首页 > 最新文献

PDA Journal of Pharmaceutical Science and Technology最新文献

英文 中文
Assessment of Differential Pressures Across Sterilizing Filter Membranes with Various Test Solutions. 用不同的测试溶液评估灭菌过滤膜的压差。
Q3 Medicine Pub Date : 2024-12-26 DOI: 10.5731/pdajpst.2024.99904
Zachary Bendiks, Leesa McBurnie

FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds. Specifically, we investigated differential pressures across sterilizing-grade PVDF, PES, and PTFE membrane discs, either in series or with downstream 0.4 μm PES analysis discs commonly used in bacterial retention testing. The test solutions employed for this study include saline, grapeseed oil, FBS, and DMEM cell culture media with 10% FBS. These solutions were chosen based on their differing physicochemical properties and their relevance to the pharmaceutical industry. This work will serve as a reference for pharmaceutical manufacturers and help them anticipate differential pressures across sterilizing filter membranes at different pump speeds based on the physicochemical properties of their drug products.

FDA建议在无菌过滤过程验证期间监测过滤膜上的压差。然而,很少有资源可以帮助制药商在不同溶液的灭菌过滤过程中预测预期的压差。为了解决这一差距,迈斯纳在增加泵速的情况下,使用各种测试溶液评估了不同过滤膜上的压差。具体来说,我们研究了灭菌级PVDF、PES和PTFE膜盘之间的压差,无论是串联还是与下游0.4 μm PES分析盘(通常用于细菌保留测试)。本研究采用的测试溶液包括生理盐水、葡萄籽油、胎牛血清和含10%胎牛血清的DMEM细胞培养基。这些解决方案的选择是基于它们不同的物理化学性质和它们与制药工业的相关性。这项工作将作为药品制造商的参考,并帮助他们根据药品的物理化学性质,在不同泵速下预测灭菌过滤膜上的压差。
{"title":"Assessment of Differential Pressures Across Sterilizing Filter Membranes with Various Test Solutions.","authors":"Zachary Bendiks, Leesa McBurnie","doi":"10.5731/pdajpst.2024.99904","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.99904","url":null,"abstract":"<p><p>FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds. Specifically, we investigated differential pressures across sterilizing-grade PVDF, PES, and PTFE membrane discs, either in series or with downstream 0.4 μm PES analysis discs commonly used in bacterial retention testing. The test solutions employed for this study include saline, grapeseed oil, FBS, and DMEM cell culture media with 10% FBS. These solutions were chosen based on their differing physicochemical properties and their relevance to the pharmaceutical industry. This work will serve as a reference for pharmaceutical manufacturers and help them anticipate differential pressures across sterilizing filter membranes at different pump speeds based on the physicochemical properties of their drug products.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 6","pages":"757-758"},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of extreme depyrogenation conditions on the surface hydrolytic resistance of glass containers for pharmaceutical use. 评估极端去热氮条件对药用玻璃容器表面抗水解性的影响。
Q3 Medicine Pub Date : 2024-11-23 DOI: 10.5731/pdajpst.2024.012972
Massimo Guglielmi, Satoshi Arai, Peggy Georges, Amy Meisner, Peter Otton, Serena Panighello, Volker Rupertus, Jingwei Zhang, Daniele Zuccato

This paper is the result of a round robin activity run by the Technical Committee TC12, Pharma Packaging, of the International Commission on Glass (ICG). The study was motivated by a concern about the risk that the depyrogenation treatment of glass vials, when performed in an abnormal way that deviates from the usual procedure, may have a negative impact on the hydrolytic resistance of the container inner surface. The study was executed by using 10 ml clear type I Borosilicate glass vials representing four different compositions. For the applied depyrogenation process extreme parameters were chosen to with maximum temperature up to 400°C, exposure times up to 72 hours and different amounts of residual water inside as starting conditions. Those treated samples were tested in seven different laboratories as a round robin test.. A large amount of data was obtained, which clearly indicate that the hydrolytic resistance performance of the Type I Borosilicate glass vials is not affected even by such extreme depyrogenation conditions (e.g. 400°C, 72hours and not perfect dried inside). This is an important and useful result, both for glass and pharma companies, based on the 12.000 analytical data collected during the interlaboratory activity.

本文是国际玻璃委员会 (ICG) 旗下医药包装技术委员会 TC12 开展的一项循环活动的成果。这项研究是出于对玻璃瓶去热氮处理风险的担忧,即如果以偏离常规程序的异常方式进行去热氮处理,可能会对容器内表面的抗水解性产生负面影响。研究使用了 10 毫升透明的 I 型硼硅玻璃瓶,代表了四种不同的成分。在应用去热原工艺时,选择了最高温度达 400°C、曝露时间达 72 小时、内部残留水量不同的极端参数作为起始条件。这些经过处理的样品在七个不同的实验室进行了循环测试。获得的大量数据清楚地表明,I 型硼硅玻璃瓶的抗水解性能即使在如此极端的去热原条件下(如 400°C、72 小时和瓶内未完全干燥)也不会受到影响。根据在实验室间活动中收集的 12,000 个分析数据,这一结果对玻璃公司和制药公司都非常重要和有用。
{"title":"Evaluation of extreme depyrogenation conditions on the surface hydrolytic resistance of glass containers for pharmaceutical use.","authors":"Massimo Guglielmi, Satoshi Arai, Peggy Georges, Amy Meisner, Peter Otton, Serena Panighello, Volker Rupertus, Jingwei Zhang, Daniele Zuccato","doi":"10.5731/pdajpst.2024.012972","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.012972","url":null,"abstract":"<p><p>This paper is the result of a round robin activity run by the Technical Committee TC12, Pharma Packaging, of the International Commission on Glass (ICG). The study was motivated by a concern about the risk that the depyrogenation treatment of glass vials, when performed in an abnormal way that deviates from the usual procedure, may have a negative impact on the hydrolytic resistance of the container inner surface. The study was executed by using 10 ml clear type I Borosilicate glass vials representing four different compositions. For the applied depyrogenation process extreme parameters were chosen to with maximum temperature up to 400°C, exposure times up to 72 hours and different amounts of residual water inside as starting conditions. Those treated samples were tested in seven different laboratories as a round robin test.. A large amount of data was obtained, which clearly indicate that the hydrolytic resistance performance of the Type I Borosilicate glass vials is not affected even by such extreme depyrogenation conditions (e.g. 400°C, 72hours and not perfect dried inside). This is an important and useful result, both for glass and pharma companies, based on the 12.000 analytical data collected during the interlaboratory activity.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management. 人工智能和机器学习在产品生命周期管理中的应用综述。
Q3 Medicine Pub Date : 2024-10-22 DOI: 10.5731/pdajpst.2023.012922
Maria Ana Martins da Cruz Borges Batalha, Daniel Alexandre Marques Pais, Rui Alexandre Estrela de Almeida, Ângela Sofia Gomes Martinho

The pursuit of harnessing data for knowledge creation has been an enduring quest, with the advent of machine learning (ML) and artificial intelligence (AI) marking significant milestones in this journey. ML, a subset of AI, emerged as the practice of employing mathematical models to enable computers to learn and improve autonomously based on their experiences. In the pharmaceutical and biopharmaceutical sectors, a significant portion of manufacturing data remains untapped or insufficient for practical use. Recognizing the potential advantages of leveraging the available data for process design and optimization, manufacturers face the daunting challenge of data utilization. Diverse proprietary data formats and parallel data generation systems compound the complexity. The transition to Pharma 4.0 necessitates a paradigm shift in data capture, storage, and accessibility for manufacturing and process operations. This paper highlights the pivotal role of AI in converting process data into actionable knowledge to support critical functions throughout the whole product life cycle. Furthermore, it underscores the importance of maintaining compliance with data integrity guidelines, as mandated by regulatory bodies globally. Embracing AI-driven transformations is a crucial step toward shaping the future of the pharmaceutical industry, ensuring its competitiveness and resilience in an evolving landscape.

利用数据创造知识一直是人们的不懈追求,而机器学习和人工智能(AI)的出现则是这一历程中的重要里程碑。机器学习(ML)是人工智能的一个子集,是一种利用数学模型使计算机根据自身经验自主学习和改进的实践。在制药和生物制药领域,有很大一部分生产数据尚未开发或不足以实际使用。认识到利用现有数据进行工艺设计和优化的潜在优势,制造商面临着数据利用方面的严峻挑战。多种专有数据格式和并行数据生成系统使问题更加复杂。要向制药 4.0 过渡,就必须转变生产和工艺操作的数据采集模式。本文强调了人工智能在将工艺数据转化为可操作知识方面的关键作用,以支持整个工艺生命周期的关键功能。此外,本文还强调了遵守全球监管机构规定的数据完整性准则的重要性。拥抱人工智能驱动的转型是塑造制药业未来、确保其在不断变化的环境中的竞争力和适应力的关键一步。
{"title":"A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management.","authors":"Maria Ana Martins da Cruz Borges Batalha, Daniel Alexandre Marques Pais, Rui Alexandre Estrela de Almeida, Ângela Sofia Gomes Martinho","doi":"10.5731/pdajpst.2023.012922","DOIUrl":"10.5731/pdajpst.2023.012922","url":null,"abstract":"<p><p>The pursuit of harnessing data for knowledge creation has been an enduring quest, with the advent of machine learning (ML) and artificial intelligence (AI) marking significant milestones in this journey. ML, a subset of AI, emerged as the practice of employing mathematical models to enable computers to learn and improve autonomously based on their experiences. In the pharmaceutical and biopharmaceutical sectors, a significant portion of manufacturing data remains untapped or insufficient for practical use. Recognizing the potential advantages of leveraging the available data for process design and optimization, manufacturers face the daunting challenge of data utilization. Diverse proprietary data formats and parallel data generation systems compound the complexity. The transition to Pharma 4.0 necessitates a paradigm shift in data capture, storage, and accessibility for manufacturing and process operations. This paper highlights the pivotal role of AI in converting process data into actionable knowledge to support critical functions throughout the whole product life cycle. Furthermore, it underscores the importance of maintaining compliance with data integrity guidelines, as mandated by regulatory bodies globally. Embracing AI-driven transformations is a crucial step toward shaping the future of the pharmaceutical industry, ensuring its competitiveness and resilience in an evolving landscape.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"604-612"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry. 生物制药行业常见可见微粒的识别和根本原因分析。
Q3 Medicine Pub Date : 2024-10-22 DOI: 10.5731/pdajpst.2023.012894
Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao

Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.

可见微粒是生物制药行业的一个重要问题,它可能出现在生物制剂生命周期的各个阶段。一旦出现可见微粒,往往需要进行化学鉴定和根本原因分析,以保障生物治疗产品的安全性和有效性。在本文中,我们将介绍生物制药行业中常见的外在颗粒、内在颗粒和固有颗粒等类别中的一些典型颗粒和相关的根本原因分析。我们特别提供了原位和分离后获得的颗粒光学图像,以及光谱和元素信息。粒子识别采用了多种显微镜和显微光谱技术,包括立体光学显微镜、傅立叶变换红外显微镜、共焦拉曼显微镜、扫描电子显微镜和能量色散 X 射线光谱仪。商业和内部光谱数据库都被用来进行比较和鉴定。除了粒子鉴定,我们还致力于对所处理的粒子进行根本原因分析,目的是为生物制药行业的同行提供与粒子相关问题的相对完整的信息,以及粒子缓解的实用参考。
{"title":"Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry.","authors":"Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao","doi":"10.5731/pdajpst.2023.012894","DOIUrl":"10.5731/pdajpst.2023.012894","url":null,"abstract":"<p><p>Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"586-603"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Dimensional Variability of Primary Packaging Materials on the Break-Loose and Gliding Forces of Prefilled Syringes. 主包装材料的尺寸变化对预灌封注射器的断裂力和滑行力的影响。
Q3 Medicine Pub Date : 2024-10-22 DOI: 10.5731/pdajpst.2023.012916
Ramadan Alkeefo, Christian Hotz, Daniel Kolacyak

A prefilled syringe (PFS) should be able to be adequately and consistently extruded during injection for optimal safe drug delivery and accurate dosing. To facilitate appropriate break-loose and gliding forces (BLGFs) required during injection, certain primary packaging materials (PPMs) such as the syringe barrel and plunger are usually coated with silicone oil, which acts as a lubricant. Due to its direct contact with drug, silicone oil can increase the number of particles in the syringe, which could lead to adverse interactions. Compliance with regulatory-defined silicone oil quantities in certain drug products, such as ophthalmics, presents a trade-off with the necessity for desirable low and consistent BLGF. In addition to its siliconization, the dimensional accuracy of the PPM has an important role in controlling the BLGF. The dimensions of the PPM are individualized depending on the product and its design and have certain tolerances that must be met during manufacturing. Most studies on ophthalmics focused on the adverse interactions between silicone oil and the drug. To the authors' knowledge, there have been no public studies so far that have investigated the impact of the dimensional variability of the PPM on the BLGF in ophthalmic PFSs. In this study, we applied advanced optical shaft and tactile measuring technologies to investigate this impact. The syringes investigated were first sampled during aseptic production and tested for the BLGF. Subsequently, defined dimensions of the PPM were measured individually. The results showed that the dimensional variability of the PPM can have a negative impact on the BLGF, despite their conformity to specifications, which indicates that the currently available market quality of PPMs is improvable for critical drug products such as ophthalmics. This study could serve as an approach to define product-specific requirements for primary packaging combinations and thus appropriate specifications based on data during the development stage of drug products.

预灌封注射器(PFS)在注射过程中应能充分、稳定地挤压,以达到最佳的安全给药和精确配药效果。为了促进注射过程中所需的适当的松脱力和滑动力(BLGF),某些主包装材料(PPM),如注射器筒体和柱塞,通常涂有硅油,硅油起润滑作用。由于硅油与药物直接接触,会增加注射器中的微粒数量,从而可能导致不良反应。在某些药品(如眼药)中,要符合法规规定的硅油用量,就必须对理想的低而稳定的 BLGF 进行权衡。除硅化外,PPM 的尺寸精度对控制 BLGF 也有重要作用。PPM 的尺寸因产品及其设计而异,在制造过程中必须满足一定的公差要求。大多数关于眼科的研究都集中在硅油与药物之间的不良相互作用上。据作者所知,迄今为止还没有公开研究调查过 PPM 的尺寸变化对眼科 PFS 中 BLGF 的影响。在这项研究中,我们采用了先进的光轴和触觉测量技术来研究这种影响。首先在无菌生产过程中对所调查的注射器进行取样,并测试其 BLGF。随后,对 PPM 的定义尺寸进行了单独测量。结果表明,尽管 PPM 符合规格要求,但其尺寸变化会对 BLGF 产生负面影响。这项研究可作为一种方法,用于确定初级包装组合的特定产品要求,从而根据药品开发阶段的数据确定适当的规格。
{"title":"Impact of Dimensional Variability of Primary Packaging Materials on the Break-Loose and Gliding Forces of Prefilled Syringes.","authors":"Ramadan Alkeefo, Christian Hotz, Daniel Kolacyak","doi":"10.5731/pdajpst.2023.012916","DOIUrl":"10.5731/pdajpst.2023.012916","url":null,"abstract":"<p><p>A prefilled syringe (PFS) should be able to be adequately and consistently extruded during injection for optimal safe drug delivery and accurate dosing. To facilitate appropriate break-loose and gliding forces (BLGFs) required during injection, certain primary packaging materials (PPMs) such as the syringe barrel and plunger are usually coated with silicone oil, which acts as a lubricant. Due to its direct contact with drug, silicone oil can increase the number of particles in the syringe, which could lead to adverse interactions. Compliance with regulatory-defined silicone oil quantities in certain drug products, such as ophthalmics, presents a trade-off with the necessity for desirable low and consistent BLGF. In addition to its siliconization, the dimensional accuracy of the PPM has an important role in controlling the BLGF. The dimensions of the PPM are individualized depending on the product and its design and have certain tolerances that must be met during manufacturing. Most studies on ophthalmics focused on the adverse interactions between silicone oil and the drug. To the authors' knowledge, there have been no public studies so far that have investigated the impact of the dimensional variability of the PPM on the BLGF in ophthalmic PFSs. In this study, we applied advanced optical shaft and tactile measuring technologies to investigate this impact. The syringes investigated were first sampled during aseptic production and tested for the BLGF. Subsequently, defined dimensions of the PPM were measured individually. The results showed that the dimensional variability of the PPM can have a negative impact on the BLGF, despite their conformity to specifications, which indicates that the currently available market quality of PPMs is improvable for critical drug products such as ophthalmics. This study could serve as an approach to define product-specific requirements for primary packaging combinations and thus appropriate specifications based on data during the development stage of drug products.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"572-585"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Strategic Guide to Improve and De-Risk Vaccine Development: CEPI's CMC Framework. 改善和降低疫苗开发风险的战略指南》:CEPI 的 CMC 框架。
Q3 Medicine Pub Date : 2024-10-22 DOI: 10.5731/pdajpst.2023.012912
Anna Särnefält, Ranna Eardley-Patel, Diletta Magini, Vishal Sonje, Antonio Guzzi, Renske Hesselink, Matthew Scotney, Alessandro Lazdins, Valerie Chambard, Christof Vinnemeier, Ingrid Kromann

The Coalition for Epidemic Preparedness Innovations (CEPI) has developed a robust CMC (Chemistry, Manufacturing, and Controls) Framework to enhance the likelihood of successful vaccine development. This Framework serves as a comprehensive guide, aiding developers in building effective strategies to overcome the challenges posed by the different phases of vaccine development, including the ones often referred to as the "valleys of death". The Framework lists stage-appropriate deliverables, categorized and refined, spanning five key areas: manufacturing process, formulation and stability, analytics, supply chain, and compliance. By emphasizing the critical aspects of CMC development, CEPI's objective is to expedite the progression of vaccine candidates from research to deployment, reducing delays, mitigating risks, and optimizing the overall development process, all while upholding uncompromising quality standards, ultimately increasing the probability of success.

流行病防备创新联盟 (CEPI) 开发了一个强大的 CMC(化学、制造和控制)框架,以提高疫苗开发成功的可能性。该框架可作为一份综合指南,帮助开发人员制定有效策略,以克服疫苗开发不同阶段(包括通常被称为 "死亡谷 "的阶段)所带来的挑战。该框架列出了适合各阶段的可交付成果,并进行了分类和细化,涵盖五个关键领域:生产工艺、配方和稳定性、分析、供应链和合规性。通过强调 CMC 开发的关键环节,CEPI 的目标是加快候选疫苗从研究到部署的进程,减少延误,降低风险,优化整体开发流程,同时坚持严格的质量标准,最终提高成功的概率。
{"title":"A Strategic Guide to Improve and De-Risk Vaccine Development: CEPI's CMC Framework.","authors":"Anna Särnefält, Ranna Eardley-Patel, Diletta Magini, Vishal Sonje, Antonio Guzzi, Renske Hesselink, Matthew Scotney, Alessandro Lazdins, Valerie Chambard, Christof Vinnemeier, Ingrid Kromann","doi":"10.5731/pdajpst.2023.012912","DOIUrl":"10.5731/pdajpst.2023.012912","url":null,"abstract":"<p><p>The Coalition for Epidemic Preparedness Innovations (CEPI) has developed a robust CMC (Chemistry, Manufacturing, and Controls) Framework to enhance the likelihood of successful vaccine development. This Framework serves as a comprehensive guide, aiding developers in building effective strategies to overcome the challenges posed by the different phases of vaccine development, including the ones often referred to as the \"valleys of death\". The Framework lists stage-appropriate deliverables, categorized and refined, spanning five key areas: manufacturing process, formulation and stability, analytics, supply chain, and compliance. By emphasizing the critical aspects of CMC development, CEPI's objective is to expedite the progression of vaccine candidates from research to deployment, reducing delays, mitigating risks, and optimizing the overall development process, all while upholding uncompromising quality standards, ultimately increasing the probability of success.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"613-623"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Holistic Approach for Fill volume Variability Evaluation and Control with Statistical Tool. 利用统计工具评估和控制填充量变异性的整体方法。
Q3 Medicine Pub Date : 2024-09-24 DOI: 10.5731/pdajpst.2023.012867
Quanmin Chen, Qingqing She, Zhaowei Jin, Mingyang Hei, Chunmeng Sun, Jiasheng Tu, Jeremy Guo

Vial and syringe filling by peristaltic pump has been widely implemented by contract manufacturing organizations and biopharmaceutical companies. Fill volume is commonly considered as critical quality attribute related in aseptic filling process and the variation needs to be well controlled to guarantee the safety, efficacy and consistency of drug products. However, the criteria for justifying the filling variation and underlying mechanisms that affect the variability are not fully revealed quantitatively in the literatures. This study selected filling accuracy, filling process capability and filling precision as three criteria for evaluating the filling process performance with four statistical indexes: Relative Error Mean, Critical Control Limit (Cpk ≥ 1.33), Relative Standard Deviation and Relative Moving Range Mean. The impact of liquid properties, pump tubing sizes and pump settings on above indexes were investigated using a bench-top system with a peristatic pump and a high-precision balance. The results showed that the viscosity, target fill volume, pump tubing size, pump speed, acceleration/deceleration rate and suck-back had statistical significance on the fill volume variability. Definitive Screening Design was further applied to clarify and visualize the priorities and interaction impact of above factors on fill volume variability. Stepwise approach for fill volume variability optimization and control based on predictive models was established and verified for drug product solution with viscosity between 1-23 cp and target fill volume between 0.2-2.0 mL.

合同生产组织和生物制药公司已广泛采用蠕动泵进行小瓶和注射器灌装。灌装量通常被认为是无菌灌装过程中的关键质量属性,需要对其变化进行良好控制,以保证药物产品的安全性、有效性和一致性。然而,灌装变异的合理性标准和影响变异的潜在机制并未在文献中得到充分的定量揭示。本研究选择了灌装准确度、灌装工艺能力和灌装精度作为评价灌装工艺性能的三个标准,并采用了四个统计指标:相对误差均值、临界控制限(Cpk ≥ 1.33)、相对标准偏差和相对移动范围均值。使用配备蠕动泵和高精度天平的台式系统研究了液体特性、泵管尺寸和泵设置对上述指标的影响。结果表明,粘度、目标填充量、泵管尺寸、泵速、加速/减速率和回吸对填充量的变化具有统计学意义。我们还进一步采用了确定性筛选设计,以明确和直观地显示上述因素对填充体积变化的优先影响和交互影响。针对粘度在 1-23 cp 之间、目标填充体积在 0.2-2.0 mL 之间的药物产品溶液,建立并验证了基于预测模型的填充体积变化优化和控制的逐步方法。
{"title":"A Holistic Approach for Fill volume Variability Evaluation and Control with Statistical Tool.","authors":"Quanmin Chen, Qingqing She, Zhaowei Jin, Mingyang Hei, Chunmeng Sun, Jiasheng Tu, Jeremy Guo","doi":"10.5731/pdajpst.2023.012867","DOIUrl":"10.5731/pdajpst.2023.012867","url":null,"abstract":"<p><p>Vial and syringe filling by peristaltic pump has been widely implemented by contract manufacturing organizations and biopharmaceutical companies. Fill volume is commonly considered as critical quality attribute related in aseptic filling process and the variation needs to be well controlled to guarantee the safety, efficacy and consistency of drug products. However, the criteria for justifying the filling variation and underlying mechanisms that affect the variability are not fully revealed quantitatively in the literatures. This study selected filling accuracy, filling process capability and filling precision as three criteria for evaluating the filling process performance with four statistical indexes: Relative Error Mean, Critical Control Limit (Cpk ≥ 1.33), Relative Standard Deviation and Relative Moving Range Mean. The impact of liquid properties, pump tubing sizes and pump settings on above indexes were investigated using a bench-top system with a peristatic pump and a high-precision balance. The results showed that the viscosity, target fill volume, pump tubing size, pump speed, acceleration/deceleration rate and suck-back had statistical significance on the fill volume variability. Definitive Screening Design was further applied to clarify and visualize the priorities and interaction impact of above factors on fill volume variability. Stepwise approach for fill volume variability optimization and control based on predictive models was established and verified for drug product solution with viscosity between 1-23 cp and target fill volume between 0.2-2.0 mL.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design. 用于微针阵列设计的皮肤变形和穿刺有限元分析
Q3 Medicine Pub Date : 2024-08-23 DOI: 10.5731/pdajpst.2024.012970
Scott Lovald, Chris Berkey, Nikita Pak, Maysam Gorji, Andrew Rau

The mechanics of microneedle insertion have thus far been studied in a limited manner. Previous work has focused on buckling and failure of microneedle devices, while providing little insight into skin deformation, puncture, and the final positioning of needle tips under full microneedle arrays. The current study aims to develop a numerical approach capable of evaluating deformation and puncture conditions for full microneedle array designs. The analysis included a series of finite element submodels used to calibrate the microneedle-epidermal interface for failure properties using traction-separation laws. The single needle model is validated using experimental data and imaging, including results from a customized nanoindentation procedure to measure loads and displacements during microneedle insertion. Upon validation, full microneedle arrays are implemented in a 3 D finite element model and a design framework is developed, allowing evaluation of different design variables (i.e. needle shape, material, spacing) with respect to outputs relevant to successful microneedle performance. Results from the model include skin deformation, force to puncture, penetration depth, and the punctured state at each microneedle tip. In addition to microneedle parameters, patient parameters such as subcutaneous tissue thickness are included to evaluate the sensitivity of different microneedle designs to expected patient and anatomical region variability.

迄今为止,对微针插入力学的研究还很有限。以前的研究主要集中在微针装置的屈曲和失效方面,而对全微针阵列下的皮肤变形、穿刺和针尖的最终定位却知之甚少。目前的研究旨在开发一种能够评估全微针阵列设计的变形和穿刺条件的数值方法。分析包括一系列有限元子模型,用于利用牵引分离定律校准微针-表皮界面的破坏特性。单针模型通过实验数据和成像进行了验证,包括定制纳米压痕程序的结果,以测量微针插入过程中的载荷和位移。经过验证后,在 3 D 有限元模型中实现了完整的微针阵列,并开发了一个设计框架,允许对不同的设计变量(即针的形状、材料、间距)与成功的微针性能相关的输出进行评估。该模型的结果包括皮肤变形、穿刺力、穿刺深度以及每个微针针尖的穿刺状态。除了微针参数外,还包括皮下组织厚度等患者参数,以评估不同微针设计对预期患者和解剖区域变异的敏感性。
{"title":"Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design.","authors":"Scott Lovald, Chris Berkey, Nikita Pak, Maysam Gorji, Andrew Rau","doi":"10.5731/pdajpst.2024.012970","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.012970","url":null,"abstract":"<p><p>The mechanics of microneedle insertion have thus far been studied in a limited manner. Previous work has focused on buckling and failure of microneedle devices, while providing little insight into skin deformation, puncture, and the final positioning of needle tips under full microneedle arrays. The current study aims to develop a numerical approach capable of evaluating deformation and puncture conditions for full microneedle array designs. The analysis included a series of finite element submodels used to calibrate the microneedle-epidermal interface for failure properties using traction-separation laws. The single needle model is validated using experimental data and imaging, including results from a customized nanoindentation procedure to measure loads and displacements during microneedle insertion. Upon validation, full microneedle arrays are implemented in a 3 D finite element model and a design framework is developed, allowing evaluation of different design variables (i.e. needle shape, material, spacing) with respect to outputs relevant to successful microneedle performance. Results from the model include skin deformation, force to puncture, penetration depth, and the punctured state at each microneedle tip. In addition to microneedle parameters, patient parameters such as subcutaneous tissue thickness are included to evaluate the sensitivity of different microneedle designs to expected patient and anatomical region variability.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 4","pages":"518-519"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Letter to the Editor. 致编辑的信
Q3 Medicine Pub Date : 2024-08-23 DOI: 10.5731/pdajpst.2024.013000
Tony Cundell
{"title":"Letter to the Editor.","authors":"Tony Cundell","doi":"10.5731/pdajpst.2024.013000","DOIUrl":"10.5731/pdajpst.2024.013000","url":null,"abstract":"","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 4","pages":"386-387"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking Human Factors in Obesity: Development of Simulation and Physical Test Models of Human Soft Tissue to Study Autoinjector Activation Performance. 反思肥胖症中的人为因素:开发人体软组织模拟和物理测试模型,研究自动注射器的激活性能。
Q3 Medicine Pub Date : 2024-08-23 DOI: 10.5731/pdajpst.2024.012993
Eric Linvill, Chung Tsai, Paolo Ravaynia, Chun Chang, Karin Brolin, Victor Alvarez, Sofia Jonasson

Activation against a hard surface according to ISO 11608-1 is not always representative of device use on a soft injection site. A softer injection site - which is an anthropometric property found in obese patients - presents a distinct viscoelastic property which can lead to greater autoinjector activation forces that are not captured in standardized activation testing methodology. Soft tissue simulation and physical testing were developed at SHL to advance the development of autoinjectors, allowing for rigorous testing and challenging these in scenarios involving even the softest injection sites.

根据 ISO 11608-1 标准,在坚硬表面上的激活并不总能代表设备在柔软注射部位的使用情况。较软的注射部位(肥胖患者的人体测量特性)具有明显的粘弹性,可导致更大的自动注射器激活力,而标准化的激活测试方法无法捕捉到这种激活力。为了推进自动注射器的开发,SHL 开发了软组织模拟和物理测试,允许在涉及最柔软注射部位的情况下进行严格的测试和挑战。
{"title":"Rethinking Human Factors in Obesity: Development of Simulation and Physical Test Models of Human Soft Tissue to Study Autoinjector Activation Performance.","authors":"Eric Linvill, Chung Tsai, Paolo Ravaynia, Chun Chang, Karin Brolin, Victor Alvarez, Sofia Jonasson","doi":"10.5731/pdajpst.2024.012993","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.012993","url":null,"abstract":"<p><p>Activation against a hard surface according to ISO 11608-1 is not always representative of device use on a soft injection site. A softer injection site - which is an anthropometric property found in obese patients - presents a distinct viscoelastic property which can lead to greater autoinjector activation forces that are not captured in standardized activation testing methodology. Soft tissue simulation and physical testing were developed at SHL to advance the development of autoinjectors, allowing for rigorous testing and challenging these in scenarios involving even the softest injection sites.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 4","pages":"530-531"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PDA Journal of Pharmaceutical Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1