AlAsfoor, Andy J Y Low, Zora Baumann, Neena Parayil, Faiza Noreen, Julien Roux, Daniel T Meier, Claudia Cavelti-Weder
Background: We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants.
Methods: To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways.
Results: Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure.
Conclusion: In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.
{"title":"Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice.","authors":"Angela J T Bosch, Theresa V Rohm, Shefaa AlAsfoor, Andy J Y Low, Zora Baumann, Neena Parayil, Faiza Noreen, Julien Roux, Daniel T Meier, Claudia Cavelti-Weder","doi":"10.1186/s12989-023-00536-8","DOIUrl":"https://doi.org/10.1186/s12989-023-00536-8","url":null,"abstract":"<p><strong>Background: </strong>We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants.</p><p><strong>Methods: </strong>To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways.</p><p><strong>Results: </strong>Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2<sup>-</sup> anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure.</p><p><strong>Conclusion: </strong>In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Titanium dioxide (TiO2), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO2 on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO2 NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO2 NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice.
Results: The ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO2 NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO2 NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO2 NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO2 NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC.
Conclusion: Oral intake of TiO2 NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.
{"title":"Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway.","authors":"Shumin Duan, Hongbo Wang, Yanjun Gao, Xiang Wang, Lizhi Lyu, Yun Wang","doi":"10.1186/s12989-023-00535-9","DOIUrl":"10.1186/s12989-023-00535-9","url":null,"abstract":"<p><strong>Background: </strong>Titanium dioxide (TiO<sub>2</sub>), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO<sub>2</sub> on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO<sub>2</sub> NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO<sub>2</sub> NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice.</p><p><strong>Results: </strong>The ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO<sub>2</sub> NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO<sub>2</sub> NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO<sub>2</sub> NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO<sub>2</sub> NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC.</p><p><strong>Conclusion: </strong>Oral intake of TiO<sub>2</sub> NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Though titanium dioxide (TiO2) is generally considered to have a low impact in the human body, the safety of TiO2 containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO2 NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.
Results: In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO2 particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO2 NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.
Conclusions: No effects were observed after repeated oral administration of TiO2 with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.
{"title":"Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.","authors":"Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa","doi":"10.1186/s12989-023-00533-x","DOIUrl":"10.1186/s12989-023-00533-x","url":null,"abstract":"<p><strong>Background: </strong>Though titanium dioxide (TiO<sub>2</sub>) is generally considered to have a low impact in the human body, the safety of TiO<sub>2</sub> containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO<sub>2</sub> NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.</p><p><strong>Results: </strong>In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO<sub>2</sub> particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO<sub>2</sub> NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.</p><p><strong>Conclusions: </strong>No effects were observed after repeated oral administration of TiO<sub>2</sub> with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis.
Methods: A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation.
Results: Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system.
Conclusions: Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.
{"title":"MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts.","authors":"Yuanbao Zhang, Yiqun Mo, Yue Zhang, Jiali Yuan, Qunwei Zhang","doi":"10.1186/s12989-023-00532-y","DOIUrl":"10.1186/s12989-023-00532-y","url":null,"abstract":"<p><strong>Background: </strong>Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis.</p><p><strong>Methods: </strong>A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation.</p><p><strong>Results: </strong>Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system.</p><p><strong>Conclusions: </strong>Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9791189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.1186/s12989-023-00530-0
João Meneses, Michael González-Durruthy, Eli Fernandez-de-Gortari, Alla P Toropova, Andrey A Toropov, Ernesto Alfaro-Moreno
Background: The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.
Results: Tree-based learning algorithms (e.g., decision tree (DT), random forest (RF), and extra-trees (ET)) were able to predict ENMs' cytotoxic risk in an efficient, robust, and interpretable way. The best-ranked ET nano-QSTR model showed excellent statistical performance with R2 and Q2-based metrics of 0.95, 0.80, and 0.79 for training, internal validation, and external validation subsets, respectively. Several nano-descriptors linked to the core-type and surface coating reactivity properties were identified as the most relevant characteristics to predict human lung nano-cytotoxicity.
Conclusions: The proposed model suggests that a decrease in the ENMs diameter could significantly increase their potential ability to access lung subcellular compartments (e.g., mitochondria and nuclei), promoting strong nano-cytotoxicity and epithelial barrier dysfunction. Additionally, the presence of polyethylene glycol (PEG) as a surface coating could prevent the potential release of cytotoxic metal ions, promoting lung cytoprotection. Overall, the current work could pave the way for efficient decision-making, prediction, and mitigation of the potential occupational and environmental ENMs risks.
{"title":"A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data.","authors":"João Meneses, Michael González-Durruthy, Eli Fernandez-de-Gortari, Alla P Toropova, Andrey A Toropov, Ernesto Alfaro-Moreno","doi":"10.1186/s12989-023-00530-0","DOIUrl":"https://doi.org/10.1186/s12989-023-00530-0","url":null,"abstract":"<p><strong>Background: </strong>The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.</p><p><strong>Results: </strong>Tree-based learning algorithms (e.g., decision tree (DT), random forest (RF), and extra-trees (ET)) were able to predict ENMs' cytotoxic risk in an efficient, robust, and interpretable way. The best-ranked ET nano-QSTR model showed excellent statistical performance with R<sup>2</sup> and Q<sup>2</sup>-based metrics of 0.95, 0.80, and 0.79 for training, internal validation, and external validation subsets, respectively. Several nano-descriptors linked to the core-type and surface coating reactivity properties were identified as the most relevant characteristics to predict human lung nano-cytotoxicity.</p><p><strong>Conclusions: </strong>The proposed model suggests that a decrease in the ENMs diameter could significantly increase their potential ability to access lung subcellular compartments (e.g., mitochondria and nuclei), promoting strong nano-cytotoxicity and epithelial barrier dysfunction. Additionally, the presence of polyethylene glycol (PEG) as a surface coating could prevent the potential release of cytotoxic metal ions, promoting lung cytoprotection. Overall, the current work could pave the way for efficient decision-making, prediction, and mitigation of the potential occupational and environmental ENMs risks.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9568407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-18DOI: 10.1186/s12989-023-00531-z
Eva Bongaerts, Tim S Nawrot, Congrong Wang, Marcel Ameloot, Hannelore Bové, Maarten Bj Roeffaers, Pascale Chavatte-Palmer, Anne Couturier-Tarrade, Flemming R Cassee
Background: Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination.
Results: CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex.
Conclusions: The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.
{"title":"Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust.","authors":"Eva Bongaerts, Tim S Nawrot, Congrong Wang, Marcel Ameloot, Hannelore Bové, Maarten Bj Roeffaers, Pascale Chavatte-Palmer, Anne Couturier-Tarrade, Flemming R Cassee","doi":"10.1186/s12989-023-00531-z","DOIUrl":"https://doi.org/10.1186/s12989-023-00531-z","url":null,"abstract":"<p><strong>Background: </strong>Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m<sup>3</sup>) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination.</p><p><strong>Results: </strong>CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex.</p><p><strong>Conclusions: </strong>The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9520476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1186/s12989-023-00522-0
Maya-Liliana Avramescu, Christian Potiszil, Tak Kunihiro, Kazunori Okabe, Eizo Nakamura
Background: Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an "asbestos ferruginous body" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction.
Results: The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers.
Conclusions: The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.
{"title":"An investigation of the internal morphology of asbestos ferruginous bodies: constraining their role in the onset of malignant mesothelioma.","authors":"Maya-Liliana Avramescu, Christian Potiszil, Tak Kunihiro, Kazunori Okabe, Eizo Nakamura","doi":"10.1186/s12989-023-00522-0","DOIUrl":"https://doi.org/10.1186/s12989-023-00522-0","url":null,"abstract":"<p><strong>Background: </strong>Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an \"asbestos ferruginous body\" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction.</p><p><strong>Results: </strong>The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers.</p><p><strong>Conclusions: </strong>The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1186/s12989-023-00529-7
Haijing Qu, Xing Jin, Wei Cheng, Dongqi Wu, Boyu Ma, Chenmei Lou, Jian Zheng, Lijia Jing, Xiangdong Xue, Yang Wang
Background: Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics.
Results: General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress.
Conclusions: Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future.
{"title":"Uncovering the Fate and Risks of Intravenously Injected Prussian Blue Nanoparticles in mice by an Integrated Methodology of Toxicology, Pharmacokinetics, Proteomics, and Metabolomics.","authors":"Haijing Qu, Xing Jin, Wei Cheng, Dongqi Wu, Boyu Ma, Chenmei Lou, Jian Zheng, Lijia Jing, Xiangdong Xue, Yang Wang","doi":"10.1186/s12989-023-00529-7","DOIUrl":"10.1186/s12989-023-00529-7","url":null,"abstract":"<p><strong>Background: </strong>Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics.</p><p><strong>Results: </strong>General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress.</p><p><strong>Conclusions: </strong>Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9885855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-27DOI: 10.1186/s12989-023-00523-z
James S Brown, Gary L Diamond
Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.
{"title":"Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.","authors":"James S Brown, Gary L Diamond","doi":"10.1186/s12989-023-00523-z","DOIUrl":"https://doi.org/10.1186/s12989-023-00523-z","url":null,"abstract":"<p><p>Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-23DOI: 10.1186/s12989-023-00525-x
Chelsea M Cary, Talia N Seymore, Dilpreet Singh, Kinal N Vayas, Michael J Goedken, Samantha Adams, Marianne Polunas, Vasanthi R Sunil, Debra L Laskin, Philip Demokritou, Phoebe A Stapleton
Background: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation.
Objective: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP.
Methods: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones.
Results: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity.
Conclusions: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.
{"title":"Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats.","authors":"Chelsea M Cary, Talia N Seymore, Dilpreet Singh, Kinal N Vayas, Michael J Goedken, Samantha Adams, Marianne Polunas, Vasanthi R Sunil, Debra L Laskin, Philip Demokritou, Phoebe A Stapleton","doi":"10.1186/s12989-023-00525-x","DOIUrl":"https://doi.org/10.1186/s12989-023-00525-x","url":null,"abstract":"<p><strong>Background: </strong>Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation.</p><p><strong>Objective: </strong>The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP.</p><p><strong>Methods: </strong>Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones.</p><p><strong>Results: </strong>Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity.</p><p><strong>Conclusions: </strong>These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9659309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}