Pub Date : 2022-11-15DOI: 10.1134/S0869591122060091
A. R. Tskhovrebova, E. V. Koptev-Dvornikov, D. A. Bychkov
The Oulanka group is a compact group of three peridotite–gabbronorite intrusions that is convenient for testing various petrogenetic concepts. The three intrusions are similar in age and occur not far from one another but differ in the composition of their original magmas, are characterized by different sets of cumulus mineral assemblages, and are different in inner structure and rhythmic layering. We applied cluster analysis of the contents of major elements to reproduce the cumulus mineral assemblages of the isochemically altered rocks of the Tsipringa and Lukkulaisvaara massifs. Although the parental magmas of the Kivakka and Tsipringa massifs were of different composition and their crystallization sequences were also different, the vertical sections of these massifs can be clearly subdivided into zones according to their cumulus mineral assemblages, with the limited development of rhythmic interbedding (with individual rhythms ranging from a few to a few dozen meters in thickness). Conversely, the Lukkulaisvaara intrusion does not possess any clearly distinguishable cumulus zones, and large-scale rhythmic layering is traceable throughout the entire thickness of the massif (with rhythms ranging from a few dozen to a few hundred meters in thickness). The different character of the rhythmic layering of the three intrusions may provide an insight into the different scenarios of magma convection in the chambers.
{"title":"Comparative Characteristics of the Layering of Mafic–Ultramafic Intrusions of the Oulanka Group, Northern Karelia","authors":"A. R. Tskhovrebova, E. V. Koptev-Dvornikov, D. A. Bychkov","doi":"10.1134/S0869591122060091","DOIUrl":"10.1134/S0869591122060091","url":null,"abstract":"<p>The Oulanka group is a compact group of three peridotite–gabbronorite intrusions that is convenient for testing various petrogenetic concepts. The three intrusions are similar in age and occur not far from one another but differ in the composition of their original magmas, are characterized by different sets of cumulus mineral assemblages, and are different in inner structure and rhythmic layering. We applied cluster analysis of the contents of major elements to reproduce the cumulus mineral assemblages of the isochemically altered rocks of the Tsipringa and Lukkulaisvaara massifs. Although the parental magmas of the Kivakka and Tsipringa massifs were of different composition and their crystallization sequences were also different, the vertical sections of these massifs can be clearly subdivided into zones according to their cumulus mineral assemblages, with the limited development of rhythmic interbedding (with individual rhythms ranging from a few to a few dozen meters in thickness). Conversely, the Lukkulaisvaara intrusion does not possess any clearly distinguishable cumulus zones, and large-scale rhythmic layering is traceable throughout the entire thickness of the massif (with rhythms ranging from a few dozen to a few hundred meters in thickness). The different character of the rhythmic layering of the three intrusions may provide an insight into the different scenarios of magma convection in the chambers.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"610 - 627"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4627358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1134/S0869591122060078
A. G. Simakin, V. N. Devyatova, G. V. Bondarenko
Formation of graphite was observed in experiments on synthesis of dry carbon-bearing albite glasses in platinum capsules in an Internally Heated Pressure Vessel at 500 MPa and Т = 1200–1250°С. A thermodynamic model is proposed that explains the achievement of low oxygen fugacity near QFM-2 in the melt at low fugacity of hydrogen formed due to the decomposition of trace amounts of water in a compression medium (Ar gas). The unexpectedly low fugacity of oxygen is explained by the shift of equilibrium between the gases dissolved in the melt CO2 + H2 = H2O + CO to the right due to the low activity of molecular water at a low total content of H2O ~ 0.1–0.5 wt %. The high local СО concentrations in the melt lead to the platinum dissolution in form of carbonyl, corrosion of capsule walls, and redeposition of the metal at the contact with melt. With increase of water concentration in the melt (>1 wt %), the effect of reduction disappears.
{"title":"The Effect of CO2 Reduction in Low-Water Melts at Low Hydrogen Fugacity: Experiment at 500 MPa and Thermodynamic Model","authors":"A. G. Simakin, V. N. Devyatova, G. V. Bondarenko","doi":"10.1134/S0869591122060078","DOIUrl":"10.1134/S0869591122060078","url":null,"abstract":"<div><p>Formation of graphite was observed in experiments on synthesis of dry carbon-bearing albite glasses in platinum capsules in an Internally Heated Pressure Vessel at 500 MPa and <i>Т</i> = 1200–1250°С. A thermodynamic model is proposed that explains the achievement of low oxygen fugacity near QFM-2 in the melt at low fugacity of hydrogen formed due to the decomposition of trace amounts of water in a compression medium (Ar gas). The unexpectedly low fugacity of oxygen is explained by the shift of equilibrium between the gases dissolved in the melt CO<sub>2</sub> + H<sub>2</sub> = H<sub>2</sub>O + CO to the right due to the low activity of molecular water at a low total content of H<sub>2</sub>O ~ 0.1–0.5 wt %. The high local СО concentrations in the melt lead to the platinum dissolution in form of carbonyl, corrosion of capsule walls, and redeposition of the metal at the contact with melt. With increase of water concentration in the melt (>1 wt %), the effect of reduction disappears.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"640 - 651"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4629163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1134/S0869591122050058
A. V. Samsonov, K. G. Erofeeva, Yu. O. Larionova, A. N. Larionov, N. B. Kuznetsov, T. V. Romanyuk, N. V. Solovyova, O. M. Zhilicheva, A. S. Dubenskiy, V. S. Sheshukov
The paper presents data on granites and gneisses recovered by Kulindinskaya-1 hole drilled in the central part of the Siberian Craton. The biotite granites retain a porphyritic texture, correspond to I-type according to their compositional features, are enriched in LREE and moderately depleted in HREE, and have negative Eu, Sr, and Nb and positive Zr anomalies. The U−Pb zircon age of the granites is Neoarchean (2525 ± 10 Ma), with single cores of zircon grains dated at about 2.6 Ga, which likely suggests a crustal source of the granitic magmas. The model age TNd(DM) = 2.77 Ga of the granite shows that the crust from which the initial melts were derived had been formed shortly before the melting episode. In terms of age and all characteristics, the granites are close to those of the Yurubchen massif, which was drilled through in the western part of the Tunguska superterrane. The biotite gneiss was apparently derived from sedimentary rocks and was heavily reworked when the granites were emplaced. The enrichment of the gneiss in Cr and Ni is probably inherited from the sedimentary protolith, whereas the REE, HFSE, and LILE concentrations and distribution in the gneiss are similar to those of the granite. The concordant (D < 1%) U−Pb zircon ages (according to LA-ICP-MS data) broadly vary from 3284 to 2620 Ma, with two major peaks at 2717 and 2678 Ma. The model age of the gneiss TNd(DM) = 2.91 Ga confirms a contribution of the ancient crustal component to the sedimentary protolith of the rock. The minimum age of the detrital zircon, 2.62 Ga, determines the maximum age limit for sedimentation, and the minimum age limit is set by the age of the granite intrusions at 2.53 Ga. According to our data, the Archean gneisses and granites recovered by the Kulindinskaya-1 drillhole probably compose the eastern part of the Neoarchean Tunguska superterrane. Ereminskaya-101 drillhole, which was drilled 20 km northeast of Kulindinskaya-1, recovered gneisses with model ages TNd(DM) from 2.30 to 2.37 Ga, which belong to the adjacent Taimyr−Baikal suture zone with widespread Paleoproterozoic rocks. The contrasting crustal history of the adjacent complexes provides grounds to suggest that they were tectonically combined, which is an additional reason to consider the Taimyr−Baikal suture zone as a Paleoproterozoic collisional orogen.
{"title":"Eastern Margin of the Neoarchean Tunguska Superterrane: Data from Boreholes in the Central Part of the Siberian Platform","authors":"A. V. Samsonov, K. G. Erofeeva, Yu. O. Larionova, A. N. Larionov, N. B. Kuznetsov, T. V. Romanyuk, N. V. Solovyova, O. M. Zhilicheva, A. S. Dubenskiy, V. S. Sheshukov","doi":"10.1134/S0869591122050058","DOIUrl":"10.1134/S0869591122050058","url":null,"abstract":"<p>The paper presents data on granites and gneisses recovered by Kulindinskaya-1 hole drilled in the central part of the Siberian Craton. The biotite granites retain a porphyritic texture, correspond to I-type according to their compositional features, are enriched in LREE and moderately depleted in HREE, and have negative Eu, Sr, and Nb and positive Zr anomalies. The U−Pb zircon age of the granites is Neoarchean (2525 ± 10 Ma), with single cores of zircon grains dated at about 2.6 Ga, which likely suggests a crustal source of the granitic magmas. The model age T<sub>Nd</sub>(DM) = 2.77 Ga of the granite shows that the crust from which the initial melts were derived had been formed shortly before the melting episode. In terms of age and all characteristics, the granites are close to those of the Yurubchen massif, which was drilled through in the western part of the Tunguska superterrane. The biotite gneiss was apparently derived from sedimentary rocks and was heavily reworked when the granites were emplaced. The enrichment of the gneiss in Cr and Ni is probably inherited from the sedimentary protolith, whereas the REE, HFSE, and LILE concentrations and distribution in the gneiss are similar to those of the granite. The concordant (<i>D</i> < 1%) U−Pb zircon ages (according to LA-ICP-MS data) broadly vary from 3284 to 2620 Ma, with two major peaks at 2717 and 2678 Ma. The model age of the gneiss T<sub>Nd</sub>(DM) = 2.91 Ga confirms a contribution of the ancient crustal component to the sedimentary protolith of the rock. The minimum age of the detrital zircon, 2.62 Ga, determines the maximum age limit for sedimentation, and the minimum age limit is set by the age of the granite intrusions at 2.53 Ga. According to our data, the Archean gneisses and granites recovered by the Kulindinskaya-1 drillhole probably compose the eastern part of the Neoarchean Tunguska superterrane. Ereminskaya-101 drillhole, which was drilled 20 km northeast of Kulindinskaya-1, recovered gneisses with model ages T<sub>Nd</sub>(DM) from 2.30 to 2.37 Ga, which belong to the adjacent Taimyr−Baikal suture zone with widespread Paleoproterozoic rocks. The contrasting crustal history of the adjacent complexes provides grounds to suggest that they were tectonically combined, which is an additional reason to consider the Taimyr−Baikal suture zone as a Paleoproterozoic collisional orogen.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"628 - 639"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0869591122050058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4624540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1134/S0869591122060030
V. Yu. Chevychelov
The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at T = 650–850°C and P = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al2O3-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at T = 750°C and P = 100 MPa are ~10–10 cm2/s, and those of Fe and Mn are ~10–8.5 cm2/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.
{"title":"Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb Diffusion Coefficients","authors":"V. Yu. Chevychelov","doi":"10.1134/S0869591122060030","DOIUrl":"10.1134/S0869591122060030","url":null,"abstract":"<p>The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at <i>T</i> = 650–850°C and <i>P</i> = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al<sub>2</sub>O<sub>3</sub>-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at <i>T</i> = 750°C and <i>P</i> = 100 MPa are ~10<sup>–10</sup> cm<sup>2</sup>/s, and those of Fe and Mn are ~10<sup>–8.5</sup> cm<sup>2</sup>/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"652 - 670"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4629135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1134/S0869591122060054
Igor S. Puchtel
Rhenium-Os isotope and highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) abundance systematics of Archean komatiites can be used to estimate the stirring rates of the mantle for the HSE and the timing of homogenization of late accreted materials within the mantle. In this study, we report Re-Os isotope and HSE abundance data for ~2.9 Ga komatiites and basalts from the Sumozero-Kenozero greenstone belt in the SE Fennoscandian Shield. The lavas are characterized by excellent preservation of the primary textural, chemical, and Re-Os isotope characteristics. The Re-Os isotopic data for spinifex-textured and cumulate komatiite and massive basalt samples from the lowermost sequences define a precise 10-point isochron (MSWD = 2.6) with an age of 2904 ± 18 Ma and an initial 187Os/188Os = 0.10758 ± 18 (γ187Os(2904) = +0.45 ± 0.17). This is the first direct age determination for the Sumozero-Kenozero lower komatiite-basalt sequences. Our modeling indicates that the mantle source of the komatiites and basalts evolved with a time-integrated 187Re/188Os = 0.418 ± 6. This ratio is well within the uncertainty of the bulk chondritic average 187Re/188Os = 0.410 ± 51 (2SD), also consistent with the chondritic evolution of the majority of komatiite mantle sources observed globally. The mantle source of the Sumozero-Kenozero komatiites has been calculated to contain the total HSE abundances of 58 ± 7% of those in the estimates for modern Bulk Silicate Earth (BSE). This estimate is in the middle of the range for other late Archean and Proterozoic komatiite systems. Using the estimated HSE abundances in the sources of komatiite systems as a function of their ages and ISOPLOT regression analysis, we calculated the average time in the past by which late accreted materials have been completely homogenized within the mantle to be 2.48 ± 0.23 Ga. These data require that the residence times of the late accreted planetesimals within the mantle, before complete homogenization, were on average 1.92 ± 0.23 Ga. This estimate represents a constraint on the average mixing rates of the mantle in terms of the HSE abundances in the Hadean and the Archean.
{"title":"Re-Os Isotope and HSE Abundance Systematics of the 2.9 Ga Komatiites and Basalts from the Sumozero-Kenozero Greenstone Belt, SE Fennoscandian Shield: Implications for the Mixing Rates of the Mantle","authors":"Igor S. Puchtel","doi":"10.1134/S0869591122060054","DOIUrl":"10.1134/S0869591122060054","url":null,"abstract":"<p>Rhenium-Os isotope and highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) abundance systematics of Archean komatiites can be used to estimate the stirring rates of the mantle for the HSE and the timing of homogenization of late accreted materials within the mantle. In this study, we report Re-Os isotope and HSE abundance data for ~2.9 Ga komatiites and basalts from the Sumozero-Kenozero greenstone belt in the SE Fennoscandian Shield. The lavas are characterized by excellent preservation of the primary textural, chemical, and Re-Os isotope characteristics. The Re-Os isotopic data for spinifex-textured and cumulate komatiite and massive basalt samples from the lowermost sequences define a precise 10-point isochron (MSWD = 2.6) with an age of 2904 ± 18 Ma and an initial <sup>187</sup>Os/<sup>188</sup>Os = 0.10758 ± 18 (γ<sup>187</sup>Os(2904) = +0.45 ± 0.17). This is the first direct age determination for the Sumozero-Kenozero lower komatiite-basalt sequences. Our modeling indicates that the mantle source of the komatiites and basalts evolved with a time-integrated <sup>187</sup>Re/<sup>188</sup>Os = 0.418 ± 6. This ratio is well within the uncertainty of the bulk chondritic average <sup>187</sup>Re/<sup>188</sup>Os = 0.410 ± 51 (2SD), also consistent with the chondritic evolution of the majority of komatiite mantle sources observed globally. The mantle source of the Sumozero-Kenozero komatiites has been calculated to contain the total HSE abundances of 58 ± 7% of those in the estimates for modern Bulk Silicate Earth (BSE). This estimate is in the middle of the range for other late Archean and Proterozoic komatiite systems. Using the estimated HSE abundances in the sources of komatiite systems as a function of their ages and ISOPLOT regression analysis, we calculated the average time in the past by which late accreted materials have been completely homogenized within the mantle to be 2.48 ± 0.23 Ga. These data require that the residence times of the late accreted planetesimals within the mantle, before complete homogenization, were on average 1.92 ± 0.23 Ga. This estimate represents a constraint on the average mixing rates of the mantle in terms of the HSE abundances in the Hadean and the Archean.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"548 - 566"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4626498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1134/S0869591122060108
{"title":"The Kulikovs: A Family of Geologists. Vyacheslav Stepanovich Kulikov, Viktoria Vladimirovna Kulikova, and Yana Vyacheslavovna Bychkova (Kulikova)","authors":"","doi":"10.1134/S0869591122060108","DOIUrl":"10.1134/S0869591122060108","url":null,"abstract":"","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"545 - 547"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4064103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.1134/S0869591122040051
S. Yu. Skuzovatov, M. A. Gornova, A. A. Karimov
<div><p>Within subduction-accretion complexes, high-pressure rocks (blueschists, eclogites) are commonly juxtaposed with lower-grade rocks, which represent their retrograded counterparts or were involved into accretionary event at later stages, and thus characterize distinct stages of evolution of accretionary belts. In SW Mongolia, the Central Asian Orogenic Belt includes Neoproterozoic–Early Paleozoic paleosubduction complexes represented by eclogites and associated rocks of the Alag-Khadny accretionary complex. This paper reports the results of mineralogical, geochemical and isotopic studies of amphibolites from this complex, the geochemical nature and relationships of which with eclogites have been yet uncertain. The texture of the studied rocks varies from fine- and medium-grained granoblastic and nematoblastic amphibole–plagioclase–epidote rocks to medium-grained nematoblastic amphibole–epidote–albite–titanite amphibolites, which experienced intense recrystallization as a response to late deformations. Primary assemblages include pargasite and Mg-hornblende (<sup>[B]</sup>Na = 0.07–0.16, <sup>IV</sup>Al = 0.79–1.69, <sup>[A]</sup>(Na + K + 2Ca) = 0.14–0.64, <sup>[C]</sup>(Al+ Ti + Fe<sup>3+</sup>) = 0.58–1.29, Fe<sup>2+</sup>/(Fe<sup>2+</sup> + Mg) = 0.18–0.46 at Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Al) = 0.18–0.77), low-to-medium-Ca plagioclase (<i>An</i><sub>24–36</sub>), and epidote–clinozoisite (0.08 < <span>({{X}_{{{text{F}}{{{text{e}}}^{{{text{3 + }}}}}}}})</span> < 0.16), whereas the retrograde assemblage is represented by albite and Mg-hornblende. Calculations using amphibole composition and amphibole/amphibole–plagioclase thermobarometry revealed peak <i>P-T</i> conditions up to 570–630°С and 7–9 kbar ascribed to the high-<i>T</i> epidote-amphibolite facies with subsequent greenschist-facies retrogression. The major-element composition of the amphibolites corresponds to low-alkali moderate-Ti tholeiites, although their trace-element composition varies significantly from N-MORB to E-MORB-type basalts, which are variably enriched in LREE, Nb, Ta, Th, U, and show negative Eu and Ti anomalies due to fractionation of parental melts for precursor rocks. Isotopic composition of Nd (ε<sub>Nd</sub>(550) from +5.1 to –9.1) and Sr ((<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>550</sub> = 0.7057–0.7097) indicates distinct mainly moderately-depleted nature of mantle sources for the mafic rocks, but also highlights the involvement of “anomalous” mantle domains with unradiogenic Nd composition. The data supports that the precursor rocks of the amphibolites were formed during intracontinental extension of a continental margin, which was likely linked to opening of a limited Neoproterozoic oceanic basin with a subsequent Late Vendian–Early Cambrian convergence. The medium- to high-pressure metamorphism of amphibolites had similar <i>P-T</i> conditions to that of retrograde metamorphism of eclogites and associated metasediments and was directly related t
{"title":"Mineralogical, Geochemical, and Nd-Sr Isotope Characteristics of Amphibolites from the Alag-Khadny High-Pressure Complex (SW Mongolia): Intracontinental Rifting as a Precursor of Continental-Margin Subduction","authors":"S. Yu. Skuzovatov, M. A. Gornova, A. A. Karimov","doi":"10.1134/S0869591122040051","DOIUrl":"10.1134/S0869591122040051","url":null,"abstract":"<div><p>Within subduction-accretion complexes, high-pressure rocks (blueschists, eclogites) are commonly juxtaposed with lower-grade rocks, which represent their retrograded counterparts or were involved into accretionary event at later stages, and thus characterize distinct stages of evolution of accretionary belts. In SW Mongolia, the Central Asian Orogenic Belt includes Neoproterozoic–Early Paleozoic paleosubduction complexes represented by eclogites and associated rocks of the Alag-Khadny accretionary complex. This paper reports the results of mineralogical, geochemical and isotopic studies of amphibolites from this complex, the geochemical nature and relationships of which with eclogites have been yet uncertain. The texture of the studied rocks varies from fine- and medium-grained granoblastic and nematoblastic amphibole–plagioclase–epidote rocks to medium-grained nematoblastic amphibole–epidote–albite–titanite amphibolites, which experienced intense recrystallization as a response to late deformations. Primary assemblages include pargasite and Mg-hornblende (<sup>[B]</sup>Na = 0.07–0.16, <sup>IV</sup>Al = 0.79–1.69, <sup>[A]</sup>(Na + K + 2Ca) = 0.14–0.64, <sup>[C]</sup>(Al+ Ti + Fe<sup>3+</sup>) = 0.58–1.29, Fe<sup>2+</sup>/(Fe<sup>2+</sup> + Mg) = 0.18–0.46 at Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Al) = 0.18–0.77), low-to-medium-Ca plagioclase (<i>An</i><sub>24–36</sub>), and epidote–clinozoisite (0.08 < <span>({{X}_{{{text{F}}{{{text{e}}}^{{{text{3 + }}}}}}}})</span> < 0.16), whereas the retrograde assemblage is represented by albite and Mg-hornblende. Calculations using amphibole composition and amphibole/amphibole–plagioclase thermobarometry revealed peak <i>P-T</i> conditions up to 570–630°С and 7–9 kbar ascribed to the high-<i>T</i> epidote-amphibolite facies with subsequent greenschist-facies retrogression. The major-element composition of the amphibolites corresponds to low-alkali moderate-Ti tholeiites, although their trace-element composition varies significantly from N-MORB to E-MORB-type basalts, which are variably enriched in LREE, Nb, Ta, Th, U, and show negative Eu and Ti anomalies due to fractionation of parental melts for precursor rocks. Isotopic composition of Nd (ε<sub>Nd</sub>(550) from +5.1 to –9.1) and Sr ((<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>550</sub> = 0.7057–0.7097) indicates distinct mainly moderately-depleted nature of mantle sources for the mafic rocks, but also highlights the involvement of “anomalous” mantle domains with unradiogenic Nd composition. The data supports that the precursor rocks of the amphibolites were formed during intracontinental extension of a continental margin, which was likely linked to opening of a limited Neoproterozoic oceanic basin with a subsequent Late Vendian–Early Cambrian convergence. The medium- to high-pressure metamorphism of amphibolites had similar <i>P-T</i> conditions to that of retrograde metamorphism of eclogites and associated metasediments and was directly related t","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"523 - 544"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4279408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.1134/S0869591122050046
N. M. Lebedeva, A. A. Nosova, L. V. Sazonova, Y. O. Larionova
We investigated mantle eclogite and garnet pyroxenite xenoliths from the V. Grib kimberlite located in the Arkhangelsk diamond province. The eclogites in the lithospheric mantle beneath the Arkhangelsk province were strongly modified by metasomatic processes, which totally obliterated the primary features of protolith. Detailed studies of the xenoliths allowed us to distinguish the following metasomatic events: (1) early mantle metasomatism and (2) interaction with kimberlite melt. During the multiple early mantle metasomatism, primary clinopyroxene and garnet were replaced by metasomatic clinopyroxene, garnet, amphibole, calcite, and phlogopite under the influence of carbonated ultramafic melts. The impact of kimberlite melt caused the dissolution and recrystallisation of solid-phase inclusions and formation of melt pockets consisting of serpentine, chlorite, carbonate, spinel, perovskite, amphibole, recrystallized garnet, and clinopyroxene. En route to the surface in kimberlite melt, the xenoliths were disintegrated and primary garnet and clinopyroxene were metasomatized with increasing Ti and Cr contents, up to formation of high-Cr megacrysts. The garnet pyroxenites are represented by high-Ca, low-Mg and low-Ca, high-Mg types. It is shown that the high-Ca, low-Mg garnet pyroxenites can be the final products of the eclogite xenolith metasomatism by carbonated ultramafic melts. The low-Ca, high-Mg pyroxenites were derived through the interaction of a partial eclogite melt with depleted peridotites.
{"title":"Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province","authors":"N. M. Lebedeva, A. A. Nosova, L. V. Sazonova, Y. O. Larionova","doi":"10.1134/S0869591122050046","DOIUrl":"10.1134/S0869591122050046","url":null,"abstract":"<div><p>We investigated mantle eclogite and garnet pyroxenite xenoliths from the V. Grib kimberlite located in the Arkhangelsk diamond province. The eclogites in the lithospheric mantle beneath the Arkhangelsk province were strongly modified by metasomatic processes, which totally obliterated the primary features of protolith. Detailed studies of the xenoliths allowed us to distinguish the following metasomatic events: (1) early mantle metasomatism and (2) interaction with kimberlite melt. During the multiple early mantle metasomatism, primary clinopyroxene and garnet were replaced by metasomatic clinopyroxene, garnet, amphibole, calcite, and phlogopite under the influence of carbonated ultramafic melts. The impact of kimberlite melt caused the dissolution and recrystallisation of solid-phase inclusions and formation of melt pockets consisting of serpentine, chlorite, carbonate, spinel, perovskite, amphibole, recrystallized garnet, and clinopyroxene. En route to the surface in kimberlite melt, the xenoliths were disintegrated and primary garnet and clinopyroxene were metasomatized with increasing Ti and Cr contents, up to formation of high-Cr megacrysts. The garnet pyroxenites are represented by high-Ca, low-Mg and low-Ca, high-Mg types. It is shown that the high-Ca, low-Mg garnet pyroxenites can be the final products of the eclogite xenolith metasomatism by carbonated ultramafic melts. The low-Ca, high-Mg pyroxenites were derived through the interaction of a partial eclogite melt with depleted peridotites.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"479 - 498"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4283588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.1134/S0869591122040063
O. M. Turkina, A. E. Izokh, A. V. Lavrenchuk, Ya. Yu. Shelepov
The paper summarizes major and trace-element compositions and Sm–Nd isotope data on metabasites (amphibolites) and gabbroids of the Onot granite–greenstone block in the Sharyzhalgai basement uplift, southwestern Siberian craton. The Onot block consists of tectonically combined nappes of the Paleoarchean tonalite–trondhjemite–granodiorite (TTG) complex and the metasedimentary-volcanic complex of the greenstone belt (GB). The Mezoarchean (∼2.88 Ga) metabasalts of the greenstone belt and Paleoproterozoic (∼1.86 Ga) gabbronorites and vein gabbros were formed at rifting and postcollisional extension, respectively. The Archean metabasites of the greenstone belt and enclaves in the TTG complex compositionally correspond to low-Ti tholeiitic basalts and basaltic andesites. The basaltic rocks are characterized by flat REE patterns [(La/Sm)n = 0.9–1.9], depletion in Nb relative to Th and La (Nb/Nb* = 0.4–1.1), and a wide range of mostly positive εNd(T) values (from +5.2 to –1.0). The enrichment of the basaltic andesite in incompatible elements, its Eu minimum, and negative εNd(T) values resulted from contamination by Paleoarchean TTG gneisses, that form the basement of GB. The Paleoproterozoic gabbronorites have high Mg# and extremely low concentrations of Ti and incompatible elements. The rocks are characterized by low (Nb/Y)PМ (0.8–1.0), negative εNd(T) values (from 0 to –1.4), and weak enrichment in Th and LREE relative to Nb. The vein gabbros have low (La/Sm)n, positive εNd(T) values of +2.8 and +0.3, and a negative Nb anomaly (Nb/Nb* = 0.3–0.4). The trace element-composition of the amphibolites, gabbronorites, and gabbros and the results of geochemical modeling indicate that the parental melts were derived mainly from weakly depleted mantle sources. The Nd isotope composition of the Paleoproterozoic gabbroids resulted from the evolution of the heterogeneous Archean lithospheric mantle. Variations in the isotope and trace-element composition of the amphibolites reflect the initially depleted nature of the Mezoarchean mantle and its metasomatic alteration by fluids/melts, which occurred before its melting at ∼2.88 Ga. The geochemical and Nd isotopic characteristics of gabbronorites and gabbros indicate that the lithospheric mantle had become progressively more heterogeneous by the Paleoproterozoic due to preceding Archean processes. The variable depletion of both the Archean and the Paleoproterozoic mafic rocks in Nb relative to Th and La may be explained by mantle metasomatism and does not reflect the geodynamic settings of the mafic magmatism.
本文概述了西伯利亚环形山西南部 Sharyzhalgai 基底隆起区 Onot 花岗岩-绿岩地块的主要元素和痕量元素组成以及 Sm-Nd 同位素数据。奥诺特区块由古新世的碳酸盐岩-特朗杰米岩-花岗闪长岩(TTG)复合体和绿岩带(GB)的变质岩-火山岩复合体的构造组合页岩组成。绿岩带的美宙(2.88 Ga ∼2.88Ga)变玄武岩和古近纪的(1.86 Ga ∼1.86Ga)榴辉岩和脉辉长岩分别形成于断裂和碰撞后延伸时期。TTG复合体中绿岩带和飞地的阿新世代谢岩在成分上与低钛托勒密玄武岩和玄武安山岩相对应。玄武岩的特征是REE形态平坦[(La/Sm)n = 0.9-1.9],相对于Th和La,Nb贫化(Nb/Nb* = 0.4-1.1),εNd(T)值范围宽广,大部分为正值(从+5.2到-1.0)。玄武安山岩中不相容元素的富集、Eu的最小值以及εNd(T)的负值都是由古新世TTG片麻岩污染造成的,而古新世TTG片麻岩构成了GB的基底。古新生代榴辉岩具有高Mg#和极低的Ti及不相容元素浓度。岩石的特征是低(Nb/Y)PМ(0.8-1.0)、负εNd(T)值(从0到-1.4),以及相对于Nb的弱Th和LREE富集。脉辉长岩的(La/Sm)n较低,εNd(T)值为+2.8和+0.3,Nb异常为负值(Nb/Nb* = 0.3-0.4)。闪长岩、榴辉岩和辉长岩的微量元素组成以及地球化学建模结果表明,母体熔体主要来自弱贫化地幔源。古近纪辉长岩的钕同位素组成是由异质的阿新世岩石圈地幔演化形成的。闪长岩的同位素和痕量元素组成的变化反映了梅索阿尔奇岩地幔最初的贫化性质及其在2.88 Ga∼熔融之前发生的流体/熔体的元气蚀变。榴辉岩和辉长岩的地球化学特征和钕同位素特征表明,岩石圈地幔在古近纪时由于之前的阿契安过程而逐渐变得更加异质。相对于Th和La而言,阿新世和古近古生代岩浆岩的Nb贫化程度不同,这可能是地幔变质作用造成的,并不反映岩浆岩形成的地球动力学环境。
{"title":"Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic","authors":"O. M. Turkina, A. E. Izokh, A. V. Lavrenchuk, Ya. Yu. Shelepov","doi":"10.1134/S0869591122040063","DOIUrl":"10.1134/S0869591122040063","url":null,"abstract":"<p>The paper summarizes major and trace-element compositions and Sm–Nd isotope data on metabasites (amphibolites) and gabbroids of the Onot granite–greenstone block in the Sharyzhalgai basement uplift, southwestern Siberian craton. The Onot block consists of tectonically combined nappes of the Paleoarchean tonalite–trondhjemite–granodiorite (TTG) complex and the metasedimentary-volcanic complex of the greenstone belt (GB). The Mezoarchean (∼2.88 Ga) metabasalts of the greenstone belt and Paleoproterozoic (∼1.86 Ga) gabbronorites and vein gabbros were formed at rifting and postcollisional extension, respectively. The Archean metabasites of the greenstone belt and enclaves in the TTG complex compositionally correspond to low-Ti tholeiitic basalts and basaltic andesites. The basaltic rocks are characterized by flat REE patterns [(La/Sm)<sub>n</sub> = 0.9–1.9], depletion in Nb relative to Th and La (Nb/Nb* = 0.4–1.1), and a wide range of mostly positive ε<sub>Nd</sub>(T) values (from +5.2 to –1.0). The enrichment of the basaltic andesite in incompatible elements, its Eu minimum, and negative ε<sub>Nd</sub>(T) values resulted from contamination by Paleoarchean TTG gneisses, that form the basement of GB. The Paleoproterozoic gabbronorites have high Mg# and extremely low concentrations of Ti and incompatible elements. The rocks are characterized by low (Nb/Y)<sub>PМ</sub> (0.8–1.0), negative ε<sub>Nd</sub>(T) values (from 0 to –1.4), and weak enrichment in Th and LREE relative to Nb. The vein gabbros have low (La/Sm)<sub>n</sub>, positive ε<sub>Nd</sub>(T) values of +2.8 and +0.3, and a negative Nb anomaly (Nb/Nb* = 0.3–0.4). The trace element-composition of the amphibolites, gabbronorites, and gabbros and the results of geochemical modeling indicate that the parental melts were derived mainly from weakly depleted mantle sources. The Nd isotope composition of the Paleoproterozoic gabbroids resulted from the evolution of the heterogeneous Archean lithospheric mantle. Variations in the isotope and trace-element composition of the amphibolites reflect the initially depleted nature of the Mezoarchean mantle and its metasomatic alteration by fluids/melts, which occurred before its melting at ∼2.88 Ga. The geochemical and Nd isotopic characteristics of gabbronorites and gabbros indicate that the lithospheric mantle had become progressively more heterogeneous by the Paleoproterozoic due to preceding Archean processes. The variable depletion of both the Archean and the Paleoproterozoic mafic rocks in Nb relative to Th and La may be explained by mantle metasomatism and does not reflect the geodynamic settings of the mafic magmatism.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"499 - 522"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4283576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.1134/S0869591122050022
V. O. Davydova, I. N. Bindeman, M. D. Shchekleina, S. N. Rychagov
The Pauzhetka Caldera (27 × 18 km) was formed in the South Kamchatka during the Golygin Ignimbrite eruption (420–440 ka), the largest known eruption in the region in the past 1 Myr. The eruption was preceded by the 3 Ma-old mafic and intermediate volcanism. After the caldera-forming eruption, a variety of products, from basalt to rhyolite, were ejected within the caldera. For understanding the origin of voluminous silicic magmatism in thin mafic South Kamchatka crust, we used geochemical and isotope data. Our research has characterized the major and trace element composition of Golygin ignimbrite, intra-caldera hydrothermally altered deposits, pre-caldera (Mt. Orlinoe Krylo, Mt. Klyuchevskaya) and post-caldera (Kambalny Ridge, Chernye Skaly) eruptive centers. The Sr–Nd isotope composition of the Golygin ignimbrite and some eruptive post-caldera products was investigated. The isotope variations indicate that parental magmas for all rocks of the Pauzhetka area were obtained from a weakly evolved source derived through fluid-assisted melting of a subducted slab. Geochemical data support that the formation of most magmas of the Pauzhetka caldera was mainly controlled by fractional crystallization in the lower to middle crust. MELTS-modelling agrees with geochemical data. The fractional crystallization of Kambalny basalt with 2 wt % H2O at 6 kbar provides the best fit to the observed composition of the Golygin dacite.
{"title":"Pauzhetka Caldera (South Kamchatka): Еxploring Temporal Evolution and Origin of Voluminous Silicic Magmatism","authors":"V. O. Davydova, I. N. Bindeman, M. D. Shchekleina, S. N. Rychagov","doi":"10.1134/S0869591122050022","DOIUrl":"10.1134/S0869591122050022","url":null,"abstract":"<div><p>The Pauzhetka Caldera (27 × 18 km) was formed in the South Kamchatka during the Golygin Ignimbrite eruption (420–440 ka), the largest known eruption in the region in the past 1 Myr. The eruption was preceded by the 3 Ma-old mafic and intermediate volcanism. After the caldera-forming eruption, a variety of products, from basalt to rhyolite, were ejected within the caldera. For understanding the origin of voluminous silicic magmatism in thin mafic South Kamchatka crust, we used geochemical and isotope data. Our research has characterized the major and trace element composition of Golygin ignimbrite, intra-caldera hydrothermally altered deposits, pre-caldera (Mt. Orlinoe Krylo, Mt. Klyuchevskaya) and post-caldera (Kambalny Ridge, Chernye Skaly) eruptive centers. The Sr–Nd isotope composition of the Golygin ignimbrite and some eruptive post-caldera products was investigated. The isotope variations indicate that parental magmas for all rocks of the Pauzhetka area were obtained from a weakly evolved source derived through fluid-assisted melting of a subducted slab. Geochemical data support that the formation of most magmas of the Pauzhetka caldera was mainly controlled by fractional crystallization in the lower to middle crust. MELTS-modelling agrees with geochemical data. The fractional crystallization of Kambalny basalt with 2 wt % H<sub>2</sub>O at 6 kbar provides the best fit to the observed composition of the Golygin dacite.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"462 - 478"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4277323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}