Pub Date : 2023-03-06DOI: 10.18187/pjsor.v19i1.4215
Moustafa Salem, Mohamed G. Khalil
Time series are essential for anticipating various claims payment applications. For insurance firms to prevent significant losses brought on by potential future claims, the future values of predicted claims are crucial. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model’s utility is demonstrated. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model's utility is demonstrated. Also, the single exponential smoothing model is used for prediction under the Holt-Winters’ additive algorithm.
{"title":"Short-Term Insurance Claims Payments Forecasting with Holt-Winter Filtering and Residual Analysis","authors":"Moustafa Salem, Mohamed G. Khalil","doi":"10.18187/pjsor.v19i1.4215","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.4215","url":null,"abstract":"Time series are essential for anticipating various claims payment applications. For insurance firms to prevent significant losses brought on by potential future claims, the future values of predicted claims are crucial. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model’s utility is demonstrated. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model's utility is demonstrated. Also, the single exponential smoothing model is used for prediction under the Holt-Winters’ additive algorithm.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48308363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.18187/pjsor.v19i1.4019
Sricharan Shah, Partha Jyoti Hazarika, Dimpal Pathak, Subrata Chakraborty, M. Masoom Ali
This paper introduces a new class of Balakrishnan distribution by extending the multimodal skew-normal distribution proposed by Chakraborty et al. (2015). Statistical properties of the new family of distributions are studied in detail. In particular, explicit expressions of the density and distribution function, moments, skewness, kurtosis and the moments generating function are derived. Furthermore, estimation of the parameters using the maximum likelihood method of the new family of distributions is considered. Finally, the paper ends with an illustration of real-life data sets and then comparing the value of Akaike Information Criterion and Bayesian information criterion of the new distribution with some other known distributions. For the nested models, the Likelihood Ratio Test is carried out.
{"title":"The Multimodal Extension of the Balakrishnan Alpha Skew Normal Distribution: Properties and Applications","authors":"Sricharan Shah, Partha Jyoti Hazarika, Dimpal Pathak, Subrata Chakraborty, M. Masoom Ali","doi":"10.18187/pjsor.v19i1.4019","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.4019","url":null,"abstract":"This paper introduces a new class of Balakrishnan distribution by extending the multimodal skew-normal distribution proposed by Chakraborty et al. (2015). Statistical properties of the new family of distributions are studied in detail. In particular, explicit expressions of the density and distribution function, moments, skewness, kurtosis and the moments generating function are derived. Furthermore, estimation of the parameters using the maximum likelihood method of the new family of distributions is considered. Finally, the paper ends with an illustration of real-life data sets and then comparing the value of Akaike Information Criterion and Bayesian information criterion of the new distribution with some other known distributions. For the nested models, the Likelihood Ratio Test is carried out.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44550735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.18187/pjsor.v19i1.3929
Ronald O Onyango, Brian Oduor, Francis Odundo
In the present study, the problem of mean estimation of a sensitive variable using three-stage RRT model under measurement errors is addressed. A generalized class of estimators is proposed using a mixture of auxiliary attribute and variable. Some members of the proposed generalized class of estimators are identified and studied. The bias and mean squared error (MSE) expressions for the proposed estimators are correctly derived up to first order Taylor's series of approximation. The proposed estimator's efficiency is investigated theoretically and numerically using real data. From the numerical study, the proposed estimators outperforms existing mean estimators. Furthermore, the efficiencies of the mean estimators’ decreases as the sensitivity level of the survey question increases.
{"title":"Mean Estimation of a Sensitive Variable under Measurement Errors using Three-Stage RRT Model in Stratified Two-Phase Sampling","authors":"Ronald O Onyango, Brian Oduor, Francis Odundo","doi":"10.18187/pjsor.v19i1.3929","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.3929","url":null,"abstract":"In the present study, the problem of mean estimation of a sensitive variable using three-stage RRT model under measurement errors is addressed. A generalized class of estimators is proposed using a mixture of auxiliary attribute and variable. Some members of the proposed generalized class of estimators are identified and studied. The bias and mean squared error (MSE) expressions for the proposed estimators are correctly derived up to first order Taylor's series of approximation. The proposed estimator's efficiency is investigated theoretically and numerically using real data. From the numerical study, the proposed estimators outperforms existing mean estimators. Furthermore, the efficiencies of the mean estimators’ decreases as the sensitivity level of the survey question increases.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46854402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.18187/pjsor.v19i1.4196
Joseph Ackora-Prah, Valentine Acheson, Emmanuel Owusu-Ansah, Seth K. Nkrumah
The Transportation Model (TM) in the application of Linear Programming (LP) is very useful in optimal distribution of goods. This paper focuses on finding Initial Basic Feasible Solutions (IBFS) to TMs hence, proposing a Demand-Based Allocation Method (DBAM) to solve the problem. This unprecedented proposal goes in contrast to the Cost-Based Resource Allocations (CBRA) associated with existing methods (including North-west Corner Rule, Least Cost Method and Vogel’s Approximation Method) which make cost cell (i.e. decision variable) selections before choosing demand and supply constraints. The proposed ‘DBAM’ on page 4 is implemented in MATLAB and has the ability to solve large-scale transportation problems to meet industrial needs. A sample of five (5) examples are presented to evaluate efficiency of the method. Initial Basic Feasible Solutions drawn from the study (according to DBAM) represent the optimal with higher accuracy, in comparison to the existing methods. Results from the study qualify the DBAM as one of the best methods to solve industrial transportation problems.
{"title":"A Proposed Method for Finding Initial Solutions to Transportation Problems","authors":"Joseph Ackora-Prah, Valentine Acheson, Emmanuel Owusu-Ansah, Seth K. Nkrumah","doi":"10.18187/pjsor.v19i1.4196","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.4196","url":null,"abstract":"The Transportation Model (TM) in the application of Linear Programming (LP) is very useful in optimal distribution of goods. This paper focuses on finding Initial Basic Feasible Solutions (IBFS) to TMs hence, proposing a Demand-Based Allocation Method (DBAM) to solve the problem. This unprecedented proposal goes in contrast to the Cost-Based Resource Allocations (CBRA) associated with existing methods (including North-west Corner Rule, Least Cost Method and Vogel’s Approximation Method) which make cost cell (i.e. decision variable) selections before choosing demand and supply constraints. The proposed ‘DBAM’ on page 4 is implemented in MATLAB and has the ability to solve large-scale transportation problems to meet industrial needs. A sample of five (5) examples are presented to evaluate efficiency of the method. Initial Basic Feasible Solutions drawn from the study (according to DBAM) represent the optimal with higher accuracy, in comparison to the existing methods. Results from the study qualify the DBAM as one of the best methods to solve industrial transportation problems.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47045174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.18187/pjsor.v19i1.2808
A. Yadav
This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been obtained by assuming informative and non-informative priors using general entropy loss function. Obviously, censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence interval and highest posterior density interval along with the width of the interval and coverage probability are also discussed. The maximum likelihood estimate for the same has also been computed using non- linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample space and corresponding length of the interval. lastly, one medical data set has been considered for the real application of the proposed study.
{"title":"Bayesian estimation for the type-I hybrid xgamma distribution using asymmetric loss function","authors":"A. Yadav","doi":"10.18187/pjsor.v19i1.2808","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.2808","url":null,"abstract":"This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been obtained by assuming informative and non-informative priors using general entropy loss function. Obviously, censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence interval and highest posterior density interval along with the width of the interval and coverage probability are also discussed. The maximum likelihood estimate for the same has also been computed using non- linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample space and corresponding length of the interval. lastly, one medical data set has been considered for the real application of the proposed study.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47450467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.18187/pjsor.v19i1.4140
Yupapin Atikankul
In this paper, a new lifetime distribution is proposed. Various statistical properties of the proposed distribution such as survival function, hazard rate function, mean residual life function, moments, moment generating function, Bonferroni curve, Lorenz curve, and order statistic are presented. The Bayesian estimator of the distribution parameter is derived. The behavior of the Bayesian estimator is assessed by a simulation study. Furthermore, a regression model is developed based on the proposed distribution. Some real data applications are analyzed to show the potentiality of the proposedmodels.
{"title":"Bayesian Inference for a Weighted Bilal Distribution: Regression Model","authors":"Yupapin Atikankul","doi":"10.18187/pjsor.v19i1.4140","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.4140","url":null,"abstract":"In this paper, a new lifetime distribution is proposed. Various statistical properties of the proposed distribution such as survival function, hazard rate function, mean residual life function, moments, moment generating function, Bonferroni curve, Lorenz curve, and order statistic are presented. The Bayesian estimator of the distribution parameter is derived. The behavior of the Bayesian estimator is assessed by a simulation study. Furthermore, a regression model is developed based on the proposed distribution. Some real data applications are analyzed to show the potentiality of the proposedmodels.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46310713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.18187/pjsor.v19i1.4018
M. Niaparast, Leila Esmaeili
Recently, the application of compound distributions has increased due to the flexibility in fitting to actual data in various fields such as economics, insurance, etc. Poisson-half-logistic distribution is one of these distributions with an increasing-constant hazard rate that can be used in parallel systems and complementary risk models. Because of the complexity of the form of this distribution, it is not possible to obtain classical parameter estimates (such as MLE) by the analytical method for the location and scale parameters. We present a simple way of deriving explicit estimators by approximating the likelihood equations appropriately. This paper presents AMLE (Approximate MLE) method to obtain the location and scale parameters estimation. Using simulation, we show that this method is as efficient as the maximum likelihood estimators (MLEs), we obtain the variance of estimators from the inverse of the observed Fisher information matrix, and we see that when sample size increases bias and variance of these estimators, MSEs of parameters decrease. Finally, we present a numerical example to illustrate the methods of inference developed here.
{"title":"Approximate MLEs for the location and scale parameters of the Poisson-half-logistic distribution","authors":"M. Niaparast, Leila Esmaeili","doi":"10.18187/pjsor.v19i1.4018","DOIUrl":"https://doi.org/10.18187/pjsor.v19i1.4018","url":null,"abstract":"Recently, the application of compound distributions has increased due to the flexibility in fitting to actual data in various fields such as economics, insurance, etc. Poisson-half-logistic distribution is one of these distributions with an increasing-constant hazard rate that can be used in parallel systems and complementary risk models. Because of the complexity of the form of this distribution, it is not possible to obtain classical parameter estimates (such as MLE) by the analytical method for the location and scale parameters. We present a simple way of deriving explicit estimators by approximating the likelihood equations appropriately. This paper presents AMLE (Approximate MLE) method to obtain the location and scale parameters estimation. Using simulation, we show that this method is as efficient as the maximum likelihood estimators (MLEs), we obtain the variance of estimators from the inverse of the observed Fisher information matrix, and we see that when sample size increases bias and variance of these estimators, MSEs of parameters decrease. Finally, we present a numerical example to illustrate the methods of inference developed here.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42655374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-06DOI: 10.18187/pjsor.v18i4.3955
Zakir Hussain Wani Jana, S. Rizvi, Manish Sharma, M. Bhat, Saqib Mushtaq
In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error.
{"title":"Modified Regression Estimators for Improving Mean Estimation -Poisson Regression Approach","authors":"Zakir Hussain Wani Jana, S. Rizvi, Manish Sharma, M. Bhat, Saqib Mushtaq","doi":"10.18187/pjsor.v18i4.3955","DOIUrl":"https://doi.org/10.18187/pjsor.v18i4.3955","url":null,"abstract":"In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43327939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-06DOI: 10.18187/pjsor.v18i4.3369
T. Hasan, Syed Adil Hussain
In Industrial and Pharmaceutical experiments it is desired to have best predictions of the response on the basis of small amount of data. Mixture experiment generally aims to predict the response(s) for all possible mixture blends. When we compute optimal design for mixture response surface we must focus on prediction capability of the design. The conventional optimal criteria, such as D-, A- and E-optimality are not suitable for determining the prediction capability of designs. As I-optimal design minimizes the average variance of prediction over the mixture region, so it clearly focuses on prediction capability of the design. Hence I-optimal criterion seems to be more appropriate in this conjecture. In this paper we propose the construction of I-optimal mixture designs for a quadratic Scheffé’s and Darroch and Waller’s model in three and four components, using two orthogonal blocks. I-efficiency of designs is compared with the I-efficiency of D-optimal designs for Scheffé’s and Darroch and Waller’s models.
{"title":"I-optimal Designs for three and four component mixture models in orthogonal blocks","authors":"T. Hasan, Syed Adil Hussain","doi":"10.18187/pjsor.v18i4.3369","DOIUrl":"https://doi.org/10.18187/pjsor.v18i4.3369","url":null,"abstract":"In Industrial and Pharmaceutical experiments it is desired to have best predictions of the response on the basis of small amount of data. Mixture experiment generally aims to predict the response(s) for all possible mixture blends. When we compute optimal design for mixture response surface we must focus on prediction capability of the design. The conventional optimal criteria, such as D-, A- and E-optimality are not suitable for determining the prediction capability of designs. As I-optimal design minimizes the average variance of prediction over the mixture region, so it clearly focuses on prediction capability of the design. Hence I-optimal criterion seems to be more appropriate in this conjecture. In this paper we propose the construction of I-optimal mixture designs for a quadratic Scheffé’s and Darroch and Waller’s model in three and four components, using two orthogonal blocks. I-efficiency of designs is compared with the I-efficiency of D-optimal designs for Scheffé’s and Darroch and Waller’s models.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45842844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-06DOI: 10.18187/pjsor.v18i4.3748
Z. Algamal, N. Hammood
The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The logistic regression model is a well-known model in application when the response variable is binary data. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the logistic regression coefficients. To address this problem, a logistic ridge estimator has been proposed by numerous researchers. In this paper, a new Jackknifing logistic ridge estimator (NLRE) is proposed and derived. The idea behind the NLRE is to get diagonal matrix with small values of diagonal elements that leading to decrease the shrinkage parameter and, therefore, the resultant estimator can be better with small amount of bias. Our Monte Carlo simulation results suggest that the NLRE estimator can bring significant improvement relative to other existing estimators. In addition, the real application results demonstrate that the NLRE estimator outperforms both logistic ridge estimator and maximum likelihood estimator in terms of predictive performance.
{"title":"A new Jackknifing ridge estimator for logistic regression model","authors":"Z. Algamal, N. Hammood","doi":"10.18187/pjsor.v18i4.3748","DOIUrl":"https://doi.org/10.18187/pjsor.v18i4.3748","url":null,"abstract":"The ridge regression model has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The logistic regression model is a well-known model in application when the response variable is binary data. However, it is known that multicollinearity negatively affects the variance of maximum likelihood estimator of the logistic regression coefficients. To address this problem, a logistic ridge estimator has been proposed by numerous researchers. In this paper, a new Jackknifing logistic ridge estimator (NLRE) is proposed and derived. The idea behind the NLRE is to get diagonal matrix with small values of diagonal elements that leading to decrease the shrinkage parameter and, therefore, the resultant estimator can be better with small amount of bias. Our Monte Carlo simulation results suggest that the NLRE estimator can bring significant improvement relative to other existing estimators. In addition, the real application results demonstrate that the NLRE estimator outperforms both logistic ridge estimator and maximum likelihood estimator in terms of predictive performance.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48881548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}