首页 > 最新文献

Petrology最新文献

英文 中文
Chlorine Solubility in Silicate Melts: New Experiments and Thermodynamic Mixing Model 氯在硅酸盐熔体中的溶解度:新实验和热力学混合模型
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010028
L. Y. Aranovich, M. A. Golunova, J. A. D. Connolly, M. V. Ivanov

We present new experimental data on Cl solubility in model basalt melts of eutectic compositions diopside (Di)–albite (Ab) and Di–anorthite ± quartz (Qtz). The starting glasses were equilibrated with aqueous NaCl–CaCl2 fluid at 4 kbar in the temperature range of 900–1200°C. The experiments show that Cl solubility decreases with increasing NaCl in the fluid. Ca–Na partitioning between melts and fluid is weekly temperature dependent and resembles that of the plagioclase–fluid system. The newly obtained experimental data, along with previously published results on the model granite melting in the presence of (Na,K)Cl brines (Aranovich et al., 2013), are used to calibrate an empirical thermodynamic model for salt species (NaCl, KCl, and CaCl2) in silicate melt. Calculations show that Cl solubility in haplogranite melt decreases with increasing K/Na ratio in the fluid (and correspondingly, melt). The data acquired on Ca and Na partitioning between melt and fluid make it possible to model the evolution of the Ca/Na ratio in the crystallization course of basalt melts. At a high pressure (10 kbar), Cl solubility in model granite increases with increasing Н2О content. The calculated phase diagram for a simple pseudo-ternary system Ab–H2O–NaCl demonstrates complex phase relations and, correspondingly, evolution of the Н2О and NaCl concentrations in the melt. This complex evolution is illustrated by data on the composition of quartz-hosted melt and fluid inclusions from granites in the Verkhneurmisskii massif in the Badzhal volcano-plutonic zone.

摘要 我们提供了关于Cl在共晶成分透辉石(Di)-橄榄石(Ab)和透辉石±石英(Qtz)模型玄武岩熔体中溶解度的新实验数据。在 900-1200°C 的温度范围内,用 NaCl-CaCl2 水溶液在 4 千巴条件下平衡起始玻璃。实验表明,随着流体中 NaCl 的增加,Cl 的溶解度会降低。熔体和流体之间的钙呐分配每周都与温度有关,与斜长石-流体系统相似。新获得的实验数据与之前发表的关于存在(Na,K)Cl 盐水的花岗岩熔融模型结果(Aranovich 等人,2013 年)一起,用于校准硅酸盐熔体中盐物种(NaCl、KCl 和 CaCl2)的经验热力学模型。计算结果表明,随着流体(以及相应的熔体)中 K/Na 比率的增加,Cl 在单斜体熔体中的溶解度降低。根据获得的熔体和流体中 Ca 和 Na 的分配数据,可以模拟玄武岩熔体结晶过程中 Ca/Na 比率的演变。在高压(10 千巴)下,Cl 在模型花岗岩中的溶解度随着 Н2О 含量的增加而增加。计算得到的简单伪三元体系 Ab-H2O-NaCl 的相图显示了复杂的相关系,并相应地显示了熔体中 Н2О 和 NaCl 浓度的演变。巴德扎尔火山-岩浆岩带 Verkhneurmisskii 地块花岗岩中石英托管熔体和流体包裹体的成分数据说明了这种复杂的演变。
{"title":"Chlorine Solubility in Silicate Melts: New Experiments and Thermodynamic Mixing Model","authors":"L. Y. Aranovich,&nbsp;M. A. Golunova,&nbsp;J. A. D. Connolly,&nbsp;M. V. Ivanov","doi":"10.1134/S0869591124010028","DOIUrl":"10.1134/S0869591124010028","url":null,"abstract":"<p>We present new experimental data on Cl solubility in model basalt melts of eutectic compositions diopside (<i>Di</i>)–albite (<i>Ab</i>) and <i>Di</i>–anorthite ± quartz (<i>Qtz</i>). The starting glasses were equilibrated with aqueous NaCl–CaCl<sub>2</sub> fluid at 4 kbar in the temperature range of 900–1200°C. The experiments show that Cl solubility decreases with increasing NaCl in the fluid. Ca–Na partitioning between melts and fluid is weekly temperature dependent and resembles that of the plagioclase–fluid system. The newly obtained experimental data, along with previously published results on the model granite melting in the presence of (Na,K)Cl brines (Aranovich et al., 2013), are used to calibrate an empirical thermodynamic model for salt species (NaCl, KCl, and CaCl<sub>2</sub>) in silicate melt. Calculations show that Cl solubility in haplogranite melt decreases with increasing K/Na ratio in the fluid (and correspondingly, melt). The data acquired on Ca and Na partitioning between melt and fluid make it possible to model the evolution of the Ca/Na ratio in the crystallization course of basalt melts. At a high pressure (10 kbar), Cl solubility in model granite increases with increasing Н<sub>2</sub>О content. The calculated phase diagram for a simple pseudo-ternary system <i>Ab</i>–H<sub>2</sub>O–NaCl demonstrates complex phase relations and, correspondingly, evolution of the Н<sub>2</sub>О and NaCl concentrations in the melt. This complex evolution is illustrated by data on the composition of quartz-hosted melt and fluid inclusions from granites in the Verkhneurmisskii massif in the Badzhal volcano-plutonic zone.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"41 - 52"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0869591124010028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-Ultramafic Rocks of the Maksyutov Complex, Southern Urals: High-Pressure Si–Al Metasomatism and Carbonatization at the Crust–Mantle Interface in the Subduction Zone 南乌拉尔马克秀托夫复合体的元超基性岩:俯冲带地壳-地幔界面的高压硅-铝变质作用和碳化作用
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010065
A. L. Perchuk, N. G. Zinovieva, A. V. Sapegina, P. M. Valizer, V. M. Kozlovsky, V. M. Grigorieva, S. T. Podgornova
<p><b>Abstract</b>—The Maksyutov eclogite–blueschist Complex is characterized by a complicated fold-and-thrust structure that has been formed during the Late Devonian collision between the subducting Baltica margin (East European Plate) and the Magnitogorsk island arc. Eclogites are the most studied rocks of the Complex; their formation and exhumation are usually associated with the collisional stage of the orogen development. At the same time, the origin of meta-ultramafic rocks, which together with eclogites form sheets and boudins within metasedimentary rocks (schists and quartzites), still remains unknown. This paper presents the results of the first detailed petrological study of meta-ultramafic rocks represented by antigorite−chlorite and magnesite−antigorite meta-harzburgites, and chlorite−antigorite metaorthopyroxenite. Mineral compositions and textural relationships between minerals in the meta-harzburgites indicate at least two stages of rock transformations. Minerals of the early mineral paragenesis (first stage)—olivine, accessory chromite, and low-fluorine Ti-clinohumite – have a metamorphic genesis; ultrahigh-pressure (UHP) conditions of their formation are discussed. Partial replacement of olivine by orthopyroxene-bearing parageneses with Cr−Al antigorite and/or high-chromium chlorite is established for the second stage. The phase equilibria modeling using the Perple_X software package demonstrates that formation of antigorite−orthopyroxene paragenesis was associated with Si−Al metasomatism at: <i>T</i> ~ 630°С, <i>P</i> ~ 2 GPa, log<span>({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})</span>  ~ −0.6, log<span>({{a}_{{{text{A}}{{{text{l}}}_{2}}{{{text{O}}}_{3}}}}})</span> ~ −2.5. It is important to note that the mineral paragenesis is highly sensitive to <span>({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})</span>: a slight decrease in log <span>({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})</span> relative to the above value would lead to the growth of olivine with antigorite, and an increase would lead to the growth of orthopyroxene. The latter may explain the formation of meta-orthopyroxenites, which are widely distributed among the meta-ultramafic rocks of the Maksyutov Complex. Similar calculations performed for the range of <span>({{X}_{{{text{C}}{{{text{O}}}_{2}}}}})</span> = 0.01–0.05 in H<sub>2</sub>O–CO<sub>2</sub> fluid showed the replacement of silicate minerals by magnesite under the established thermodynamic conditions. Carbonation and Si−Al metasomatism are specific features of high-pressure transformations of meta-ultramafic rocks, which have not been established in the associated eclogites, quartzites, and shales. Such selective fluid influence on different rock types is interpreted as a result of their different tectono-metamorphic evolution: meta-ultramafic rocks are fragments of the suprasubduction mantle, which were tectonically juxtoposed with the rocks of the subducting plate (eclogites and metasedimentary r
摘要--马克绍托夫斜长岩-蓝斜岩复合体的特征是在晚泥盆世俯冲的波罗的海边缘(东欧板块)与马格尼托哥尔斯克岛弧之间的碰撞过程中形成的复杂的褶皱-推覆构造。斜长岩是研究最多的复合岩;它们的形成和出露通常与造山运动发展的碰撞阶段有关。与此同时,与碎屑岩一起在变质岩(片岩和石英岩)中形成片岩和包岩的元超基性岩的起源仍然未知。本文介绍了对以锑绿泥石和菱镁锑绿泥石元哈尔茨堡岩以及绿泥石-锑绿泥石元黄辉石为代表的元超基性岩进行的首次详细岩石学研究的结果。元哈尔茨堡石的矿物成分和矿物之间的纹理关系表明,岩石转化至少经历了两个阶段。早期矿物副成因(第一阶段)的矿物--橄榄石、附属铬铁矿和低氟钛黝帘石--具有变质成因;讨论了它们形成的超高压(UHP)条件。在第二阶段,橄榄石被含正长石的副橄榄石与铬铝反橄榄石和/或高铬绿泥石部分置换。使用 Perple_X 软件包进行的相平衡建模表明,锑橄榄石-正辉石副成岩作用的形成与硅-铝偏析作用有关,其温度为 T ~ 630°С :T ~ 630°С, P ~ 2 GPa, log({{a}_{text{Si}}{{text{O}}}_{{text{2}}}}}}}) ~ -0.6, log({{a}_{text{A}}{{text{l}}}_{2}}{{text{O}}}_{3}}}}}) ~ -2.5。值得注意的是,矿物成因对 ({{a}_{text{Si}}{{text{O}}}_{text{2}}}}}}})非常敏感:相对于上述值,对数({{a}_{text{Si}}{{text{O}}}_{text{2}}}}}}}) 的轻微下降会导致橄榄石与反橄榄石的生长,而对数({{a}_{text{Si}}{{text{O}}}_{text{2}}}}}}}) 的增加则会导致正辉石的生长。后者可能解释了广泛分布于马科尤托夫岩群的元超基性岩中的元正辉石的形成。在 H2O-CO2 流体中,在 ({{X}_{{text{C}}{{text{O}}}_{2}}}}}) = 0.01-0.05 的范围内进行的类似计算显示,在既定的热力学条件下,硅酸盐矿物被菱镁矿取代。碳化和Si-Al变质作用是元奥陶系岩石高压转化的具体特征,而在相关的辉绿岩、石英岩和页岩中尚未得到证实。流体对不同岩石类型的这种选择性影响被解释为它们不同的构造-变质演化的结果:元超基性岩是超俯冲地幔的碎片,在构造上与俯冲板块的岩石(斜长岩和变质岩)并置。
{"title":"Meta-Ultramafic Rocks of the Maksyutov Complex, Southern Urals: High-Pressure Si–Al Metasomatism and Carbonatization at the Crust–Mantle Interface in the Subduction Zone","authors":"A. L. Perchuk,&nbsp;N. G. Zinovieva,&nbsp;A. V. Sapegina,&nbsp;P. M. Valizer,&nbsp;V. M. Kozlovsky,&nbsp;V. M. Grigorieva,&nbsp;S. T. Podgornova","doi":"10.1134/S0869591124010065","DOIUrl":"10.1134/S0869591124010065","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Abstract&lt;/b&gt;—The Maksyutov eclogite–blueschist Complex is characterized by a complicated fold-and-thrust structure that has been formed during the Late Devonian collision between the subducting Baltica margin (East European Plate) and the Magnitogorsk island arc. Eclogites are the most studied rocks of the Complex; their formation and exhumation are usually associated with the collisional stage of the orogen development. At the same time, the origin of meta-ultramafic rocks, which together with eclogites form sheets and boudins within metasedimentary rocks (schists and quartzites), still remains unknown. This paper presents the results of the first detailed petrological study of meta-ultramafic rocks represented by antigorite−chlorite and magnesite−antigorite meta-harzburgites, and chlorite−antigorite metaorthopyroxenite. Mineral compositions and textural relationships between minerals in the meta-harzburgites indicate at least two stages of rock transformations. Minerals of the early mineral paragenesis (first stage)—olivine, accessory chromite, and low-fluorine Ti-clinohumite – have a metamorphic genesis; ultrahigh-pressure (UHP) conditions of their formation are discussed. Partial replacement of olivine by orthopyroxene-bearing parageneses with Cr−Al antigorite and/or high-chromium chlorite is established for the second stage. The phase equilibria modeling using the Perple_X software package demonstrates that formation of antigorite−orthopyroxene paragenesis was associated with Si−Al metasomatism at: &lt;i&gt;T&lt;/i&gt; ~ 630°С, &lt;i&gt;P&lt;/i&gt; ~ 2 GPa, log&lt;span&gt;({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})&lt;/span&gt;  ~ −0.6, log&lt;span&gt;({{a}_{{{text{A}}{{{text{l}}}_{2}}{{{text{O}}}_{3}}}}})&lt;/span&gt; ~ −2.5. It is important to note that the mineral paragenesis is highly sensitive to &lt;span&gt;({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})&lt;/span&gt;: a slight decrease in log &lt;span&gt;({{a}_{{{text{Si}}{{{text{O}}}_{{text{2}}}}}}})&lt;/span&gt; relative to the above value would lead to the growth of olivine with antigorite, and an increase would lead to the growth of orthopyroxene. The latter may explain the formation of meta-orthopyroxenites, which are widely distributed among the meta-ultramafic rocks of the Maksyutov Complex. Similar calculations performed for the range of &lt;span&gt;({{X}_{{{text{C}}{{{text{O}}}_{2}}}}})&lt;/span&gt; = 0.01–0.05 in H&lt;sub&gt;2&lt;/sub&gt;O–CO&lt;sub&gt;2&lt;/sub&gt; fluid showed the replacement of silicate minerals by magnesite under the established thermodynamic conditions. Carbonation and Si−Al metasomatism are specific features of high-pressure transformations of meta-ultramafic rocks, which have not been established in the associated eclogites, quartzites, and shales. Such selective fluid influence on different rock types is interpreted as a result of their different tectono-metamorphic evolution: meta-ultramafic rocks are fragments of the suprasubduction mantle, which were tectonically juxtoposed with the rocks of the subducting plate (eclogites and metasedimentary r","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"53 - 84"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Potential Role of Sulfur during Granulite-facies Metamorphism, Oxidation, and Geochemical Transformation of the Granitoid Lower Crust 硫在花岗岩期变质、氧化和花岗岩下壳地球化学转变过程中的潜在作用
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010041
Daniel E. Harlov

The role of S during high-grade metamorphism is a topic that has not garnered much interest in the literature until recently. In this review, the role of S as an active component in high grade hypersaline fluids is reviewed per a series of regional studies involving orthopyroxene-bearing granulite-facies granitoids. These include the Shevaroy Block and Nilgiri Block, southern India; the Bamble Sector, southwest Norway; the Val Strona traverse of the Ivrea-Verbano Zone, northern Italy; and the Lewisian Complex, northwest Scotland. In each these terranes, S-bearing, high-grade, low H2O activity fluids are conjectured to have been present during granulite-facies metamorphism and to have contributed to the dehydration of the rock, the oxidation state of the rock, and trace element mobility, leaving behind pyrite and/or pyrrhotite as traces of its presence. The various mineral equilibria reactions between the various oxidation states of S in these fluids and the oxide and silicate minerals encountered by the fluid are explored and a coherent framework of interdependent chemical reactions are developed, which describe both oxidation of the rock and the formation of pyrite and pyrrhotite during both peak- and post-peak metamorphism.

摘要 S在高品位变质过程中的作用是一个直到最近才在文献中引起广泛关注的话题。在这篇综述中,通过一系列涉及含正辉石花岗岩成因花岗岩的区域研究,对S作为高品位超盐流体中活性成分的作用进行了综述。这些地区包括印度南部的谢瓦洛伊区块和尼尔吉里区块、挪威西南部的班布尔区块、意大利北部伊夫雷亚-韦尔巴诺区的瓦尔斯特罗纳横断面以及苏格兰西北部的刘易斯岩群。据推测,在这些地层中,花岗岩成因变质过程中都存在含 S 的高品位、低 H2O 活性流体,这些流体对岩石的脱水、岩石的氧化状态和微量元素的流动性起到了作用,并留下了黄铁矿和/或黄铁矿的痕迹。研究探讨了这些流体中各种氧化态的 S 与流体中遇到的氧化物和硅酸盐矿物之间的各种矿物平衡反应,并建立了一个相互依存的化学反应的连贯框架,该框架描述了高峰变质和后高峰变质过程中岩石的氧化以及黄铁矿和黄铁矿的形成。
{"title":"The Potential Role of Sulfur during Granulite-facies Metamorphism, Oxidation, and Geochemical Transformation of the Granitoid Lower Crust","authors":"Daniel E. Harlov","doi":"10.1134/S0869591124010041","DOIUrl":"10.1134/S0869591124010041","url":null,"abstract":"<p>The role of S during high-grade metamorphism is a topic that has not garnered much interest in the literature until recently. In this review, the role of S as an active component in high grade hypersaline fluids is reviewed per a series of regional studies involving orthopyroxene-bearing granulite-facies granitoids. These include the Shevaroy Block and Nilgiri Block, southern India; the Bamble Sector, southwest Norway; the Val Strona traverse of the Ivrea-Verbano Zone, northern Italy; and the Lewisian Complex, northwest Scotland. In each these terranes, S-bearing, high-grade, low H<sub>2</sub>O activity fluids are conjectured to have been present during granulite-facies metamorphism and to have contributed to the dehydration of the rock, the oxidation state of the rock, and trace element mobility, leaving behind pyrite and/or pyrrhotite as traces of its presence. The various mineral equilibria reactions between the various oxidation states of S in these fluids and the oxide and silicate minerals encountered by the fluid are explored and a coherent framework of interdependent chemical reactions are developed, which describe both oxidation of the rock and the formation of pyrite and pyrrhotite during both peak- and post-peak metamorphism.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"142 - 164"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of Salts NaCl and CaCl2 in Aqueous-Carbon Dioxide Deep Fluids 水二氧化碳深层流体中 NaCl 和 CaCl2 的分离
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124020036
M. V. Ivanov, S. A. Bushmin

The possibility of changing the ratio of the concentrations of NaCl and CaCl2 salts in fluid phases formed as a result of heterogenization of the H2O–CO2–NaCl–CaCl2 fluid with a decrease in P-T parameters has been studied. A well-known experimental fact regarding the ternary systems H2O–CO2–NaCl and H2O–CO2–CaCl2 is the greater tendency of the H2O–CO2–CaCl2 system to separate into coexisting predominantly aqueous-salt and aqueous-carbon dioxide phases compared to the similar system H2O–CO2–NaCl. This experimental fact can be interpreted as a greater affinity of NaCl for CO2 compared to CaCl2. Using a recently developed numerical thermodynamic model of the H2O–CO2–NaCl–CaCl2 quaternary fluid system, it was possible to identify geologically significant consequences of this difference in the interaction of NaCl and CaCl2 with CO2. Multistage heterogenization of the H2O–CO2–NaCl–CaCl2 fluid with a significant decrease in P-T parameters ultimately leads to the formation of aqueous-carbon dioxide fluid phase f2, the salt component of which is significantly enriched in NaCl and depleted in CaCl2 compared to the initial fluid. The fluid phase f1 formed at each stage of heterogenization has a predominantly water-salt composition with the ratio of the mole fractions of NaCl and CaCl2 salts, differing little from that in the initial fluid. However, the total mole fraction of salt in the f1 phase, as a rule, significantly exceeds that in the original fluid. The density of phase f1 significantly exceeds the density of phase f2. During the process of multistage heterogenization of the fluid phase f1, there is no formation of a fluid with a significant enrichment of CaCl2 compared to the initial ratio of the mole fractions of NaCl and CaCl2. At the same time, successive multiple separation of the f2 phase leads to the enrichment of its salt component in NaCl. Under favorable conditions, this process can lead to the formation of a fluid with almost pure NaCl salt. Changes in the salt composition of the fluid H2O–CO2–NaCl–CaCl2 are considered in application to the evolution of fluid composition along the regressive branch of the P-T trend of HP metamorphism and syngranulite metasomatism in the Lapland granulite belt.

我们研究了改变 H2O-CO2-NaCl-CaCl2 流体异质化后形成的流体相中 NaCl 和 CaCl2 盐浓度比例的可能性,同时降低了 P-T 参数。关于 H2O-CO2-NaCl 和 H2O-CO2-CaCl2 三元体系的一个众所周知的实验事实是,与类似的 H2O-CO2-NaCl 体系相比,H2O-CO2-CaCl2 体系更倾向于分离成主要共存的水相-盐相和水相-二氧化碳相。这一实验事实可以解释为,与 CaCl2 相比,NaCl 对 CO2 的亲和力更大。利用最近开发的 H2O-CO2-NaCl-CaCl2 四元流体系统数值热力学模型,可以确定 NaCl 和 CaCl2 与二氧化碳相互作用的这种差异在地质学上的重大影响。H2O-CO2-NaCl-CaCl2流体多级异质化,P-T参数显著降低,最终形成水相-二氧化碳流体相f2,与初始流体相比,其中的盐成分明显富含NaCl,贫含CaCl2。在每个异质化阶段形成的流体相 f1 主要由水-盐组成,其中 NaCl 和 CaCl2 盐的摩尔分数比与初始流体中的差别不大。然而,f1 相中盐的总摩尔分数通常大大超过初始流体中的总摩尔分数。在 f1 相流体的多级异质化过程中,与 NaCl 和 CaCl2 的初始摩尔分数比相比,没有形成 CaCl2 明显富集的流体。与此同时,f2 相的连续多次分离会导致其盐组分中 NaCl 的富集。在有利条件下,这一过程可导致形成一种几乎含有纯 NaCl 盐的流体。考虑了流体 H2O-CO2-NaCl-CaCl2 盐成分的变化,并将其应用于拉普兰花岗岩带 HP 变质作用和共花岗岩变质作用的 P-T 趋势回归分支的流体成分演变。
{"title":"Separation of Salts NaCl and CaCl2 in Aqueous-Carbon Dioxide Deep Fluids","authors":"M. V. Ivanov,&nbsp;S. A. Bushmin","doi":"10.1134/S0869591124020036","DOIUrl":"10.1134/S0869591124020036","url":null,"abstract":"<p>The possibility of changing the ratio of the concentrations of NaCl and CaCl<sub>2</sub> salts in fluid phases formed as a result of heterogenization of the H<sub>2</sub>O–CO<sub>2</sub>–NaCl–CaCl<sub>2</sub> fluid with a decrease in <i>P-T</i> parameters has been studied. A well-known experimental fact regarding the ternary systems H<sub>2</sub>O–CO<sub>2</sub>–NaCl and H<sub>2</sub>O–CO<sub>2</sub>–CaCl<sub>2</sub> is the greater tendency of the H<sub>2</sub>O–CO<sub>2</sub>–CaCl<sub>2</sub> system to separate into coexisting predominantly aqueous-salt and aqueous-carbon dioxide phases compared to the similar system H<sub>2</sub>O–CO<sub>2</sub>–NaCl. This experimental fact can be interpreted as a greater affinity of NaCl for CO<sub>2</sub> compared to CaCl<sub>2</sub>. Using a recently developed numerical thermodynamic model of the H<sub>2</sub>O–CO<sub>2</sub>–NaCl–CaCl<sub>2</sub> quaternary fluid system, it was possible to identify geologically significant consequences of this difference in the interaction of NaCl and CaCl<sub>2</sub> with CO<sub>2</sub>. Multistage heterogenization of the H<sub>2</sub>O–CO<sub>2</sub>–NaCl–CaCl<sub>2</sub> fluid with a significant decrease in <i>P-T</i> parameters ultimately leads to the formation of aqueous-carbon dioxide fluid phase f2, the salt component of which is significantly enriched in NaCl and depleted in CaCl<sub>2</sub> compared to the initial fluid. The fluid phase f1 formed at each stage of heterogenization has a predominantly water-salt composition with the ratio of the mole fractions of NaCl and CaCl<sub>2</sub> salts, differing little from that in the initial fluid. However, the total mole fraction of salt in the f1 phase, as a rule, significantly exceeds that in the original fluid. The density of phase f1 significantly exceeds the density of phase f2. During the process of multistage heterogenization of the fluid phase f1, there is no formation of a fluid with a significant enrichment of CaCl<sub>2</sub> compared to the initial ratio of the mole fractions of NaCl and CaCl<sub>2</sub>. At the same time, successive multiple separation of the f2 phase leads to the enrichment of its salt component in NaCl. Under favorable conditions, this process can lead to the formation of a fluid with almost pure NaCl salt. Changes in the salt composition of the fluid H<sub>2</sub>O–CO<sub>2</sub>–NaCl–CaCl<sub>2</sub> are considered in application to the evolution of fluid composition along the regressive branch of the <i>P-T</i> trend of HP metamorphism and syngranulite metasomatism in the Lapland granulite belt.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 2","pages":"249 - 257"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140782044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“In the Wake of a Big Ship”: The Sailing Must Go on! "在大船的后面":航行必须继续
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010107
L.Ya. Aranovich
{"title":"“In the Wake of a Big Ship”: The Sailing Must Go on!","authors":"L.Ya. Aranovich","doi":"10.1134/S0869591124010107","DOIUrl":"10.1134/S0869591124010107","url":null,"abstract":"","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"1 - 1"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metasomatism in the Precambrian Crust of the Siberian Craton: Results of a Study of Garnet(±Orthopyroxene)–Biotite–Feldspar Xenolith Rocks from Yubileinaya and Sytykanskaya Kimberlite Pipes, Yakutia 西伯利亚克拉通前寒武纪地壳中的变质作用:来自雅库特 Yubileinaya 和 Sytykanskaya 金伯利岩岩坑的石榴石(± 奥陶斜长石)-生物长石异长岩的研究结果
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010090
N. E. Seliutina, O. G. Safonov, V. O. Yapaskurt, D. A. Varlamov, I. S. Sharygin, K. M. Konstantinov, V. M. Kozlovskiy

Xenoliths in kimberlites are the most promising material for studying the composition and structure of the lower levels of the continental crust. This study is aimed at the estimation of P–T parameters and fluid regime of metamorphism for garnet–biotite–feldspar and orthopyroxene–garnet–biotite–feldspar rocks found as xenoliths in kimberlites of the Yubileynaya and Sytykanskaya pipes, Yakutian kimberlite province. The seven studied samples show inverse dependences of relative contents of garnet and orthopyroxene, orthopyroxene and biotite, garnet and plagioclase, plagioclase and potassium feldspar. This indicates a consistent series of transformations of the assemblage garnet + plagioclase + orthopyroxene ± quartz to the assemblage garnet + biotite + potassium feldspar. In this process, the replacement of plagioclase by potassium feldspar was the leading reaction. Evidence of this reaction is specific reaction textures in the rocks, negative correlations between the contents of the minerals, and petrochemical characteristics of the rocks. Modeling of the mineral assemblages of the xenoliths using the pseudosection approach (PERPLE_X) revealed two groups of rocks corresponding to different depth levels of the Siberian cratonic crust. For rocks without orthopyroxene or with this mineral as single relics, the pressure was estimated at 9.5–10 kbar, and it is 6–7 kbar for orthopyroxene-bearing samples. The xenolith rocks have close metamorphic peak temperatures of 750–800°C. They experienced 200–250°C cooling and 3–4 kbar decompression, regardless of the level of the crust at which they had initially occurred. This indicates that the metamorphic evolution of the rocks during their exhumation was probably associated with collisional processes during the amalgamation of individual terrains of the Siberian craton. Xenoliths enriched in K-feldspar might have been products of metamorphic reactions with participation of aqueous–(carbonic)–salt fluids, which were sourced from basaltic magmas in the lower crust. The most strongly metasomatized rocks were located closest to the place of accumulation of crystallizing magmas.

摘要 金伯利岩中的闪长岩是研究大陆地壳低层组成和结构的最有前途的材料。本研究旨在估算在雅库特金伯利岩区 Yubileynaya 和 Sytykanskaya 管道的金伯利岩中发现的石榴石-生物长石和正长石-石榴石-生物长石异长岩的 P-T 参数和变质流体机制。所研究的七个样本显示了石榴石和正长石、正长石和斜长石、石榴石和斜长石、斜长石和钾长石相对含量的反比关系。这表明石榴石+斜长石+正长石±石英组合到石榴石+斜长石+钾长石组合的一系列转化过程是一致的。在这一过程中,钾长石取代斜长石是最主要的反应。这种反应的证据是岩石中特定的反应纹理、矿物含量之间的负相关以及岩石的石油化学特征。利用假吸积法(PERPLE_X)建立的岩石矿物组合模型显示,有两组岩石对应于西伯利亚板块地壳的不同深度。对于不含正辉石或只含正辉石的岩石,压力估计为 9.5-10 千巴,而对于含正辉石的样品,压力估计为 6-7 千巴。异质岩的变质峰值温度接近 750-800°C。它们经历了 200-250°C 的冷却和 3-4 千巴的减压,与最初发生的地壳水平无关。这表明,这些岩石在出露过程中的变质演化可能与西伯利亚陨石坑各个地形汞齐化过程中的碰撞过程有关。富含钾长石的异长岩可能是变质反应的产物,其中有来自下地壳玄武质岩浆的含水(碳酸)盐类流体的参与。变质作用最强烈的岩石位于最靠近岩浆结晶聚集地的地方。
{"title":"Metasomatism in the Precambrian Crust of the Siberian Craton: Results of a Study of Garnet(±Orthopyroxene)–Biotite–Feldspar Xenolith Rocks from Yubileinaya and Sytykanskaya Kimberlite Pipes, Yakutia","authors":"N. E. Seliutina,&nbsp;O. G. Safonov,&nbsp;V. O. Yapaskurt,&nbsp;D. A. Varlamov,&nbsp;I. S. Sharygin,&nbsp;K. M. Konstantinov,&nbsp;V. M. Kozlovskiy","doi":"10.1134/S0869591124010090","DOIUrl":"10.1134/S0869591124010090","url":null,"abstract":"<p>Xenoliths in kimberlites are the most promising material for studying the composition and structure of the lower levels of the continental crust. This study is aimed at the estimation of <i>P–T</i> parameters and fluid regime of metamorphism for garnet–biotite–feldspar and orthopyroxene–garnet–biotite–feldspar rocks found as xenoliths in kimberlites of the Yubileynaya and Sytykanskaya pipes, Yakutian kimberlite province. The seven studied samples show inverse dependences of relative contents of garnet and orthopyroxene, orthopyroxene and biotite, garnet and plagioclase, plagioclase and potassium feldspar. This indicates a consistent series of transformations of the assemblage garnet + plagioclase + orthopyroxene ± quartz to the assemblage garnet + biotite + potassium feldspar. In this process, the replacement of plagioclase by potassium feldspar was the leading reaction. Evidence of this reaction is specific reaction textures in the rocks, negative correlations between the contents of the minerals, and petrochemical characteristics of the rocks. Modeling of the mineral assemblages of the xenoliths using the pseudosection approach (PERPLE_X) revealed two groups of rocks corresponding to different depth levels of the Siberian cratonic crust. For rocks without orthopyroxene or with this mineral as single relics, the pressure was estimated at 9.5–10 kbar, and it is 6–7 kbar for orthopyroxene-bearing samples. The xenolith rocks have close metamorphic peak temperatures of 750–800°C. They experienced 200–250°C cooling and 3–4 kbar decompression, regardless of the level of the crust at which they had initially occurred. This indicates that the metamorphic evolution of the rocks during their exhumation was probably associated with collisional processes during the amalgamation of individual terrains of the Siberian craton. Xenoliths enriched in K-feldspar might have been products of metamorphic reactions with participation of aqueous–(carbonic)–salt fluids, which were sourced from basaltic magmas in the lower crust. The most strongly metasomatized rocks were located closest to the place of accumulation of crystallizing magmas.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"85 - 110"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemical Thermometry of Ore-Bearing Gabbronorites from an Apophysis of the Yoko-Dovyren Massif: Composition, Amount of Olivine, and Conditions of Sulfide Saturation in the Parental Magma 横沟-多维连地块透辉岩含矿石的地球化学测温:母岩浆中的成分、橄榄石含量和硫化物饱和状态
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010089
I. V. Pshenitsyn, A. A. Ariskin, S. N. Sobolev

The temperature and compositional parameters of the parental magma of ore-bearing apophysis DV10 of the Yoko-Dovyren massif are estimated by the method of geochemical thermometry based on results of thermodynamic modeling of the equilibrium crystallization of the melts of 24 rocks. The thermometric calculations were carried out using the COMAGMAT-5.3 program with increments of 0.5 mol % to a maximum degree of crystallization 75–85%, under oxygen fugacity controlled by the QFM buffer. The model crystallization sequence of minerals was as follows: olivine (Ol) + Cr-Al spinel (Spl) → plagioclase (Pl) → high-Ca pyroxene (Cpx) → orthopyroxene (Opx). Silicate−sulfide immiscibility was calculated to occur mostly before the onset of plagioclase crystallization, which is consistent with initial sulfide saturation of the parental magma. The calculation results demonstrate the convergence and intersection of the model liquid lines of descent at temperatures of about 1185oC. When applied to the average composition of apophysis DV10, this temperature indicates the existence of suspension of the original crystals, including 52.1 wt % cumulus olivine (Fo83.6), 2.3 wt % plagioclase (An79.7), 0.24 wt % clinopyroxene (Mg# 88.8), 1 wt % aluminochromite (Cr# 0.62), and about 0.2% sulfide liquid in a moderately magnesian melt (53.6 wt % SiO2, 7.4 wt % MgO). Therewith the sulfur concentration at sulfide saturation (SCSS) was estimated at 0.083 wt %. This heterogeneous system had a viscosity of 4.71 log units (Pa s) and integral density of 2929 kg/m3. Such rheological properties do not contradict the possibility of the migration and emplacement of the protocumulus mush from the main Dovyren chamber. However, a more probable scenario is the localized accumulation of olivine in the trough-shaped part of the DV10 subchamber, which preceded or occurred in parallel to the accumulation of segregated sulfides.

摘要 根据 24 块岩石熔体平衡结晶的热力学建模结果,采用地球化学测温法估算了横沟-多维连地块 DV10 含矿岩浆母岩的温度和成分参数。测温计算使用 COMAGMAT-5.3 程序进行,增量为 0.5 摩尔%,最大结晶度为 75-85%,氧富集度由 QFM 缓冲控制。矿物的模型结晶顺序如下:橄榄石(Ol)+铬铝尖晶石(Spl)→斜长石(Pl)→高碳辉石(Cpx)→正辉石(Opx)。根据计算,硅酸盐-硫化物互不相溶主要发生在斜长石开始结晶之前,这与母岩浆的初始硫化物饱和是一致的。计算结果证明,模型液体下降线在约 1185 摄氏度的温度下趋同并相交。当应用于透辉石 DV10 的平均成分时,该温度表明存在原始晶体的悬浮物,包括 52.1 重量%的积橄榄石(Fo83.6)、2.3重量%的斜长石(An79.7)、0.24重量%的褐辉石(Mg# 88.8)、1重量%的铝铬铁矿(Cr# 0.62)和约0.2%的硫化物液体。因此,硫化物饱和时的硫浓度(SCSS)估计为 0.083 wt %。该异质体系的粘度为 4.71 对数单位(帕秒),整体密度为 2929 千克/立方米。这样的流变特性与原球茎蘑菇从多维伦主室迁移和移位的可能性并不矛盾。不过,更有可能的情况是,橄榄石在 DV10 亚室的槽形部分局部堆积,这种堆积发生在离析硫化物堆积之前或同时发生。
{"title":"Geochemical Thermometry of Ore-Bearing Gabbronorites from an Apophysis of the Yoko-Dovyren Massif: Composition, Amount of Olivine, and Conditions of Sulfide Saturation in the Parental Magma","authors":"I. V. Pshenitsyn,&nbsp;A. A. Ariskin,&nbsp;S. N. Sobolev","doi":"10.1134/S0869591124010089","DOIUrl":"10.1134/S0869591124010089","url":null,"abstract":"<p>The temperature and compositional parameters of the parental magma of ore-bearing apophysis DV10 of the Yoko-Dovyren massif are estimated by the method of geochemical thermometry based on results of thermodynamic modeling of the equilibrium crystallization of the melts of 24 rocks. The thermometric calculations were carried out using the COMAGMAT-5.3 program with increments of 0.5 mol % to a maximum degree of crystallization 75–85%, under oxygen fugacity controlled by the QFM buffer. The model crystallization sequence of minerals was as follows: olivine (<i>Ol</i>) + Cr-Al spinel (<i>Spl</i>) → plagioclase (<i>Pl</i>) → high-Ca pyroxene (<i>Cpx</i>) → orthopyroxene (<i>Opx</i>). Silicate−sulfide immiscibility was calculated to occur mostly before the onset of plagioclase crystallization, which is consistent with initial sulfide saturation of the parental magma. The calculation results demonstrate the convergence and intersection of the model liquid lines of descent at temperatures of about 1185<sup>o</sup>C. When applied to the average composition of apophysis DV10, this temperature indicates the existence of suspension of the original crystals, including 52.1 wt % cumulus olivine (<i>Fo</i><sub>83.6</sub>), 2.3 wt % plagioclase (<i>An</i><sub>79.7</sub>), 0.24 wt % clinopyroxene (<i>Mg</i># 88.8), 1 wt % aluminochromite (<i>Cr</i># 0.62), and about 0.2% sulfide liquid in a moderately magnesian melt (53.6 wt % SiO<sub>2</sub>, 7.4 wt % MgO). Therewith the sulfur concentration at sulfide saturation (SCSS) was estimated at 0.083 wt %. This heterogeneous system had a viscosity of 4.71 log units (Pa s) and integral density of 2929 kg/m<sup>3</sup>. Such rheological properties do not contradict the possibility of the migration and emplacement of the protocumulus mush from the main Dovyren chamber. However, a more probable scenario is the localized accumulation of olivine in the trough-shaped part of the DV10 subchamber, which preceded or occurred in parallel to the accumulation of segregated sulfides.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"111 - 127"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Multicomponent Fluid Flow in Deforming and Reacting Porous Rock 多孔岩石变形和反应过程中的多组分流体流动建模
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124010053
L. Khakimova, Yu. Podladchikov

We propose a coupled hydro-mechanical-chemical model and its 1D numerical implementation. We demonstrate its application to the model filtration of a multicomponent fluid in deforming and reacting host rocks, considering changes in the densities, phase proportions, and the chemical compositions of the coexisting phases. The presented 1D numerical implementation is illustrated by the example of soapstone formation from serpentinite during the filtration of Н2О−CО2 fluid with a low CО2 concentration coupled with the viscous deformation of the mineral matrix, considering the MgO−SiO2−Н2О−CО2 system. The numerical results show the propagation of a porosity wave by means of a viscous (de)compaction mechanism accompanied by the formation of an elongated zone with higher filtration properties. After the formation of such a channel, the formation and propagation of the reaction fronts occur and are associated with the transformation of the mineral composition of the original rock. During H2O−CO2 fluid filtration, starting with 1 wt % dissolved CO2, carbonization of hydrated serpentinite starts, specifically antigorite transforms to magnesite and talc.

摘要 我们提出了一种水文-机械-化学耦合模型及其一维数值实施方法。考虑到共存相的密度、相比例和化学成分的变化,我们展示了该模型在多组分流体在变形和反应母岩中过滤的应用。考虑到 MgO-SiO2-Н2О-CО2 体系,以蛇纹岩形成皂石为例,说明了在低 CО2 浓度的 Н2О-CО2 流体过滤过程中,以及矿物基质的粘性变形过程中,所提出的一维数值实现方法。数值结果表明,孔隙波是通过粘性(去)压实机制传播的,并伴随着具有更高过滤特性的拉长区域的形成。在这种通道形成后,反应锋的形成和传播与原岩矿物成分的转变有关。在 H2O-CO2 流体过滤过程中,从溶解度为 1 wt % 的 CO2 开始,水合蛇绿岩开始碳化,特别是锑橄榄石转变为菱镁矿和滑石。
{"title":"Modeling Multicomponent Fluid Flow in Deforming and Reacting Porous Rock","authors":"L. Khakimova,&nbsp;Yu. Podladchikov","doi":"10.1134/S0869591124010053","DOIUrl":"10.1134/S0869591124010053","url":null,"abstract":"<p>We propose a coupled hydro-mechanical-chemical model and its 1D numerical implementation. We demonstrate its application to the model filtration of a multicomponent fluid in deforming and reacting host rocks, considering changes in the densities, phase proportions, and the chemical compositions of the coexisting phases. The presented 1D numerical implementation is illustrated by the example of soapstone formation from serpentinite during the filtration of Н<sub>2</sub>О−CО<sub>2</sub> fluid with a low CО<sub>2</sub> concentration coupled with the viscous deformation of the mineral matrix, considering the MgO−SiO<sub>2</sub>−Н<sub>2</sub>О−CО<sub>2</sub> system. The numerical results show the propagation of a porosity wave by means of a viscous (de)compaction mechanism accompanied by the formation of an elongated zone with higher filtration properties. After the formation of such a channel, the formation and propagation of the reaction fronts occur and are associated with the transformation of the mineral composition of the original rock. During H<sub>2</sub>O−CO<sub>2</sub> fluid filtration, starting with 1 wt % dissolved CO<sub>2</sub>, carbonization of hydrated serpentinite starts, specifically antigorite transforms to magnesite and talc.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"2 - 15"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale-long-term Strength of the Lithosphere: New Theory and Applications 岩石圈的大尺度长期强度:新理论与应用
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S086959112401003X
Taras Gerya

Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.

摘要 岩石圈的长期强度通常被假定为等同于其平均偏差应力水平。然而,这一定义只适用于均质粘弹性材料,即不发生局部(空间和/或时间)削弱和变形过程。在此,我建议将岩石圈的大尺度长期强度定义为岩石圈对不可逆变形的机械抵抗力,即产生单位不可逆(即非弹性、粘塑性)变形所不可逆转地消耗(即耗散)的机械能。根据这一新定义,强度是综合(通过给定岩石圈体积和时间)机械能耗散与综合不可逆粘塑应变的比值。根据这一新定义,岩石圈的大尺度长期强度是应变平均量,而不是体积-时间平均量。因此,当不可逆变形沿着体积上次要的弱结构局部发生时,岩石圈的强度会明显低于体积上占优势的强弹性区域的平均长期偏差应力水平。这一定义既适用于同质岩石圈变形,也适用于异质岩石圈变形(即空间和/或时间上的局部变形),为分析区域和全球尺度上的各种地球动力环境提供了一个有用的框架。特别是,我展示了这一新的岩石圈强度理论对更好地理解以下问题的一些影响:(i) 岩浆过程引起的岩石圈强烈熔融弱化;(ii) 俯冲带板块界面的极低强度;(iii) 具有板块构造的全球地幔对流模型预测的构造板块的低脆性/塑性强度。虽然这项工作的重点是评估长期大尺度脆性/塑性强度和变形参数,但所提出的方法也可用于量化有效韧性(即粘性)强度和相应的长期大尺度流变特性。
{"title":"Large-scale-long-term Strength of the Lithosphere: New Theory and Applications","authors":"Taras Gerya","doi":"10.1134/S086959112401003X","DOIUrl":"10.1134/S086959112401003X","url":null,"abstract":"<p>Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"128 - 141"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamorphic Mineral Reactions and Mineral Assemblages in Rocks of the Meyeri Tectonic Zone, Southeastern Fennoscandian Shield, Russia 俄罗斯东南部芬诺斯堪地盾梅耶里构造带岩石中的变质矿物反应和矿物组合
IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1134/S0869591124020097
E. S. Vivdich, Sh. K. Baltybaev, O. L. Galankina

Mineral reactions were studied in metamorphic rocks from the Meyeri tectonic zone, and the P–T path of the development of this structure was calculated. According to the P–T path, the Proterozoic granulite complex of the Svecofennian Belt was thrust onto low-temperature rocks of the Archean Karelian Craton. Relict staurolite and other minerals preserved as inclusions in the garnet porphyroblasts made it possible to identify the pre-peak stage of metamorphism with PT parameters no higher than the low-temperature amphibolite facies of moderate and low pressure. The peak metamorphic conditions of the tectonic zone are estimated at T > 700°C and P ~ 7 kbar using the composition of relict minerals, while the temperature on the prograde trend of metamorphism was 500–600°C at a pressure of about 5 kbar. The post-peak stage began with a distinct decompressional PT path at the aforementioned high temperatures, with a change from granulite hypersthene-containing assemblages to lower-temperature hydrous ones. The subsequent metamorphic retrogression was characterized by the development of numerous hydrous minerals as a result of the activation of fluids in the shear zone. The P–T path of the tectonic zone is clockwise and reflects the exhumation of the Svecofennian granulite complex during the orogenic events.

对梅耶里构造带变质岩中的矿物反应进行了研究,并计算了该构造发展的 P-T 轨迹。根据该P-T路径,斯维科芬尼岩带的新生代花岗岩复合体被推到了奥陶纪卡累利阿克拉通的低温岩石上。石榴石斑岩中作为包裹体保存下来的残余白云石和其他矿物使我们有可能确定变质的前高峰阶段,其 P-T 参数不高于中低压的低温闪长岩面。根据孑遗矿物的成分,该构造带的变质峰值条件估计为 T > 700°C 和 P ~ 7 千巴,而变质顺行趋势的温度为 500-600°C,压力约为 5 千巴。后峰值阶段开始时,在上述高温条件下出现了明显的减压 P-T 路径,从含花岗岩高铼的集合体转变为低温的含水集合体。在随后的变质逆退过程中,由于剪切带中流体的活化,出现了大量的含水矿物。构造带的 P-T 轨迹为顺时针方向,反映了造山运动期间斯维科芬尼花岗岩复合体的出露。
{"title":"Metamorphic Mineral Reactions and Mineral Assemblages in Rocks of the Meyeri Tectonic Zone, Southeastern Fennoscandian Shield, Russia","authors":"E. S. Vivdich,&nbsp;Sh. K. Baltybaev,&nbsp;O. L. Galankina","doi":"10.1134/S0869591124020097","DOIUrl":"10.1134/S0869591124020097","url":null,"abstract":"<p>Mineral reactions were studied in metamorphic rocks from the Meyeri tectonic zone, and the <i>P–T</i> path of the development of this structure was calculated. According to the <i>P–T</i> path, the Proterozoic granulite complex of the Svecofennian Belt was thrust onto low-temperature rocks of the Archean Karelian Craton. Relict staurolite and other minerals preserved as inclusions in the garnet porphyroblasts made it possible to identify the pre-peak stage of metamorphism with <i>P</i>–<i>T</i> parameters no higher than the low-temperature amphibolite facies of moderate and low pressure. The peak metamorphic conditions of the tectonic zone are estimated at <i>T</i> &gt; 700°C and <i>P</i> ~ 7 kbar using the composition of relict minerals, while the temperature on the prograde trend of metamorphism was 500–600°C at a pressure of about 5 kbar. The post-peak stage began with a distinct decompressional <i>P</i>–<i>T</i> path at the aforementioned high temperatures, with a change from granulite hypersthene-containing assemblages to lower-temperature hydrous ones. The subsequent metamorphic retrogression was characterized by the development of numerous hydrous minerals as a result of the activation of fluids in the shear zone. The <i>P–T</i> path of the tectonic zone is clockwise and reflects the exhumation of the Svecofennian granulite complex during the orogenic events.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 2","pages":"215 - 235"},"PeriodicalIF":1.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Petrology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1