Pub Date : 2024-09-17DOI: 10.1134/S0869591124700176
O. G. Safonov, V. O. Yapaskurt, D. D. van Reenen, C. A. Smit, S. A. Ushakova, M. A. Golunova
The P–T paths of the exhumation of Precambrian granulite complexes at craton boundaries usually include two stages: subisothermal decompression and a decompression–cooling stage with a more gently sloped P–T path. Our goal is to understand the possible causes of the change in the slope of the P–T exhumation path of the Central Zone (CZ) of the Limpopo granulite complex, South Africa, located between the Kaapvaal and Zimbabwe cratons. For this purpose, rocks (mainly, metapelites) were studied in various structural settings within the Central Zone, i.e., in dome structures, regional cross folds, and in local and regional shear zones. The metapelites are gneisses of similar bulk composition. The rocks contain various amounts of relics of leucosomes composed of quartz–feldspar aggregates with garnet and biotite, and melanocratic domains that are enriched in cordierite and usually mark shear microzones that envelope and/or break garnet porphyroblasts. Study of polymineralic (crystallized melt and fluid) inclusions in the garnet, its zoning with respect to the major (Mg, Fe, and Ca) and some trace (P, Cr, and Sc) elements, fluid inclusions in quartz, as well as phase equilibria modeling (PERPLE_X) showed that the rocks coexisted with granite melts and saline aqueous carbonic fluids (({a}_{text{H}_{2}text{O}}) = 0.74–0.58) at the peak of metamorphism at 800–850°C and 10–11 kbar. Partial melting of the rocks initiated their subisothermal exhumation to 7.5–8 kbar during diapirism of granitic magmas in the Neoarchean (2.65–2.62 Ga). This is reflected in the specific zoning of the garnet grains in terms of the grossular content. A change in the rheology of the rocks as a result of partial removal and crystallization of melt activated the shear zones during further exhumation to 6–5.5 kbar along a decompression–cooling P–T path at 95–100°/kbar, reflecting the slower uplift of the rocks in the middle crust. This process was resumed due to thermal effects and interaction of the rocks with aqueous fluids (({a}_{text{H}_{2}text{O}}) > 0.85) in the Paleoproterozoic (~2.01 Ga). Such a scenario of metamorphic evolution implies that the Limpopo granulite complex in general and its Central Zone in particular resulted from the evolution of an ultrahot orogen, in which vertical tectonic movements associated with diapirism were coupled to horizontal tectonic processes caused by the convergence of continental blocks.
{"title":"Generalized P–T Path and Fluid Regime of the Exhumation of Metapelites in the Central Zone of the Limpopo Complex, South Africa","authors":"O. G. Safonov, V. O. Yapaskurt, D. D. van Reenen, C. A. Smit, S. A. Ushakova, M. A. Golunova","doi":"10.1134/S0869591124700176","DOIUrl":"10.1134/S0869591124700176","url":null,"abstract":"<p>The <i>P</i>–<i>T</i> paths of the exhumation of Precambrian granulite complexes at craton boundaries usually include two stages: subisothermal decompression and a decompression–cooling stage with a more gently sloped <i>P–T</i> path. Our goal is to understand the possible causes of the change in the slope of the <i>P</i>–<i>T</i> exhumation path of the Central Zone (CZ) of the Limpopo granulite complex, South Africa, located between the Kaapvaal and Zimbabwe cratons. For this purpose, rocks (mainly, metapelites) were studied in various structural settings within the Central Zone, i.e., in dome structures, regional cross folds, and in local and regional shear zones. The metapelites are gneisses of similar bulk composition. The rocks contain various amounts of relics of leucosomes composed of quartz–feldspar aggregates with garnet and biotite, and melanocratic domains that are enriched in cordierite and usually mark shear microzones that envelope and/or break garnet porphyroblasts. Study of polymineralic (crystallized melt and fluid) inclusions in the garnet, its zoning with respect to the major (Mg, Fe, and Ca) and some trace (P, Cr, and Sc) elements, fluid inclusions in quartz, as well as phase equilibria modeling (PERPLE_X) showed that the rocks coexisted with granite melts and saline aqueous carbonic fluids (<span>({a}_{text{H}_{2}text{O}})</span> = 0.74–0.58) at the peak of metamorphism at 800–850°C and 10–11 kbar. Partial melting of the rocks initiated their subisothermal exhumation to 7.5–8 kbar during diapirism of granitic magmas in the Neoarchean (2.65–2.62 Ga). This is reflected in the specific zoning of the garnet grains in terms of the grossular content. A change in the rheology of the rocks as a result of partial removal and crystallization of melt activated the shear zones during further exhumation to 6–5.5 kbar along a decompression–cooling <i>P</i>–<i>T</i> path at 95–100°/kbar, reflecting the slower uplift of the rocks in the middle crust. This process was resumed due to thermal effects and interaction of the rocks with aqueous fluids (<span>({a}_{text{H}_{2}text{O}})</span> > 0.85) in the Paleoproterozoic (~2.01 Ga). Such a scenario of metamorphic evolution implies that the Limpopo granulite complex in general and its Central Zone in particular resulted from the evolution of an ultrahot orogen, in which vertical tectonic movements associated with diapirism were coupled to horizontal tectonic processes caused by the convergence of continental blocks.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"653 - 687"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1134/S0869591124700188
A. G. Simakin, O. Yu. Shaposhnikova, S. I. Isaenko, V. N. Devyatova, O. A. Tyutyunnik
Raman spectroscopic data of quenching phases in experiments on the dissolution of Pt in reduced carbonic fluid, containing about 30 mol % of CO, both with and without chlorine at P = 200 MPa and T = 950–1000°C are presented. Water content in the fluid was no more than 4.5 mol %. The only soluble form of Pt determined in the acetone solution of the quenching phases and in the experimental products is platinum carbonyl. Low concentrations of carbonyl (no more than a few ppm) become detectable using Raman spectroscopy due to the SERS effect (Surface-Enhanced Raman Scattering), which is possible in the presence of Pt nanoparticles in the objects under study. Platinum nanoparticles, formed at the decomposition of carbonyls, generates specific photoluminescence (PL) peak approximated by Gaussian with parameters FWHM = 1050–1300 cm–1, kmax = 2050–2100 cm–1 both in acetone solution and experimental samples. The spectra of CO (main band k ≈ 2050 cm–1) adsorbed on Pt nanoparticles supported on glassy carbon, formed during the decomposition of excess CO relative to the CCO buffer, corresponded to nanoparticle sizes of about 2 nm. No convincing evidence of a mixed chloride-carbonyl composition of platinum was found in the spectra, which may reflect the lower thermodynamic stability of these mixed complexes at high P-T parameters. Large concentrations of platinum Pt on carbon (up to 2000–3000 ppm) can be explained by the formation of the Pt-C matrix bond and the weakening of the Pt-CO bond in carbonyls, causing their decomposition. Unusual PL peaks were detected in samples from experiments with chlorine-containing fluids, very reminiscent of the PL background of noble metal nanoparticles and attributed to the effect of carbon nanoparticles.
摘要 介绍了在 P = 200 MPa 和 T = 950-1000°C 条件下,铂在含有约 30 摩尔 % CO 的还原碳酸流体中溶解实验中的淬火相的拉曼光谱数据。流体中的水含量不超过 4.5 摩尔%。在淬火相的丙酮溶液和实验产品中,唯一可溶性的铂是羰基铂。由于表面增强拉曼散射(SERS)效应,低浓度的羰基(不超过百万分之几)可以通过拉曼光谱检测到,这在研究对象中存在铂纳米颗粒的情况下是可能的。在丙酮溶液和实验样品中,铂纳米粒子在分解羰基时会产生近似于高斯的特定光致发光(PL)峰,其参数为 FWHM = 1050-1300 cm-1,kmax = 2050-2100 cm-1。吸附在玻璃碳上的铂纳米粒子上的 CO(主带 k ≈ 2050 cm-1)的光谱,是在相对于 CCO 缓冲液的过量 CO 分解过程中形成的,与约 2 nm 大小的纳米粒子相对应。在光谱中没有发现令人信服的铂氯羰基混合成分的证据,这可能反映了这些混合复合物在高 P-T 参数下较低的热力学稳定性。碳上铂铂的高浓度(高达 2000-3000 ppm)可解释为铂-碳基键的形成和铂-羰基键的减弱,从而导致其分解。在含氯流体的实验样品中检测到了不寻常的聚光峰,这与贵金属纳米颗粒的聚光背景非常相似,可归因于碳纳米颗粒的影响。
{"title":"Raman Spectroscopic Data of the Quenching Phases of a Pt Solution in a Low Water Reduced Carbonic Fluid at P = 200 and T = 950–1000°C","authors":"A. G. Simakin, O. Yu. Shaposhnikova, S. I. Isaenko, V. N. Devyatova, O. A. Tyutyunnik","doi":"10.1134/S0869591124700188","DOIUrl":"10.1134/S0869591124700188","url":null,"abstract":"<p>Raman spectroscopic data of quenching phases in experiments on the dissolution of Pt in reduced carbonic fluid, containing about 30 mol % of CO, both with and without chlorine at <i>P</i> = 200 MPa and <i>T</i> = 950–1000°C are presented. Water content in the fluid was no more than 4.5 mol %. The only soluble form of Pt determined in the acetone solution of the quenching phases and in the experimental products is platinum carbonyl. Low concentrations of carbonyl (no more than a few ppm) become detectable using Raman spectroscopy due to the SERS effect (Surface-Enhanced Raman Scattering), which is possible in the presence of Pt nanoparticles in the objects under study. Platinum nanoparticles, formed at the decomposition of carbonyls, generates specific photoluminescence (PL) peak approximated by Gaussian with parameters FWHM = 1050–1300 cm<sup>–1</sup>, <i>k</i><sub>max</sub> = 2050–2100 cm<sup>–1</sup> both in acetone solution and experimental samples. The spectra of CO (main band <i>k</i> ≈ 2050 cm<sup>–1</sup>) adsorbed on Pt nanoparticles supported on glassy carbon, formed during the decomposition of excess CO relative to the CCO buffer, corresponded to nanoparticle sizes of about 2 nm. No convincing evidence of a mixed chloride-carbonyl composition of platinum was found in the spectra, which may reflect the lower thermodynamic stability of these mixed complexes at high <i>P-T</i> parameters. Large concentrations of platinum Pt on carbon (up to 2000–3000 ppm) can be explained by the formation of the Pt-C matrix bond and the weakening of the Pt-CO bond in carbonyls, causing their decomposition. Unusual PL peaks were detected in samples from experiments with chlorine-containing fluids, very reminiscent of the PL background of noble metal nanoparticles and attributed to the effect of carbon nanoparticles.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"688 - 699"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1134/S0869591124700140
E. O. Dubinina, A. S. Avdeenko, A. A. Nosova, Yu. N. Chizhova, S. E. Borisovskiy, O. M. Zhilicheva, A. Ya. Dokuchaev
Based on the geochemical and isotopic (δ18О, δD) data, the thermal and fluid conditions during the formation of the Eldjurta granite massif were reconstructed. Analysis of rocks collected from the core of the Tyrnyauz Superdeep Well (TSW) within the depth range of 1427–3923 m revealed their homogeneous isotopic parameters: the δ18O values of bulk samples, quartz, feldspars, and biotite in 12 samples of biotite granites are 8.50 ± 0.33, 9.55 ± 0.22, 8.40 ± 0.33 and 5.45 ± 0.40‰, respectively. The δD values in the biotite vary from −103.3 to −95.6‰. The closure temperatures of the oxygen isotope system of quartz are 440–980°C. The rock cooling history was reconstructed using a new approach based on the analysis of single quartz grains. This approach can be used for detailed reconstructions of thermal history during formation of intrusive bodies. The definite samples were used to demonstrate that Dodson’s equation is valid for description of the δ18O values of quartz in a granite system. The data obtained suggest that the studied part of the massif was formed in at least two almost simultaneous stages. The lower part of the massif was crystallized first, and the second injection of granite melt arrived immediately after the first portion has been crystallized, but had no yet had time to cool significantly. The Tc values in the lower part of the massif indicate the re-opening of the oxygen isotope system of quartz, with subsequent long-term isotope re-equilibration between minerals. This leads to decrease of the observed Tc values and the calculated cooling rates, which is related to increasing volume of the intrusive body and cooling within already heated rocks. Estimates of the isotopic parameters of the water component indicate the absence of exotic water fluid (meteoric or buried waters) during cooling of the massif. The variations of the δ18O values in the minerals of the Eldjurta biotite granites can be described in terms of a simple retrograde exchange at the cooling stage.
{"title":"Thermal History and Fluid Regime during the Formation of the Eldjurta Biotite Granite Massif (Greater Caucasus): Reconstructions Based on Isotope (δ18O, δD) and Geochemical Data","authors":"E. O. Dubinina, A. S. Avdeenko, A. A. Nosova, Yu. N. Chizhova, S. E. Borisovskiy, O. M. Zhilicheva, A. Ya. Dokuchaev","doi":"10.1134/S0869591124700140","DOIUrl":"10.1134/S0869591124700140","url":null,"abstract":"<div><p>Based on the geochemical and isotopic (δ<sup>18</sup>О, δD) data, the thermal and fluid conditions during the formation of the Eldjurta granite massif were reconstructed. Analysis of rocks collected from the core of the Tyrnyauz Superdeep Well (TSW) within the depth range of 1427–3923 m revealed their homogeneous isotopic parameters: the δ<sup>18</sup>O values of bulk samples, quartz, feldspars, and biotite in 12 samples of biotite granites are 8.50 ± 0.33, 9.55 ± 0.22, 8.40 ± 0.33 and 5.45 ± 0.40‰, respectively. The δD values in the biotite vary from −103.3 to −95.6‰. The closure temperatures of the oxygen isotope system of quartz are 440–980°C. The rock cooling history was reconstructed using a new approach based on the analysis of single quartz grains. This approach can be used for detailed reconstructions of thermal history during formation of intrusive bodies. The definite samples were used to demonstrate that Dodson’s equation is valid for description of the δ<sup>18</sup>O values of quartz in a granite system. The data obtained suggest that the studied part of the massif was formed in at least two almost simultaneous stages. The lower part of the massif was crystallized first, and the second injection of granite melt arrived immediately after the first portion has been crystallized, but had no yet had time to cool significantly. The Tc values in the lower part of the massif indicate the re-opening of the oxygen isotope system of quartz, with subsequent long-term isotope re-equilibration between minerals. This leads to decrease of the observed Tc values and the calculated cooling rates, which is related to increasing volume of the intrusive body and cooling within already heated rocks. Estimates of the isotopic parameters of the water component indicate the absence of exotic water fluid (meteoric or buried waters) during cooling of the massif. The variations of the δ<sup>18</sup>O values in the minerals of the Eldjurta biotite granites can be described in terms of a simple retrograde exchange at the cooling stage.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"595 - 613"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1134/S0869591124700152
K. G. Erofeeva, Yu. O. Larionova, A. V. Samsonov
Dolerite dikes were studied in the western part of the Aldan terrane, in the middle reaches of the Tokko River. These dolerite dikes form a swarm of submeridional trend about 1 km wide. The dolerites of the thickest dike preserve their primary textural and structural features and mineral composition: plagioclase + pigeonite + augite + titanomagnetite. Dolerite in the chilled margins and central parts of the dike are homogeneous in composition, corresponds to low-Mg tholeiites, has low contents of Ti and other HFSE, with weak enrichment in light REE and small negative Nb anomalies. Sm–Nd isotope data on magmatic minerals of dolerite from the central part of the dike yield a good linear regression in an isochron diagram that gives to an age of 2510 ± 64 Ma, which probably corresponds to the crystallization age of the basalt. Metadolerites in a thin dike retain plagioclase porphyritic structures, but the pyroxenes are completely replaced by amphibole and chlorite. The metadolerites are contrastingly different in low contents of MgO, Cr, and Ni and in higher contents of TiO2, Fe2O3, P2O5, Nb, and all REE. The differences in the composition of the dikes may be explained by the longterm (about 65%) crystallization differentiation of the initial melt and the emplacement of the residual melt from a shallow intermediate magma chamber via opening cracks. Such conditions probably may have existed in tectonically stable intraplate settings. The age of the dolerites of the dike swarm is comparable to that of the anorogenic granites of the Nelyuki complex (~2.4–2.5 Ga), which are widespread in the western part of Aldan granulite–gneiss terrane. Our data bridge some gaps in characteristics of intraplate anorogenic magmatism that occurred in the western Aldan Shield in the Late Archean and marked the final consolidation of a large block of Archean crust in the Chara–Olekma granite–greenstone area.
{"title":"The First Discovery of Archean Dolerite Dikes in the Western Part of the Aldan Shield","authors":"K. G. Erofeeva, Yu. O. Larionova, A. V. Samsonov","doi":"10.1134/S0869591124700152","DOIUrl":"10.1134/S0869591124700152","url":null,"abstract":"<p>Dolerite dikes were studied in the western part of the Aldan terrane, in the middle reaches of the Tokko River. These dolerite dikes form a swarm of submeridional trend about 1 km wide. The dolerites of the thickest dike preserve their primary textural and structural features and mineral composition: plagioclase + pigeonite + augite + titanomagnetite. Dolerite in the chilled margins and central parts of the dike are homogeneous in composition, corresponds to low-Mg tholeiites, has low contents of Ti and other HFSE, with weak enrichment in light REE and small negative Nb anomalies. Sm–Nd isotope data on magmatic minerals of dolerite from the central part of the dike yield a good linear regression in an isochron diagram that gives to an age of 2510 ± 64 Ma, which probably corresponds to the crystallization age of the basalt. Metadolerites in a thin dike retain plagioclase porphyritic structures, but the pyroxenes are completely replaced by amphibole and chlorite. The metadolerites are contrastingly different in low contents of MgO, Cr, and Ni and in higher contents of TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, Nb, and all REE. The differences in the composition of the dikes may be explained by the longterm (about 65%) crystallization differentiation of the initial melt and the emplacement of the residual melt from a shallow intermediate magma chamber via opening cracks. Such conditions probably may have existed in tectonically stable intraplate settings. The age of the dolerites of the dike swarm is comparable to that of the anorogenic granites of the Nelyuki complex (~2.4–2.5 Ga), which are widespread in the western part of Aldan granulite–gneiss terrane. Our data bridge some gaps in characteristics of intraplate anorogenic magmatism that occurred in the western Aldan Shield in the Late Archean and marked the final consolidation of a large block of Archean crust in the Chara–Olekma granite–greenstone area.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"642 - 652"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0869591124700152.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1134/S086959112470019X
Lin Wang, Peiwen Chen, Qingdong Zeng, Renchang Mi, Runsheng Han
Buziwannan granodiorite and monzogranite associated with gold–polymetallic mineralization are located in the West Kunlun Orogen Belt in northwest China. Granodiorite was emplaced earlier than monzogranite. To determine the genesis of plagioclase from two intrusions and their relation with mineralization, the major, trace elemental, and Sr isotopic compositions of plagioclase were determined through LA-ICP-MS and LA-MC-ICP-MS respectively. The results indicated that the plagioclase from granodiorite had a high-An (around 40%) core and low-An (around 33%) rim, while the plagioclase from monzogranite was uniform with an An value around 18%. The (87Sr/86Sr)i ratios of plagioclase decreased with decreasing An value, which may be caused by small-scale crustal contamination and/or magma mixing. The crystallization process of plagioclase is mainly accompanied by the exsolution of magmatic H2O, and the pressure changes caused by the loss of magma H2O. These magmatic fluids are rich in ore-forming elements, such as Au–Ag–Cu–Zn, and form skarn mineralization near the wall rocks. Because of the co-crystallization of plagioclase, hornblende, and biotite, as well as the addition of minor felsic magma with lower Sr isotopic composition, the plagioclase from monzogranite exhibits low and uniform An values. In addition, a large amount of magmatic H2O carrying ore-forming elements was released during the emplacement of granodiorite, which caused the monzogranite to lose its metallogenic potential.
摘要 与金多金属矿化有关的布子湾南花岗闪长岩和单斜花岗岩位于中国西北部的西昆仑造山带。花岗闪长岩的成因早于单斜花岗岩。为了确定两个侵入体中斜长岩的成因及其与成矿作用的关系,通过LA-ICP-MS和LA-MC-ICP-MS分别测定了斜长岩的主要元素、微量元素和锶同位素组成。结果表明,花岗闪长岩中的斜长岩具有高An(约40%)核心和低An(约33%)边缘,而单斜长岩中的斜长岩则很均匀,An值约为18%。斜长岩的(87Sr/86Sr)i 比值随 An 值的降低而降低,这可能是小规模地壳污染和/或岩浆混合造成的。斜长石的结晶过程主要伴随着岩浆 H2O 的溶出和岩浆 H2O 损失引起的压力变化。这些岩浆流体富含成矿元素,如金-银-铜-锌,并在壁岩附近形成矽卡岩矿化。由于斜长石、角闪石和斜长石的共晶体化,以及加入了少量 Sr 同位素组成较低的长纤维岩浆,来自单斜长花岗岩的斜长石表现出低而均匀的 An 值。此外,在花岗闪长岩的成岩过程中,大量携带成矿元素的岩浆 H2O 被释放出来,使单斜花岗岩失去了成矿潜力。
{"title":"Genesis of Triassic Buziwannan Granites in the West Kunlun Orogen Belt, China: Constraints from in Situ Major, Trace and Sr Isotope Analyses of Plagioclase","authors":"Lin Wang, Peiwen Chen, Qingdong Zeng, Renchang Mi, Runsheng Han","doi":"10.1134/S086959112470019X","DOIUrl":"10.1134/S086959112470019X","url":null,"abstract":"<p>Buziwannan granodiorite and monzogranite associated with gold–polymetallic mineralization are located in the West Kunlun Orogen Belt in northwest China. Granodiorite was emplaced earlier than monzogranite. To determine the genesis of plagioclase from two intrusions and their relation with mineralization, the major, trace elemental, and Sr isotopic compositions of plagioclase were determined through LA-ICP-MS and LA-MC-ICP-MS respectively. The results indicated that the plagioclase from granodiorite had a high-An (around 40%) core and low-An (around 33%) rim, while the plagioclase from monzogranite was uniform with an An value around 18%. The (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> ratios of plagioclase decreased with decreasing An value, which may be caused by small-scale crustal contamination and/or magma mixing. The crystallization process of plagioclase is mainly accompanied by the exsolution of magmatic H<sub>2</sub>O, and the pressure changes caused by the loss of magma H<sub>2</sub>O. These magmatic fluids are rich in ore-forming elements, such as Au–Ag–Cu–Zn, and form skarn mineralization near the wall rocks. Because of the co-crystallization of plagioclase, hornblende, and biotite, as well as the addition of minor felsic magma with lower Sr isotopic composition, the plagioclase from monzogranite exhibits low and uniform <i>An</i> values. In addition, a large amount of magmatic H<sub>2</sub>O carrying ore-forming elements was released during the emplacement of granodiorite, which caused the monzogranite to lose its metallogenic potential.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"700 - 715"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1134/S0869591124700103
A. M. Larin, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, V. M. Savatenkov, S. D. Velikoslavinskii, N. G. Rizvanova, N. A. Sergeeva, T. M. Skovitina, N. Y. Zagornaya
Geochronological (U-Pb zircon, ID-TIMS), isotope-geochemical (Nd, Sr, Pb), and geochemical studies of rocks of the Amanan and Amudzhikan intrusive complexes and volcanic rocks of the Ukurey Formation in the eastern part of the West Stanovoy superterrane of the Central Asian Orogenic Belt were performed. The assignment of granitoids of these complexes to high-potassium C-type adakites is substantiated. It is established that the studied rocks are cogenetic and can be ascribed to a single Amudzhikan volcano-plutonic association formed in the age range of 133 ± 1–128 ± 1 Ma. The igneous complexes of this association belong to the Stanovoy volcano-plutonic belt, which extends in the sublatitudinal direction from the Pacific Ocean inward the North Asian continent for more than 1000 km, subparallel to the Mongol-Okhotsk suture zone, and assembles the tectonic structures of the Dzhugdzhur-Stanovoy and West-Stanovoy superterranes. The formation of the Stanovoy Belt is related to the closure of the Mongolo-Okhotsk Ocean and the collision between North Asian and Sino-Korean continents at ~140 Ma. The subsequent collapse of the collisional orogen, which was accompanied by large-scale lithospheric extension and delamination of the lower part of the continental lithosphere, led to upwelling of asthenospheric mantle. This caused melting of the lithospheric mantle and continental crust and, as a consequence, the formation of both mafic (shoshonitic) melts and anatectic crustal melts of the adakite type. The mixing of these melts led to the formation of the parental magmas of the Amudzhikan magmatic association. The crustal component in the source was of heterogeneous nature and finally formed as a result of the Early Cretaceous collision event. It is characterized by the upper-crustal isotopic signatures: increased Rb/Sr and U/Pb ratios and a decreased Sm/Nd ratio in the source. The mantle component is represented by enriched lithospheric mantle of the Central Asian Orogenic Belt, the formation of which is associated with subduction processes and closure of the Mongol-Okhotsk paleoocean. Metasomatic transformation of the mantle with the introduction of melts and fluids with isotopic parameters of an EMII-type source or upper crust occurred at this stage.
对中亚造山带西斯坦诺沃伊超断裂带东部的阿曼南和阿姆日干侵入复合体岩石以及乌库列伊地层火山岩进行了地质年代(U-Pb 锆石、ID-TIMS)、同位素地球化学(钕、锶、铅)和地球化学研究。证实了这些复合体的花岗岩属于高钾 C 型阿达克岩。研究结果表明,所研究的岩石是同源的,可归因于形成于 133 ± 1-128 ± 1 Ma 年龄段的单一阿穆奇坎火山-岩浆岩联合体。该联合体的火成岩复合体属于斯坦诺沃伊火山-板岩带,该带从太平洋向北亚大陆的次纵向延伸了1000多公里,与蒙古-奥霍次克缝合带近于平行,并集合了朱格德朱尔-斯坦诺沃伊和西-斯坦诺沃伊超岩体的构造结构。斯坦诺沃伊带的形成与蒙古-奥霍次克洋的关闭以及北亚大陆和中朝大陆在大约 140 Ma 时的碰撞有关。随后的碰撞造山带塌陷伴随着大规模的岩石圈延伸和大陆岩石圈下部的分层,导致了星体层地幔的上涌。这引起了岩石圈地幔和大陆地壳的熔化,并因此形成了黑云母(闪长岩)熔体和安山岩类型的地壳熔体。这些熔体的混合形成了阿姆河岩浆群的母岩浆。岩浆源中的地壳成分具有异质性,最终形成于早白垩世碰撞事件。其特征是上地壳同位素特征:Rb/Sr 和 U/Pb 比值增大,Sm/Nd 比值减小。地幔成分由中亚造山带富集的岩石圈地幔代表,其形成与俯冲过程和蒙古-奥霍次克古海洋的关闭有关。在这一阶段,地幔发生了变质,引入了具有 EMII 型源或上地壳同位素参数的熔体和流体。
{"title":"Amudzhikan Volcano-Plutonic Association of the Eastern Part of the West-Stanovoy Superterrane (Central Asian Orogenic Belt): Age, Sources, and Tectonic Setting","authors":"A. M. Larin, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, V. M. Savatenkov, S. D. Velikoslavinskii, N. G. Rizvanova, N. A. Sergeeva, T. M. Skovitina, N. Y. Zagornaya","doi":"10.1134/S0869591124700103","DOIUrl":"10.1134/S0869591124700103","url":null,"abstract":"<div><p>Geochronological (U-Pb zircon, ID-TIMS), isotope-geochemical (Nd, Sr, Pb), and geochemical studies of rocks of the Amanan and Amudzhikan intrusive complexes and volcanic rocks of the Ukurey Formation in the eastern part of the West Stanovoy superterrane of the Central Asian Orogenic Belt were performed. The assignment of granitoids of these complexes to high-potassium C-type adakites is substantiated. It is established that the studied rocks are cogenetic and can be ascribed to a single Amudzhikan volcano-plutonic association formed in the age range of 133 ± 1–128 ± 1 Ma. The igneous complexes of this association belong to the Stanovoy volcano-plutonic belt, which extends in the sublatitudinal direction from the Pacific Ocean inward the North Asian continent for more than 1000 km, subparallel to the Mongol-Okhotsk suture zone, and assembles the tectonic structures of the Dzhugdzhur-Stanovoy and West-Stanovoy superterranes. The formation of the Stanovoy Belt is related to the closure of the Mongolo-Okhotsk Ocean and the collision between North Asian and Sino-Korean continents at ~140 Ma. The subsequent collapse of the collisional orogen, which was accompanied by large-scale lithospheric extension and delamination of the lower part of the continental lithosphere, led to upwelling of asthenospheric mantle. This caused melting of the lithospheric mantle and continental crust and, as a consequence, the formation of both mafic (shoshonitic) melts and anatectic crustal melts of the adakite type. The mixing of these melts led to the formation of the parental magmas of the Amudzhikan magmatic association. The crustal component in the source was of heterogeneous nature and finally formed as a result of the Early Cretaceous collision event. It is characterized by the upper-crustal isotopic signatures: increased Rb/Sr and U/Pb ratios and a decreased Sm/Nd ratio in the source. The mantle component is represented by enriched lithospheric mantle of the Central Asian Orogenic Belt, the formation of which is associated with subduction processes and closure of the Mongol-Okhotsk paleoocean. Metasomatic transformation of the mantle with the introduction of melts and fluids with isotopic parameters of an EMII-type source or upper crust occurred at this stage.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"502 - 533"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1134/S0869591124700139
O. M. Turkina, A. V. Plyusnin, T. V. Donskaya, I. V. Afonin, S. S. Sanin
The paper presents geochemical and geochronological data on gneisses and granitoids from three deep boreholes (Yalykskaya-4, Danilovskaya-532, Srednenepskaya-1) in the basement of the southwestern part of the Nepa-Botuoba anteclise. Based on U-Pb zircon dating, three stages of granitoid magmatism were identified: ∼2.8, 2.0 and 1.87 Ga. At ca. 2.8 Ga magmatic TTG protoliths of biotite–amphibole gneisses (Yalykskaya-4 borehole) were formed, these rocks represent the Mesoarchean crust and experienced thermal effects typical of the Tungus superterrane of the Siberian craton at the terminal Neoarchean (∼2.53 Ga). Biotite gneissic granites (∼2.0 Ga) (Danilovskaya-532 borehole), which correlate in age with the granitoids of the basement of the Magan terrane and the Akitkan orogenic belt, were derived from a metasedimentary source formed by the erosion of predominantly Paleoproterozoic juvenile crust rocks. The 1.88 Ga A-type granite (Srednenepskaya-1 borehole) corresponds to the main stage of post-collision granite magmatism within the South Siberian magmatic belt. The ca. 2.8 Ga biotite–amphibole gneisses mark the eastern boundary of the Archean crust with Paleoproterozoic juvenile crust in the south of the Tungus superterrane, which are separated by a transitional zone intruded by granites having intermediate isotopic characteristics. The isotopic composition of Paleoproterozoic gneisses and granitoids indicates that marginal southern Magan terrane in contact with the Tungus superterrane includes blocks of both Archean and Paleoproterozoic crust, thus showing similarity with the Akitkan orogenic belt and accretionary orogens. The final amalgamation of the Tungus superterrane with blocks of the eastern part of the Siberian platform basement corresponds to a milestone of 1.88 Ga.
本文介绍了尼泊尔-博图奥巴反斜长岩西南部基底的三个深钻孔(Yalykskaya-4、Danilovskaya-532 和 Srednenepskaya-1)中片麻岩和花岗岩的地球化学和地球同步学数据。根据 U-Pb 锆石年代测定法,确定了花岗岩岩浆活动的三个阶段:2.8、2.0 和 1.87 Ga。在大约 2.8 Ga 的岩浆 TTG 原岩中形成了黑云母-闪长片麻岩(Yalykskaya-4 号钻孔),这些岩石代表了中新世地壳,并在新元古代末期(∼2.53 Ga)经历了西伯利亚克拉通通古斯超岩带的典型热效应。黑云母片麻岩(2.0 Ga ∼ 2.0 Ga)(Danilovskaya-532 号钻孔)在年龄上与马干地台和阿基坦造山带基底的花岗岩相关联,来自主要由古生代幼壳岩侵蚀形成的变质岩源。1.88 Ga A 型花岗岩(Srednenepskaya-1 号钻孔)与南西伯利亚岩浆带中碰撞后花岗岩岩浆活动的主要阶段相对应。约 2.8 Ga 的生物玢岩2.8Ga的生物玢岩-闪长岩片麻岩标志着通古斯超特异性岩带南部的奥陶纪地壳与古新生代幼生代地壳的东部边界,两者之间由具有中间同位素特征的花岗岩侵入的过渡带分隔。古新生代片麻岩和花岗岩的同位素组成表明,与通古斯超跨接触的马干南部边缘陆相包括阿切安和古新生代地壳区块,从而显示出与阿基坦造山带和增生造山带的相似性。通古斯超岩系与西伯利亚地台基底东部岩块的最终合并,相当于1.88 Ga的里程碑。
{"title":"Gneisses and Granitoids of the Basement of the Nepa-Botuoba Anteclise: Constraints for Relation of the Archean and Paleoproterozoic Crust in the Boundary Zone between the Tungus Superterrane and Magan Terrane (South Siberian Craton)","authors":"O. M. Turkina, A. V. Plyusnin, T. V. Donskaya, I. V. Afonin, S. S. Sanin","doi":"10.1134/S0869591124700139","DOIUrl":"10.1134/S0869591124700139","url":null,"abstract":"<div><p>The paper presents geochemical and geochronological data on gneisses and granitoids from three deep boreholes (Yalykskaya-4, Danilovskaya-532, Srednenepskaya-1) in the basement of the southwestern part of the Nepa-Botuoba anteclise. Based on U-Pb zircon dating, three stages of granitoid magmatism were identified: ∼2.8, 2.0 and 1.87 Ga. At ca. 2.8 Ga magmatic TTG protoliths of biotite–amphibole gneisses (Yalykskaya-4 borehole) were formed, these rocks represent the Mesoarchean crust and experienced thermal effects typical of the Tungus superterrane of the Siberian craton at the terminal Neoarchean (∼2.53 Ga). Biotite gneissic granites (∼2.0 Ga) (Danilovskaya-532 borehole), which correlate in age with the granitoids of the basement of the Magan terrane and the Akitkan orogenic belt, were derived from a metasedimentary source formed by the erosion of predominantly Paleoproterozoic juvenile crust rocks. The 1.88 Ga A-type granite (Srednenepskaya-1 borehole) corresponds to the main stage of post-collision granite magmatism within the South Siberian magmatic belt. The ca. 2.8 Ga biotite–amphibole gneisses mark the eastern boundary of the Archean crust with Paleoproterozoic juvenile crust in the south of the Tungus superterrane, which are separated by a transitional zone intruded by granites having intermediate isotopic characteristics. The isotopic composition of Paleoproterozoic gneisses and granitoids indicates that marginal southern Magan terrane in contact with the Tungus superterrane includes blocks of both Archean and Paleoproterozoic crust, thus showing similarity with the Akitkan orogenic belt and accretionary orogens. The final amalgamation of the Tungus superterrane with blocks of the eastern part of the Siberian platform basement corresponds to a milestone of 1.88 Ga.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"569 - 593"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1134/S0869591124700085
A. A. Borisov, S. E. Borisovskiy
Experiments on titanium partitioning between zircon and silicate melt were conducted at temperatures 1300 and 1400°С at 1 atm total pressure. Additionally, the Ti content in zircons of a few experimental series from (Borisov and Aranovich, 2019) was measured and a critical analysis of experimental literature was carried out. It was demonstrated that at high temperatures (1200–1450°С) DTi values lie in the range from 0.02 to 0.04 regardless of pressure, melt composition, and water content. Based on obtained data, the impossibility of zircon crystallization from high temperature basic melts once more was shown. It was shown that “Ti in zircon” geothermometer cannot describe Ti content in our experimental zircons and, possibly, cannot be applied to dry high-titanium melts at 1 atm total pressure.
{"title":"Titanium Partitioning between Zircon and Melt: an Experimental Study at High Temperatures","authors":"A. A. Borisov, S. E. Borisovskiy","doi":"10.1134/S0869591124700085","DOIUrl":"10.1134/S0869591124700085","url":null,"abstract":"<div><p>Experiments on titanium partitioning between zircon and silicate melt were conducted at temperatures 1300 and 1400°С at 1 atm total pressure. Additionally, the Ti content in zircons of a few experimental series from (Borisov and Aranovich, 2019) was measured and a critical analysis of experimental literature was carried out. It was demonstrated that at high temperatures (1200–1450°С) D<sup>Ti</sup> values lie in the range from 0.02 to 0.04 regardless of pressure, melt composition, and water content. Based on obtained data, the impossibility of zircon crystallization from high temperature basic melts once more was shown. It was shown that “Ti in zircon” geothermometer cannot describe Ti content in our experimental zircons and, possibly, cannot be applied to dry high-titanium melts at 1 atm total pressure.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"467 - 477"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1134/S0869591124700115
S. N. Sobolev, A. A. Ariskin, G. S. Nikolaev, I. V. Pshenitsyn
Crystal size distributions (CSD) of olivine were obtained for 17 samples of plagiodunite and Pl‑bearing dunite from the central part of the Yoko-Dovyren massif, northern Baikal region, Russia. Three types of CSD were identified: loglinear, bimodal, and lognormal. Combining these data with the results of petrological reconstructions, which earlier revealed two main types of the Dovyren magmas (using the method of geochemical thermometry), we proposed a basic scenario of interaction between magmatic suspensions of different temperature to explain the diversity of the CSD. The intratelluric olivine transported by magmas of different temperature, which had not subjected to abrupt cooling or heating in the chamber, retained an original loglinear CSD. For some portions of the hottest magma (∼1290°C), it is assumed that the original olivine evolved into a bimodal CSD due to accelerated crystallization at faster cooling of the high-temperature injections contacting relatively cold crystal mush (∼1190°C). An interpretation of the lognormal CSD suggests that part of the olivine crystals composing the protocumulate systems efficiently interacted with the pore melt infiltrating upward during the compaction of the underlying crystal mush. This led to cycles of partial dissolution and regrowth of the olivine grains resulting in a final lognormal CSD. The infiltrating hot melt, which was undersaturated with immiscible sulfide liquid, could dissolve sulfides preexisting in the low-temperature mush. This produced dunites with lognormal CSD relatively depleted in sulfur and chalcophile elements. The lognormal CSD is considered to be a marker of crystal mush regions through which the focused infiltration of the pore melt proceeded.
{"title":"Three Types of Olivine Crystal Size Distribution in Dunites from the Yoko-Dovyren Layered Massif as Signals of Their Different Crystallization History","authors":"S. N. Sobolev, A. A. Ariskin, G. S. Nikolaev, I. V. Pshenitsyn","doi":"10.1134/S0869591124700115","DOIUrl":"10.1134/S0869591124700115","url":null,"abstract":"<p>Crystal size distributions (CSD) of olivine were obtained for 17 samples of plagiodunite and <i>Pl</i>‑bearing dunite from the central part of the Yoko-Dovyren massif, northern Baikal region, Russia. Three types of CSD were identified: loglinear, bimodal, and lognormal. Combining these data with the results of petrological reconstructions, which earlier revealed two main types of the Dovyren magmas (using the method of geochemical thermometry), we proposed a basic scenario of interaction between magmatic suspensions of different temperature to explain the diversity of the CSD. The intratelluric olivine transported by magmas of different temperature, which had not subjected to abrupt cooling or heating in the chamber, retained an original loglinear CSD. For some portions of the hottest magma (∼1290°C), it is assumed that the original olivine evolved into a bimodal CSD due to accelerated crystallization at faster cooling of the high-temperature injections contacting relatively cold crystal mush (∼1190°C). An interpretation of the lognormal CSD suggests that part of the olivine crystals composing the protocumulate systems efficiently interacted with the pore melt infiltrating upward during the compaction of the underlying crystal mush. This led to cycles of partial dissolution and regrowth of the olivine grains resulting in a final lognormal CSD. The infiltrating hot melt, which was undersaturated with immiscible sulfide liquid, could dissolve sulfides preexisting in the low-temperature mush. This produced dunites with lognormal CSD relatively depleted in sulfur and chalcophile elements. The lognormal CSD is considered to be a marker of crystal mush regions through which the focused infiltration of the pore melt proceeded.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"534 - 550"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1134/S0869591124700127
E. V. Tolmacheva, S. D. Velikoslavinskii, A. B. Kotov, A. M. Larin, E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, T. M. Skovitina, V. P. Kovach, O. L. Galankina
The paper discusses possible immiscibility between fluoride salt (“cryolite”) and silicate liquids into which the parental melt of the Katugin massif exsolves, and the petrological implications of this phenomenon. Results of a detailed study of the cryolite and zircon are presented. Liquid immiscibility is demonstrated to have triggered the massive crystallization of zircon and, together with the processes of subsequent evolution of the cryolite melt, contributed to the formation of the large cryolite bodies. Data on mineral-hosted inclusions were used to estimate the crystallization temperatures of fluoride salt and silicate melts and outline the pathways of their evolution during the formation of the massif. It is shown that the granites of the Katugin and West Katugin massifs were most likely derived from distinct sources, that differed mainly in fluorine content. Data on the chemical composition of three zircon generations identified in the granites of the Katugin massif are presented.
{"title":"Role of Liquid Immiscibility in the Formation of the Rare Metal Granites of the Katugin Massif, Aldan Shield","authors":"E. V. Tolmacheva, S. D. Velikoslavinskii, A. B. Kotov, A. M. Larin, E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, T. M. Skovitina, V. P. Kovach, O. L. Galankina","doi":"10.1134/S0869591124700127","DOIUrl":"10.1134/S0869591124700127","url":null,"abstract":"<p>The paper discusses possible immiscibility between fluoride salt (“cryolite”) and silicate liquids into which the parental melt of the Katugin massif exsolves, and the petrological implications of this phenomenon. Results of a detailed study of the cryolite and zircon are presented. Liquid immiscibility is demonstrated to have triggered the massive crystallization of zircon and, together with the processes of subsequent evolution of the cryolite melt, contributed to the formation of the large cryolite bodies. Data on mineral-hosted inclusions were used to estimate the crystallization temperatures of fluoride salt and silicate melts and outline the pathways of their evolution during the formation of the massif. It is shown that the granites of the Katugin and West Katugin massifs were most likely derived from distinct sources, that differed mainly in fluorine content. Data on the chemical composition of three zircon generations identified in the granites of the Katugin massif are presented.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"551 - 568"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}