首页 > 最新文献

Particle and Fibre Toxicology最新文献

英文 中文
Single-cell transcriptome sequencing-based analysis: probing the mechanisms of glycoprotein NMB regulation of epithelial cells involved in silicosis. 基于单细胞转录组测序的分析:探讨糖蛋白NMB调控矽肺上皮细胞的机制。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-07-19 DOI: 10.1186/s12989-023-00543-9
Shaoqi Yang, Yuheng Sun, Min Long, Xinbei Zhou, Mengqin Yuan, Liliang Yang, Wei Luo, Yusi Cheng, Xinxin Zhang, Wei Jiang, Jie Chao

Chronic exposure to silica can lead to silicosis, one of the most serious occupational lung diseases worldwide, for which there is a lack of effective therapeutic drugs and tools. Epithelial mesenchymal transition plays an important role in several diseases; however, data on the specific mechanisms in silicosis models are scarce. We elucidated the pathogenesis of pulmonary fibrosis via single-cell transcriptome sequencing and constructed an experimental silicosis mouse model to explore the specific molecular mechanisms affecting epithelial mesenchymal transition at the single-cell level. Notably, as silicosis progressed, glycoprotein non-metastatic melanoma protein B (GPNMB) exerted a sustained amplification effect on alveolar type II epithelial cells, inducing epithelial-to-mesenchymal transition by accelerating cell proliferation and migration and increasing mesenchymal markers, ultimately leading to persistent pulmonary pathological changes. GPNMB participates in the epithelial-mesenchymal transition in distant lung epithelial cells by releasing extracellular vesicles to accelerate silicosis. These vesicles are involved in abnormal changes in the composition of the extracellular matrix and collagen structure. Our results suggest that GPNMB is a potential target for fibrosis prevention.

长期接触二氧化硅可导致矽肺病,这是世界上最严重的职业性肺病之一,缺乏有效的治疗药物和工具。上皮间充质转化在多种疾病中起重要作用;然而,关于矽肺模型的具体机制的数据很少。我们通过单细胞转录组测序阐明肺纤维化的发病机制,构建实验性矽肺小鼠模型,探索单细胞水平上影响上皮间质转化的特定分子机制。值得注意的是,随着矽肺的进展,糖蛋白非转移性黑色素瘤蛋白B (GPNMB)对肺泡II型上皮细胞发挥持续的扩增作用,通过加速细胞增殖和迁移,增加间质标志物,诱导上皮向间质转化,最终导致肺部持续病理改变。GPNMB通过释放细胞外囊泡加速矽肺,参与远端肺上皮细胞的上皮-间质转化。这些囊泡与细胞外基质和胶原结构组成的异常变化有关。我们的研究结果表明GPNMB是预防纤维化的潜在靶点。
{"title":"Single-cell transcriptome sequencing-based analysis: probing the mechanisms of glycoprotein NMB regulation of epithelial cells involved in silicosis.","authors":"Shaoqi Yang,&nbsp;Yuheng Sun,&nbsp;Min Long,&nbsp;Xinbei Zhou,&nbsp;Mengqin Yuan,&nbsp;Liliang Yang,&nbsp;Wei Luo,&nbsp;Yusi Cheng,&nbsp;Xinxin Zhang,&nbsp;Wei Jiang,&nbsp;Jie Chao","doi":"10.1186/s12989-023-00543-9","DOIUrl":"https://doi.org/10.1186/s12989-023-00543-9","url":null,"abstract":"<p><p>Chronic exposure to silica can lead to silicosis, one of the most serious occupational lung diseases worldwide, for which there is a lack of effective therapeutic drugs and tools. Epithelial mesenchymal transition plays an important role in several diseases; however, data on the specific mechanisms in silicosis models are scarce. We elucidated the pathogenesis of pulmonary fibrosis via single-cell transcriptome sequencing and constructed an experimental silicosis mouse model to explore the specific molecular mechanisms affecting epithelial mesenchymal transition at the single-cell level. Notably, as silicosis progressed, glycoprotein non-metastatic melanoma protein B (GPNMB) exerted a sustained amplification effect on alveolar type II epithelial cells, inducing epithelial-to-mesenchymal transition by accelerating cell proliferation and migration and increasing mesenchymal markers, ultimately leading to persistent pulmonary pathological changes. GPNMB participates in the epithelial-mesenchymal transition in distant lung epithelial cells by releasing extracellular vesicles to accelerate silicosis. These vesicles are involved in abnormal changes in the composition of the extracellular matrix and collagen structure. Our results suggest that GPNMB is a potential target for fibrosis prevention.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"29"},"PeriodicalIF":10.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9852649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attenuation of PM2.5-induced alveolar epithelial cells and lung injury through regulation of mitochondrial fission and fusion. 通过调节线粒体裂变和融合减轻 PM2.5 诱导的肺泡上皮细胞和肺损伤。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-07-18 DOI: 10.1186/s12989-023-00534-w
Qi Liu, Jiali Weng, Chenfei Li, Yi Feng, Meiqin Xie, Xiaohui Wang, Qing Chang, Mengnan Li, Kian Fan Chung, Ian M Adcock, Yan Huang, Hai Zhang, Feng Li

Background: Exposure to particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is a risk factor for developing pulmonary diseases and the worsening of ongoing disease. Mitochondrial fission and fusion are essential processes underlying mitochondrial homeostasis in health and disease. We examined the role of mitochondrial fission and fusion in PM2.5-induced alveolar epithelial cell damage and lung injury. Key genes in these processes include dystrophin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) respectively.

Methods: Alveolar epithelial (A549) cells were treated with PM2.5 (32 µg/ml) in the presence and absence of Mdivi-1 (10µM, a DRP1 inhibitor) or BGP-15 (10µM, an OPA1 activator). Results were validated using DRP1-knockdown (KD) and OPA1-overexpression (OE). Mice were injected intraperitoneally with Mdivi-1 (20 mg/kg), BGP-15 (20 mg/kg) or distilled water (control) one hour before intranasal instillation of PM2.5 (7.8 mg/kg) or distilled water for two consecutive days.

Results: PM2.5 exposure of A549 cells caused oxidative stress, enhanced inflammation, necroptosis, mitophagy and mitochondrial dysfunction indicated by abnormal mitochondrial morphology, decreased mitochondrial membrane potential (ΔΨm), reduced mitochondrial respiration and disrupted mitochondrial fission and fusion. Regulating mitochondrial fission and fusion pharmacologically using Mdivi-1 and BGP-15 and genetically using DRP1-KD and OPA1-OE prevented PM2.5-induced celluar damage in A549 cells. Mdivi-1 and BGP-15 attenuated PM2.5-induced acute lung injury in mice.

Conclusion: Increased mitochondrial fission and decreased mitochondrial fusion may underlie PM2.5-induced alveolar epithelial cell damage in vitro and lung injury in vivo.

背景:暴露于空气动力学直径小于 2.5 μm 的颗粒物(PM)(PM2.5)是罹患肺部疾病和现有疾病恶化的风险因素。线粒体裂变和融合是健康和疾病中线粒体平衡的基本过程。我们研究了线粒体裂变和融合在 PM2.5 诱导的肺泡上皮细胞损伤和肺损伤中的作用。这些过程中的关键基因分别包括肌营养不良相关蛋白 1(DRP1)和视神经萎缩 1(OPA1):方法:肺泡上皮细胞(A549)在Mdivi-1(10µM,DRP1抑制剂)或BGP-15(10µM,OPA1激活剂)存在或不存在的情况下接受PM2.5(32 µg/ml)处理。结果通过 DRP1 敲除(KD)和 OPA1 外显(OE)进行了验证。小鼠腹腔注射 Mdivi-1(20 毫克/千克)、BGP-15(20 毫克/千克)或蒸馏水(对照组)一小时后,鼻腔注射 PM2.5(7.8 毫克/千克)或蒸馏水,连续两天:结果:暴露于PM2.5的A549细胞会导致氧化应激、炎症加剧、坏死、有丝分裂和线粒体功能障碍,表现为线粒体形态异常、线粒体膜电位(ΔΨm)降低、线粒体呼吸减少以及线粒体分裂和融合紊乱。利用 Mdivi-1 和 BGP-15 对线粒体裂变和融合进行药理学调控,以及利用 DRP1-KD 和 OPA1-OE 对线粒体裂变和融合进行基因调控,可防止 PM2.5 诱导的 A549 细胞的细胞损伤。Mdivi-1和BGP-15减轻了PM2.5诱导的小鼠急性肺损伤:结论:线粒体裂变增加和线粒体融合减少可能是 PM2.5 在体外诱导肺泡上皮细胞损伤和在体内诱导肺损伤的原因。
{"title":"Attenuation of PM<sub>2.5</sub>-induced alveolar epithelial cells and lung injury through regulation of mitochondrial fission and fusion.","authors":"Qi Liu, Jiali Weng, Chenfei Li, Yi Feng, Meiqin Xie, Xiaohui Wang, Qing Chang, Mengnan Li, Kian Fan Chung, Ian M Adcock, Yan Huang, Hai Zhang, Feng Li","doi":"10.1186/s12989-023-00534-w","DOIUrl":"10.1186/s12989-023-00534-w","url":null,"abstract":"<p><strong>Background: </strong>Exposure to particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM<sub>2.5</sub>) is a risk factor for developing pulmonary diseases and the worsening of ongoing disease. Mitochondrial fission and fusion are essential processes underlying mitochondrial homeostasis in health and disease. We examined the role of mitochondrial fission and fusion in PM<sub>2.5</sub>-induced alveolar epithelial cell damage and lung injury. Key genes in these processes include dystrophin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) respectively.</p><p><strong>Methods: </strong>Alveolar epithelial (A549) cells were treated with PM<sub>2.5</sub> (32 µg/ml) in the presence and absence of Mdivi-1 (10µM, a DRP1 inhibitor) or BGP-15 (10µM, an OPA1 activator). Results were validated using DRP1-knockdown (KD) and OPA1-overexpression (OE). Mice were injected intraperitoneally with Mdivi-1 (20 mg/kg), BGP-15 (20 mg/kg) or distilled water (control) one hour before intranasal instillation of PM<sub>2.5</sub> (7.8 mg/kg) or distilled water for two consecutive days.</p><p><strong>Results: </strong>PM<sub>2.5</sub> exposure of A549 cells caused oxidative stress, enhanced inflammation, necroptosis, mitophagy and mitochondrial dysfunction indicated by abnormal mitochondrial morphology, decreased mitochondrial membrane potential (ΔΨm), reduced mitochondrial respiration and disrupted mitochondrial fission and fusion. Regulating mitochondrial fission and fusion pharmacologically using Mdivi-1 and BGP-15 and genetically using DRP1-KD and OPA1-OE prevented PM<sub>2.5</sub>-induced celluar damage in A549 cells. Mdivi-1 and BGP-15 attenuated PM<sub>2.5</sub>-induced acute lung injury in mice.</p><p><strong>Conclusion: </strong>Increased mitochondrial fission and decreased mitochondrial fusion may underlie PM<sub>2.5</sub>-induced alveolar epithelial cell damage in vitro and lung injury in vivo.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"28"},"PeriodicalIF":10.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9847125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A 90-day oral exposure to food-grade gold at relevant human doses impacts the gut microbiota and the local immune system in a sex-dependent manner in mice. 小鼠口服食品级金 90 天,其剂量与人体相关,会以性别依赖的方式影响肠道微生物群和局部免疫系统。
IF 7.2 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-07-13 DOI: 10.1186/s12989-023-00539-5
Lauris Evariste, Bruno Lamas, Sandrine Ellero-Simatos, Laure Khoury, Christel Cartier, Eric Gaultier, Benoit Chassaing, Nicolas Feltin, Laurent Devoille, Georges Favre, Marc Audebert, Eric Houdeau

Background: Edible gold (Au) is commonly used as a food additive (E175 in EU) for confectionery and cake decorations, coatings and in beverages. Food-grade gold is most often composed of thin Au sheets or flakes exhibiting micro- and nanometric dimensions in their thickness. Concerns about the impact of mineral particles used as food additives on human health are increasing with respect to the particular physico-chemical properties of nanosized particles, which enable them to cross biological barriers and interact with various body cell compartments. In this study, male and female mice were exposed daily to E175 or an Au nanomaterial (Ref-Au) incorporated into food at relevant human dose for 90 days in order to determine the potential toxicity of edible gold.

Results: E175 or Ref-Au exposure in mice did not induce any histomorphological damage of the liver, spleen or intestine, nor any genotoxic effects in the colon and liver despite an apparent higher intestinal absorption level of Au particles in mice exposed to Ref-Au compared to the E175 food additive. No changes in the intestinal microbiota were reported after treatment with Ref-Au, regardless of sex. In contrast, after E175 exposure, an increase in the Firmicutes/Bacteroidetes ratio and in the abundance of Proteobacteria were observed in females, while a decrease in the production of short-chain fatty acids occurred in both sexes. Moreover, increased production of IL-6, TNFα and IL-1β was observed in the colon of female mice at the end of the 90-day exposure to E175, whereas, decreased IL-6, IL-1β, IL-17 and TGFβ levels were found in the male colon.

Conclusions: These results revealed that a 90-day exposure to E175 added to the diet alters the gut microbiota and intestinal immune response in a sex-dependent manner in mice. Within the dose range of human exposure to E175, these alterations remained low in both sexes and mostly appeared to be nontoxic. However, at the higher dose, the observed gut dysbiosis and the intestinal low-grade inflammation in female mice could favour the occurrence of metabolic disorders supporting the establishment of toxic reference values for the safe use of gold as food additive.

背景:可食用金(Au)通常用作食品添加剂(欧盟 E175),用于糖果、蛋糕装饰、涂层和饮料。食品级金通常由金薄片或薄片组成,其厚度呈现微米级和纳米级尺寸。由于纳米级微粒具有特殊的物理化学特性,使其能够穿过生物屏障并与人体细胞的各个区段相互作用,因此人们越来越关注用作食品添加剂的矿物微粒对人体健康的影响。在这项研究中,雄性和雌性小鼠每天接触 E175 或以相关人体剂量添加到食物中的金纳米材料(Ref-Au)90 天,以确定食用金的潜在毒性:尽管与E175食品添加剂相比,接触Ref-Au的小鼠肠道对金微粒的吸收水平明显更高,但接触E175或Ref-Au的小鼠并未引起肝脏、脾脏或肠道的组织形态学损伤,也未对结肠和肝脏造成任何遗传毒性影响。无论性别如何,小鼠在接触 Ref-Au 后,肠道微生物区系均未发生变化。相比之下,雌性小鼠在接触 E175 后,固缩菌/类杆菌比例和变形菌数量都有所增加,而雌雄小鼠的短链脂肪酸产量都有所下降。此外,在暴露于 E175 90 天结束时,雌性小鼠结肠中的 IL-6、TNFα 和 IL-1β 生成增加,而雄性小鼠结肠中的 IL-6、IL-1β、IL-17 和 TGFβ 水平下降:这些结果表明,在饮食中添加 90 天的 E175 会以性别依赖的方式改变小鼠的肠道微生物群和肠道免疫反应。在人类接触 E175 的剂量范围内,这些改变在雌雄小鼠中的发生率都很低,而且大部分似乎是无毒的。然而,在较高剂量下,观察到的雌性小鼠肠道菌群失调和肠道低度炎症可能会导致新陈代谢紊乱,从而为安全使用金作为食品添加剂制定毒性参考值。
{"title":"A 90-day oral exposure to food-grade gold at relevant human doses impacts the gut microbiota and the local immune system in a sex-dependent manner in mice.","authors":"Lauris Evariste, Bruno Lamas, Sandrine Ellero-Simatos, Laure Khoury, Christel Cartier, Eric Gaultier, Benoit Chassaing, Nicolas Feltin, Laurent Devoille, Georges Favre, Marc Audebert, Eric Houdeau","doi":"10.1186/s12989-023-00539-5","DOIUrl":"10.1186/s12989-023-00539-5","url":null,"abstract":"<p><strong>Background: </strong>Edible gold (Au) is commonly used as a food additive (E175 in EU) for confectionery and cake decorations, coatings and in beverages. Food-grade gold is most often composed of thin Au sheets or flakes exhibiting micro- and nanometric dimensions in their thickness. Concerns about the impact of mineral particles used as food additives on human health are increasing with respect to the particular physico-chemical properties of nanosized particles, which enable them to cross biological barriers and interact with various body cell compartments. In this study, male and female mice were exposed daily to E175 or an Au nanomaterial (Ref-Au) incorporated into food at relevant human dose for 90 days in order to determine the potential toxicity of edible gold.</p><p><strong>Results: </strong>E175 or Ref-Au exposure in mice did not induce any histomorphological damage of the liver, spleen or intestine, nor any genotoxic effects in the colon and liver despite an apparent higher intestinal absorption level of Au particles in mice exposed to Ref-Au compared to the E175 food additive. No changes in the intestinal microbiota were reported after treatment with Ref-Au, regardless of sex. In contrast, after E175 exposure, an increase in the Firmicutes/Bacteroidetes ratio and in the abundance of Proteobacteria were observed in females, while a decrease in the production of short-chain fatty acids occurred in both sexes. Moreover, increased production of IL-6, TNFα and IL-1β was observed in the colon of female mice at the end of the 90-day exposure to E175, whereas, decreased IL-6, IL-1β, IL-17 and TGFβ levels were found in the male colon.</p><p><strong>Conclusions: </strong>These results revealed that a 90-day exposure to E175 added to the diet alters the gut microbiota and intestinal immune response in a sex-dependent manner in mice. Within the dose range of human exposure to E175, these alterations remained low in both sexes and mostly appeared to be nontoxic. However, at the higher dose, the observed gut dysbiosis and the intestinal low-grade inflammation in female mice could favour the occurrence of metabolic disorders supporting the establishment of toxic reference values for the safe use of gold as food additive.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"27"},"PeriodicalIF":7.2,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9817696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects. 短期暴露于烹饪和蜡烛产生的室内超细颗粒后气道和系统生物标志物对健康的影响——在轻度哮喘受试者中进行的随机对照双盲交叉研究
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-07-10 DOI: 10.1186/s12989-023-00537-7
Karin Rosenkilde Laursen, Nichlas Vous Christensen, Frans Aa Mulder, Jörg Schullehner, Hans Jürgen Hoffmann, Annie Jensen, Peter Møller, Steffen Loft, Anna-Carin Olin, Berit B Rasmussen, Bernadette Rosati, Bo Strandberg, Marianne Glasius, Merete Bilde, Torben Sigsgaard

Background: There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning.

Results: SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs.

Conclusions: Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.

背景:关于暴露于典型的室内源(包括烹饪和烛光燃烧)排放的细颗粒物(PM2.5)和超细颗粒物对全身健康的影响的知识不足。我们研究了短期暴露于烹饪和燃烧蜡烛的排放物是否会引起患有轻度哮喘的年轻人的炎症变化。36名非吸烟哮喘患者参加了一项随机对照双盲交叉研究,参加了三个暴露期(平均PM2.5µg/m3;多环芳烃ng/m3):(a)烹饪排放物混合的空气(96.1;1.1), (b)与蜡烛排放物混合的空气(89.8;10)和(c)清洁过滤空气(5.8;1.0)。排放物是在相邻的一个房间里产生的,然后进入一个全尺寸的暴露室,参与者在那里暴露了五个小时。评估了几种与气道和全身炎症变化相关的生物标志物;研究的主要结果是呼出空气中液滴中的表面活性剂蛋白a (SP-A)和白蛋白,这是小气道表面活性剂组成变化的新生物标志物。次要结局包括鼻腔灌洗液中的细胞因子、细胞因子、c反应蛋白(CRP)、上皮祖细胞(EPCs)、遗传毒性、与dna修复、氧化应激和炎症相关的基因表达以及血液中的代谢物。在暴露开始前、暴露后和第二天早上采集样本。结果:蜡烛暴露后,呼出空气中SP-A液滴浓度稳定,而烹饪和清洁空气暴露后SP-A浓度下降。与暴露在清洁空气中相比,暴露在烹饪和蜡烛下,呼出空气中液滴中的白蛋白增加了,尽管并不显著。暴露于烹饪后,血液中氧化损伤的DNA和一些脂质和脂蛋白的浓度显著增加。我们发现烹饪和蜡烛暴露与全身性炎症生物标志物(包括细胞因子、CRP和EPCs)之间没有或微弱关联。结论:烹饪和蜡烛排放对一些被检查的与健康相关的生物标志物有影响,而对其他生物标志物没有观察到影响;暴露于烹饪后,血液中氧化损伤的DNA和脂质和脂蛋白浓度增加,而烹饪和蜡烛排放对小气道的影响轻微,包括主要结果SP-A和白蛋白。我们发现暴露与全身炎症生物标志物之间只有微弱的关联。总之,研究结果表明,烹饪和蜡烛暴露后存在轻度炎症。
{"title":"Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects.","authors":"Karin Rosenkilde Laursen,&nbsp;Nichlas Vous Christensen,&nbsp;Frans Aa Mulder,&nbsp;Jörg Schullehner,&nbsp;Hans Jürgen Hoffmann,&nbsp;Annie Jensen,&nbsp;Peter Møller,&nbsp;Steffen Loft,&nbsp;Anna-Carin Olin,&nbsp;Berit B Rasmussen,&nbsp;Bernadette Rosati,&nbsp;Bo Strandberg,&nbsp;Marianne Glasius,&nbsp;Merete Bilde,&nbsp;Torben Sigsgaard","doi":"10.1186/s12989-023-00537-7","DOIUrl":"https://doi.org/10.1186/s12989-023-00537-7","url":null,"abstract":"<p><strong>Background: </strong>There is insufficient knowledge about the systemic health effects of exposure to fine (PM<sub>2.5</sub>) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM<sub>2.5</sub> µg/m<sup>3</sup><sub>;</sub> polycyclic aromatic hydrocarbons ng/m<sup>3</sup>): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning.</p><p><strong>Results: </strong>SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs.</p><p><strong>Conclusions: </strong>Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"26"},"PeriodicalIF":10.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9810264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. 柴油机尾气颗粒(DEP)诱导的小鼠葡萄糖耐受不良是由肠道先天免疫反应和NLRP3激活驱动的。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-07-03 DOI: 10.1186/s12989-023-00536-8
Angela J T Bosch, Theresa V Rohm, Shefaa AlAsfoor, Andy J Y Low, Zora Baumann, Neena Parayil, Faiza Noreen, Julien Roux, Daniel T Meier, Claudia Cavelti-Weder

Background: We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants.

Methods: To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways.

Results: Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure.

Conclusion: In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.

背景:我们之前发现,空气污染颗粒到达胃肠道后会引起肠道炎症,这表明促炎细胞因子和单核/巨噬细胞标记物的基因表达上调。这种炎症反应与β细胞功能障碍和葡萄糖耐受不良有关。到目前为止,尚不清楚口腔空气污染导致的肠道炎症变化是否与糖尿病的发展有因果关系。因此,我们的目的是评估免疫细胞在介导由口服空气污染物引起的葡萄糖耐受不良中的作用。方法:为了评估空气污染诱导葡萄糖耐受不良的免疫介导机制,研究人员使用柴油废气颗粒(DEP;NIST 1650b, 12µg 5天/周)或磷酸盐缓冲盐水(PBS)通过灌胃长达10个月的野生型小鼠和先天或适应性免疫细胞遗传或药理学消耗的小鼠。我们对肠巨噬细胞进行了无偏rna测序,以阐明可能成为药物靶向的信号通路,并应用体外方法来确认这些通路。结果:口服暴露于空气污染颗粒诱导结肠巨噬细胞的干扰素和炎症特征,同时CCR2-抗炎/常驻巨噬细胞减少。巨噬细胞、NLRP3或IL-1β的消耗保护小鼠免受空气污染诱导的葡萄糖耐受不良。相反,缺乏适应性免疫细胞的Rag2-/-小鼠在口服DEP暴露后出现明显的肠道炎症和葡萄糖耐受不良。结论:在小鼠中,口服暴露于空气污染颗粒会触发肠道巨噬细胞的免疫介导反应,从而促进糖尿病样表型的发展。这些发现指出了由空气污染颗粒引发的糖尿病的新药理学靶点。
{"title":"Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice.","authors":"Angela J T Bosch,&nbsp;Theresa V Rohm,&nbsp;Shefaa AlAsfoor,&nbsp;Andy J Y Low,&nbsp;Zora Baumann,&nbsp;Neena Parayil,&nbsp;Faiza Noreen,&nbsp;Julien Roux,&nbsp;Daniel T Meier,&nbsp;Claudia Cavelti-Weder","doi":"10.1186/s12989-023-00536-8","DOIUrl":"https://doi.org/10.1186/s12989-023-00536-8","url":null,"abstract":"<p><strong>Background: </strong>We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants.</p><p><strong>Methods: </strong>To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways.</p><p><strong>Results: </strong>Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2<sup>-</sup> anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure.</p><p><strong>Conclusion: </strong>In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"25"},"PeriodicalIF":10.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway. 口服纳米二氧化钛颗粒会影响小鼠溃疡性结肠炎的病程和预后:ROS-TXNIP-NLRP3炎性体通路的参与。
IF 7.2 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-06-22 DOI: 10.1186/s12989-023-00535-9
Shumin Duan, Hongbo Wang, Yanjun Gao, Xiang Wang, Lizhi Lyu, Yun Wang

Background: Titanium dioxide (TiO2), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO2 on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO2 NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO2 NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice.

Results: The ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO2 NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO2 NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO2 NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO2 NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC.

Conclusion: Oral intake of TiO2 NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.

背景:数十年来,二氧化钛(TiO2),无论是纳米级还是微米级,都作为添加剂广泛应用于食品工业。鉴于二氧化钛对胃肠道上皮细胞和实质细胞(包括鹅口疮细胞)的潜在影响,公众消费者可能会因二氧化钛在食品中的广泛传播而遭受疾病风险。因此,我们通过在小鼠结肠炎诱导期(7 天,从第 1 天到第 7 天)和恢复期(10 天,从第 8 天到第 17 天)口服 0、30、100 和 300 毫克/千克剂量的 TiO2 NPs,研究了 TiO2 NPs 对溃疡性结肠炎病程和预后的影响:结果:通过注射 2.5% 右旋糖酐硫酸钠(DSS)溶液建立了溃疡性结肠炎(UC)疾病模型。结果表明,TiO2 NPs能显著增强DSS诱导的结肠炎的严重程度,降低体重,增加疾病活动指数(DAI)和结肠粘膜损伤指数(CMDI)评分,缩短结肠长度,增加结肠中的炎症浸润。最明显的变化发生在 UC 发病期接触低剂量(30 毫克/千克)TiO2 NPs 组和 UC 自愈期接触高剂量(300 毫克/千克)TiO2 NPs 组。活性氧(ROS)水平的升高和总超氧化物歧化酶(T-SOD)、谷胱甘肽过氧化物酶(GSH-PX)和过氧化氢酶(CAT)等抗氧化酶的上调表明,TiO2 NP暴露引发了小鼠的氧化应激。此外,Caspase-1 mRNA的上调和硫氧还蛋白相互作用蛋白(TXNIP)表达的增加进一步证明了ROS-TXNIP-NLR家族含吡咯啉结构域3(NLRP3)炎性体通路参与了UC的恶化:结论:口服 TiO2 NPs 可影响急性结肠炎的病程,加剧 UC 的发展、延长 UC 病程并抑制 UC 的恢复。
{"title":"Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway.","authors":"Shumin Duan, Hongbo Wang, Yanjun Gao, Xiang Wang, Lizhi Lyu, Yun Wang","doi":"10.1186/s12989-023-00535-9","DOIUrl":"10.1186/s12989-023-00535-9","url":null,"abstract":"<p><strong>Background: </strong>Titanium dioxide (TiO<sub>2</sub>), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO<sub>2</sub> on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO<sub>2</sub> NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO<sub>2</sub> NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice.</p><p><strong>Results: </strong>The ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO<sub>2</sub> NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO<sub>2</sub> NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO<sub>2</sub> NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO<sub>2</sub> NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC.</p><p><strong>Conclusion: </strong>Oral intake of TiO<sub>2</sub> NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"24"},"PeriodicalIF":7.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats. 结晶直径为 6 纳米的二氧化钛纳米颗粒的大鼠口服毒理学研究。
IF 7.2 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-06-20 DOI: 10.1186/s12989-023-00533-x
Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa

Background: Though titanium dioxide (TiO2) is generally considered to have a low impact in the human body, the safety of TiO2 containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO2 NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.

Results: In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO2 particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO2 NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.

Conclusions: No effects were observed after repeated oral administration of TiO2 with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.

背景:尽管人们普遍认为二氧化钛(TiO2)对人体的影响较小,但含有纳米颗粒(NPs)的二氧化钛的安全性却引起了人们的关注。我们发现,银纳米粒子的毒性因其粒径大小而明显不同,直径为 10 纳米的银纳米粒子对雌性 BALB/c 小鼠具有致命毒性,而直径为 60 纳米和 100 纳米的银纳米粒子则不同。因此,通过重复口服10、100和1000毫克/千克体重/天(5只/性别/组),连续28天,以及100、300和1000毫克/千克体重/天(10只/性别/组),连续90天,在雄性和雌性F344/DuCrlCrlj大鼠体内检测了结晶尺寸为6纳米的最小TiO2 NPs的毒理学效应:在 28 天和 90 天的研究中,各组均未观察到死亡现象,在体重、尿液分析、血液学、血清生化和器官重量方面也未观察到与治疗有关的不良反应。组织病理学检查显示,二氧化钛颗粒为黄褐色沉积物。在为期 28 天的研究中,在胃肠腔中观察到的颗粒也出现在鼻腔、上皮和基质组织中。此外,在 90 天的研究中,在回肠的佩耶氏斑块、颈淋巴结、纵隔淋巴结、支气管相关淋巴组织和气管中也观察到了这些微粒。值得注意的是,在沉积物周围没有观察到不良生物反应,如炎症或组织损伤。肝脏、肾脏和脾脏中的钛浓度分析表明,TiO2 NPs 在这些组织中几乎没有被吸收和积累。对结肠隐窝的免疫组化分析表明,无论是男性组还是女性 1000 毫克/千克体重/天组,增殖细胞区都没有扩大,β-catenin 的细胞质/核易位也没有发生。在遗传毒性方面,未观察到微核或 γ-H2AX 阳性肝细胞显著增加。此外,在黄褐色物质的沉积部位也未观察到诱导γ-H2AX的现象:结论:反复口服晶体大小为 6 纳米的二氧化钛,剂量最高为 1000 毫克/千克体重/天,对一般毒性、钛在肝脏、肾脏和脾脏的蓄积、结肠隐窝异常以及 DNA 断裂和染色体畸变的诱导均无影响。
{"title":"Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.","authors":"Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa","doi":"10.1186/s12989-023-00533-x","DOIUrl":"10.1186/s12989-023-00533-x","url":null,"abstract":"<p><strong>Background: </strong>Though titanium dioxide (TiO<sub>2</sub>) is generally considered to have a low impact in the human body, the safety of TiO<sub>2</sub> containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO<sub>2</sub> NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.</p><p><strong>Results: </strong>In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO<sub>2</sub> particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO<sub>2</sub> NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.</p><p><strong>Conclusions: </strong>No effects were observed after repeated oral administration of TiO<sub>2</sub> with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"23"},"PeriodicalIF":7.2,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts. MMP-3 介导的 OPN 裂解参与了氧化铜纳米颗粒诱导的成纤维细胞活化。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-05-22 DOI: 10.1186/s12989-023-00532-y
Yuanbao Zhang, Yiqun Mo, Yue Zhang, Jiali Yuan, Qunwei Zhang

Background: Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis.

Methods: A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation.

Results: Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system.

Conclusions: Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.

背景:纳米氧化铜(Nano-CuO)是生产和使用最多的纳米材料之一。先前的研究表明,暴露于纳米氧化铜会导致急性肺损伤、炎症和肺纤维化。然而,纳米氧化铜诱发肺纤维化的机制仍不清楚。在此,我们假设将人肺上皮细胞和巨噬细胞暴露于纳米氧化铜会上调MMP-3,而MMP-3会裂解骨生成素(OPN),从而导致成纤维细胞活化和肺纤维化:方法:为探索纳米氧化铜诱导成纤维细胞活化的机制,建立了三重共培养模型。纳米氧化铜对BEAS-2B、U937*巨噬细胞和MRC-5成纤维细胞的细胞毒性通过氨蓝法和MTS法测定。MMP-3、OPN 和纤维化相关蛋白的表达或活性通过 Western 印迹或酶联免疫法测定。伤口愈合试验评估了 MRC-5 成纤维细胞的迁移。用MMP-3 siRNA和含RGD的多肽GRGDSP来探讨MMP-3和裂解的OPN在成纤维细胞活化中的作用:结果:暴露于无毒性剂量的纳米氧化铜(0.5 和 1 µg/mL)会增加 BEAS-2B 和 U937* 细胞条件培养基中 MMP-3 的表达和活性,但不会增加 MRC-5 成纤维细胞的表达和活性。纳米氧化铜暴露也会增加裂解 OPN 片段的产生,MMP-3 siRNA 转染可消除这种现象。暴露于纳米铜氧化物的 BEAS-2B、U937*或 BEAS-2B 和 U937*共培养的培养基可激活未暴露于纳米铜氧化物的 MRC-5 成纤维细胞。然而,将 MRC-5 成纤维细胞直接暴露于纳米氧化铜不会诱导其活化。在三重共培养系统中,将 BEAS-2B 和 U937* 细胞暴露于 Nano-CuO 会导致未暴露的 MRC-5 成纤维细胞活化,而在 BEAS-2B 和 U937* 细胞中转染 MMP-3 siRNA 会显著抑制 MRC-5 成纤维细胞的活化和迁移。此外,在三重共培养系统中,用GRGDSP肽预处理可抑制Nano-CuO诱导的MRC-5成纤维细胞的活化和迁移:我们的研究结果表明,暴露于纳米氧化物会导致肺上皮 BEAS-2B 细胞和 U937* 巨噬细胞产生更多的 MMP-3,从而裂解 OPN,导致肺成纤维细胞 MRC-5 的活化。这些结果表明,MMP-3-cleaved OPN 可能在纳米氧化铜诱导的肺成纤维细胞活化中发挥了关键作用。还需要更多的研究来证实这些效应是否是由纳米粒子本身和/或铜离子引起的。
{"title":"MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts.","authors":"Yuanbao Zhang, Yiqun Mo, Yue Zhang, Jiali Yuan, Qunwei Zhang","doi":"10.1186/s12989-023-00532-y","DOIUrl":"10.1186/s12989-023-00532-y","url":null,"abstract":"<p><strong>Background: </strong>Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis.</p><p><strong>Methods: </strong>A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation.</p><p><strong>Results: </strong>Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system.</p><p><strong>Conclusions: </strong>Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"22"},"PeriodicalIF":10.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9791189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data. 纳米qstr模型预测纳米细胞毒性:一种使用人类肺细胞数据的方法。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-05-22 DOI: 10.1186/s12989-023-00530-0
João Meneses, Michael González-Durruthy, Eli Fernandez-de-Gortari, Alla P Toropova, Andrey A Toropov, Ernesto Alfaro-Moreno

Background: The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.

Results: Tree-based learning algorithms (e.g., decision tree (DT), random forest (RF), and extra-trees (ET)) were able to predict ENMs' cytotoxic risk in an efficient, robust, and interpretable way. The best-ranked ET nano-QSTR model showed excellent statistical performance with R2 and Q2-based metrics of 0.95, 0.80, and 0.79 for training, internal validation, and external validation subsets, respectively. Several nano-descriptors linked to the core-type and surface coating reactivity properties were identified as the most relevant characteristics to predict human lung nano-cytotoxicity.

Conclusions: The proposed model suggests that a decrease in the ENMs diameter could significantly increase their potential ability to access lung subcellular compartments (e.g., mitochondria and nuclei), promoting strong nano-cytotoxicity and epithelial barrier dysfunction. Additionally, the presence of polyethylene glycol (PEG) as a surface coating could prevent the potential release of cytotoxic metal ions, promoting lung cytoprotection. Overall, the current work could pave the way for efficient decision-making, prediction, and mitigation of the potential occupational and environmental ENMs risks.

背景:新型工程纳米材料(enm)在化妆品、电子和诊断纳米器件等行业的广泛应用,已经彻底改变了我们的社会。然而,新出现的研究表明,enm对人体肺部有潜在的毒性作用。在这方面,我们开发了一个机器学习(ML)纳米定量-结构-毒性关系(QSTR)模型,以预测暴露于基于金属氧化物纳米颗粒的enm诱导的潜在人体肺部纳米细胞毒性。结果:基于树的学习算法(如决策树(DT)、随机森林(RF)和额外树(ET))能够以有效、稳健和可解释的方式预测enm的细胞毒性风险。排名最好的ET纳米qstr模型在训练子集、内部验证子集和外部验证子集上的R2和基于q2的指标分别为0.95、0.80和0.79,显示出优异的统计性能。与核心类型和表面涂层反应性有关的几个纳米描述符被确定为预测人类肺纳米细胞毒性的最相关特征。结论:所提出的模型表明,enm直径的减小可以显著增加其进入肺亚细胞区室(如线粒体和细胞核)的潜在能力,促进强纳米细胞毒性和上皮屏障功能障碍。此外,聚乙二醇(PEG)作为表面涂层的存在可以防止细胞毒性金属离子的潜在释放,促进肺细胞保护。总的来说,目前的工作可以为有效的决策、预测和减轻潜在的职业和环境能源管理风险铺平道路。
{"title":"A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data.","authors":"João Meneses,&nbsp;Michael González-Durruthy,&nbsp;Eli Fernandez-de-Gortari,&nbsp;Alla P Toropova,&nbsp;Andrey A Toropov,&nbsp;Ernesto Alfaro-Moreno","doi":"10.1186/s12989-023-00530-0","DOIUrl":"https://doi.org/10.1186/s12989-023-00530-0","url":null,"abstract":"<p><strong>Background: </strong>The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity induced by exposure to ENMs based on metal oxide nanoparticles.</p><p><strong>Results: </strong>Tree-based learning algorithms (e.g., decision tree (DT), random forest (RF), and extra-trees (ET)) were able to predict ENMs' cytotoxic risk in an efficient, robust, and interpretable way. The best-ranked ET nano-QSTR model showed excellent statistical performance with R<sup>2</sup> and Q<sup>2</sup>-based metrics of 0.95, 0.80, and 0.79 for training, internal validation, and external validation subsets, respectively. Several nano-descriptors linked to the core-type and surface coating reactivity properties were identified as the most relevant characteristics to predict human lung nano-cytotoxicity.</p><p><strong>Conclusions: </strong>The proposed model suggests that a decrease in the ENMs diameter could significantly increase their potential ability to access lung subcellular compartments (e.g., mitochondria and nuclei), promoting strong nano-cytotoxicity and epithelial barrier dysfunction. Additionally, the presence of polyethylene glycol (PEG) as a surface coating could prevent the potential release of cytotoxic metal ions, promoting lung cytoprotection. Overall, the current work could pave the way for efficient decision-making, prediction, and mitigation of the potential occupational and environmental ENMs risks.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"21"},"PeriodicalIF":10.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9568407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust. 反复暴露于稀释柴油机废气的怀孕兔模型中碳颗粒的胎盘-胎儿分布。
IF 1 1区 医学 Q1 TOXICOLOGY Pub Date : 2023-05-18 DOI: 10.1186/s12989-023-00531-z
Eva Bongaerts, Tim S Nawrot, Congrong Wang, Marcel Ameloot, Hannelore Bové, Maarten Bj Roeffaers, Pascale Chavatte-Palmer, Anne Couturier-Tarrade, Flemming R Cassee

Background: Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination.

Results: CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex.

Conclusions: The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.

背景:空气污染颗粒已被证明可从母亲的肺部转移到胎儿循环,但它们的分布和内部胎盘-胎儿组织负荷仍然知之甚少。本研究以妊娠兔为研究对象,在控制暴露条件下,研究了柴油机废气颗粒在妊娠期的胎盘-胎儿负荷和分布。从妊娠第3天至妊娠第27天,孕鼠仅通过鼻子吸入清洁空气(对照)或稀释和过滤的柴油机排气(1 mg/m3),每天2小时,每周5天。在GD28时,收集胎盘和胎儿组织(即心脏、肾脏、肝脏、肺和性腺)进行生物测定,并利用碳质颗粒在飞秒脉冲激光照射下产生的白光研究碳颗粒(CPs)的存在。结果:暴露兔胎盘、胎儿心脏、肾脏、肝脏、肺和性腺中检测到的CPs含量明显高于对照组。通过多因素分析,综合考虑胎胎盘生物计量学和CP负荷相关的所有变量,我们能够将柴油机暴露妊娠兔与对照组区分开来。我们的研究结果没有揭示性别影响,但暴露和胎儿性别之间可能存在潜在的相互作用效应。结论:妊娠晚期母体吸入的柴油机尾气中有氯化石蜡易位到胎盘,并可在胎儿器官中检测到。在胎胎盘生物计量学和CP负荷方面,暴露者可以与对照组明显区分。胎儿器官中的不同颗粒负荷可能会对胎儿胎盘生物计量学产生影响,并导致胎儿表型的编程错误,并在以后的生活中产生长期影响。
{"title":"Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust.","authors":"Eva Bongaerts,&nbsp;Tim S Nawrot,&nbsp;Congrong Wang,&nbsp;Marcel Ameloot,&nbsp;Hannelore Bové,&nbsp;Maarten Bj Roeffaers,&nbsp;Pascale Chavatte-Palmer,&nbsp;Anne Couturier-Tarrade,&nbsp;Flemming R Cassee","doi":"10.1186/s12989-023-00531-z","DOIUrl":"https://doi.org/10.1186/s12989-023-00531-z","url":null,"abstract":"<p><strong>Background: </strong>Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m<sup>3</sup>) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination.</p><p><strong>Results: </strong>CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex.</p><p><strong>Conclusions: </strong>The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"20"},"PeriodicalIF":10.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9520476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Particle and Fibre Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1