首页 > 最新文献

Petrology最新文献

英文 中文
Late Mesozoic Carbonatite of Central Asia 中亚晚中生代碳酸盐岩
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-13 DOI: 10.1134/S0869591123010137
A. V. Nikiforov

Late Mesozoic carbonatites of Central Asia are developed within the Central Asian Orogenic Belt and adjacent territories of the Siberian and North China platforms. In terms of their structural position, age, geochemical characteristics, and other parameters, they differ from other carbonatite occurrences of Central Asia and are distinguished as the Late Mesozoic carbonatite province in Central Asia. The province includes separate areas of carbonatite magmatism, the geological position of which is determined by the relation with Late Mesozoic rift zones of intracontinental Asia. The carbonatites were formed within a relatively narrow time range (between 150 and 118 Ma) at the early evolution stages of these zones. The carbonatite-bearing complexes of the province are represented by subolcanic and volcanic associations of silicate rocks, carbonatites, magmatic non-silicate rocks (phosphates, sulfates, and others), as well as products of hydrothermal activity. The carbonatites are characterized by diverse composition and include calciocarbonatites, magnesiocarbonatites, and ferrocarbonatites. The silicate rocks are dominated by K–Na and K intermediate rocks. All these rocks have similar geochemical features determined by the elevated contents of LREE, Sr, Ba, and Pb, at low Nb and Ta contents. The typomorphic minerals of carbonatites of the province, in addition to carbonates, are fluorite, Ba and Sr sulfates or carbonates, LREE F-carbonates, and apatite. Unaltered carbonatites are enriched in 18О and 13С relative to mantle values, but in general fall within the compositional range of carbonatites around the world. Hydrothermal and supergene processes modified the mineral composition of carbonatites, which was accompanied by a change of the initial Sr, O, and C isotope composition. The Sr and Nd isotope composition of rocks of carbonatite complexes of the province in general depends on the age of the basement of a definite volcanic area. Carbonatites and associated silicate rocks have close isotope characteristics, but carbonatites usually show relative enrichment in (87Sr) and depletion in radiogenic neodymium (143Nd). The formation of the Late Mesozoic carbonatite province is related to the activity of mantle plumes, which controlled the Late Mesozoic magmatism in Central Asia. The plumes obviously were accompanied by fluid flows enriched in СО2, F, and S. This caused the enrichment of lithospheric mantle in volatile components, as well as REE, Sr, Ba, and K, which were extracted by a fluid en route to the surface. Subsequent melting of metasomatized mantle produced parental melts of carbonate-bearing rock complexes.

中亚晚中生代碳酸盐岩发育在中亚造山带及其邻近的西伯利亚地台和华北地台内。在构造位置、年龄、地球化学特征等参数上,与中亚其他碳酸盐岩赋存地不同,属于中亚晚中生代碳酸盐岩省。本省有独立的碳酸盐岩岩浆活动区,其地质位置由其与晚中生代亚洲大陆内裂谷带的关系决定。碳酸盐岩的形成时间相对较短(150 ~ 118ma),为该区早期演化阶段。该省的含碳酸盐杂岩以次火山和火山组合的硅酸盐岩石、碳酸盐、岩浆非硅酸盐岩石(磷酸盐、硫酸盐等)以及热液活动的产物为代表。碳酸盐组成多样,包括钙碳酸盐、镁碳酸盐和铁碳酸盐。硅酸盐岩以钾钠和钾中间岩为主。这些岩石具有相似的地球化学特征,主要表现为LREE、Sr、Ba、Pb含量较高,而Nb、Ta含量较低。该省碳酸盐的标型矿物除碳酸盐外,还有萤石、钡、锶硫酸盐或碳酸盐、轻稀土f碳酸盐和磷灰石。相对于地幔值,未蚀变碳酸盐岩富集于18О和13С,但总体上属于世界范围内碳酸盐岩的组成范围。热液和表生作用改变了碳酸盐岩的矿物组成,并改变了初始Sr、O和C同位素组成。全省碳酸盐岩杂岩的Sr、Nd同位素组成一般取决于某一特定火山区基底的年龄。碳酸盐岩及其伴生硅酸盐岩具有相近的同位素特征,但碳酸盐岩通常表现为(87Sr)相对富集和(143Nd)相对富集。晚中生代碳酸盐岩省的形成与地幔柱的活动有关,地幔柱控制了中亚地区晚中生代岩浆活动。这些地幔柱明显伴随着富含СО2、F和s的流体流动,这导致岩石圈地幔挥发性组分以及REE、Sr、Ba和K的富集,这些挥发性组分被流至地表的流体提取。交代地幔随后的熔融作用产生了含碳酸盐杂岩的母熔体。
{"title":"Late Mesozoic Carbonatite of Central Asia","authors":"A. V. Nikiforov","doi":"10.1134/S0869591123010137","DOIUrl":"10.1134/S0869591123010137","url":null,"abstract":"<div><p>Late Mesozoic carbonatites of Central Asia are developed within the Central Asian Orogenic Belt and adjacent territories of the Siberian and North China platforms. In terms of their structural position, age, geochemical characteristics, and other parameters, they differ from other carbonatite occurrences of Central Asia and are distinguished as the Late Mesozoic carbonatite province in Central Asia. The province includes separate areas of carbonatite magmatism, the geological position of which is determined by the relation with Late Mesozoic rift zones of intracontinental Asia. The carbonatites were formed within a relatively narrow time range (between 150 and 118 Ma) at the early evolution stages of these zones. The carbonatite-bearing complexes of the province are represented by subolcanic and volcanic associations of silicate rocks, carbonatites, magmatic non-silicate rocks (phosphates, sulfates, and others), as well as products of hydrothermal activity. The carbonatites are characterized by diverse composition and include calciocarbonatites, magnesiocarbonatites, and ferrocarbonatites. The silicate rocks are dominated by K–Na and K intermediate rocks. All these rocks have similar geochemical features determined by the elevated contents of LREE, Sr, Ba, and Pb, at low Nb and Ta contents. The typomorphic minerals of carbonatites of the province, in addition to carbonates, are fluorite, Ba and Sr sulfates or carbonates, LREE F-carbonates, and apatite. Unaltered carbonatites are enriched in <sup>18</sup>О and <sup>13</sup>С relative to mantle values, but in general fall within the compositional range of carbonatites around the world. Hydrothermal and supergene processes modified the mineral composition of carbonatites, which was accompanied by a change of the initial Sr, O, and C isotope composition. The Sr and Nd isotope composition of rocks of carbonatite complexes of the province in general depends on the age of the basement of a definite volcanic area. Carbonatites and associated silicate rocks have close isotope characteristics, but carbonatites usually show relative enrichment in (<sup>87</sup>Sr) and depletion in radiogenic neodymium (<sup>143</sup>Nd). The formation of the Late Mesozoic carbonatite province is related to the activity of mantle plumes, which controlled the Late Mesozoic magmatism in Central Asia. The plumes obviously were accompanied by fluid flows enriched in СО<sub>2</sub>, F, and S. This caused the enrichment of lithospheric mantle in volatile components, as well as REE, Sr, Ba, and K, which were extracted by a fluid en route to the surface. Subsequent melting of metasomatized mantle produced parental melts of carbonate-bearing rock complexes.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 1","pages":"1 - 141"},"PeriodicalIF":1.5,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4541917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aegirine-Bearing Clinopyroxenes in Granulite Xenoliths from the Udachnaya Kimberlite Pipe, Siberian Craton: Comparison of the Mössbauer and Micropobe Data 西伯利亚克拉通Udachnaya金伯利岩管麻粒岩捕虏体中含硫斜辉石质:Mössbauer与micropoe资料比较
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010083
A. V. Sapegina, M. V. Voronin, A. L. Perchuk, O. G. Safonov

The aegirine end-member (NaFe3+Si2O6) in clinopyroxenes resulted from incorporation of Fe3+ into the mineral structure. Its presence affects the accuracy of reconstruction of the P-T conditions in the high-grade metamorphic rocks and allows the evaluation of the redox conditions of their formation. The content of this end-member in clinopyroxenes is usually estimated using crystal chemical recalculations of microprobe analyses. However, in some publications on eclogites, the comparison of microprobe-based recalculations with Mössbauer data revealed significant difference between the measured and calculated Fe3+/ΣFe ratios, which can significantly affect the results of geothermometry. This paper presents the results of the Mössbauer spectroscopy measurements of clinopyroxene fractions separated from three samples of garnet–clinopyroxene granulites from the Udachnaya kimberlite pipe. The ratios Fe3+/ΣFe = 0.22–0.26 measured in the clinopyroxenes correspond to 6–10 mol % aegirine. These estimates are in good agreement with the values obtained for the same clinopyroxenes by the recalculation of microprobe analyses using the charge balance method. Following this conclusion, we believe that crystal chemical recalculations of microprobe analyzes of clinopyroxenes from non-eclogitic rocks make it possible to correctly estimate the Fe3+ content in them. Similar recalculation of microprobe analyses of clinopyroxenes in crustal xenoliths from other localities, as well as from ferrobasalts of the continental flood basalts provinces, ferrodolerite dikes, and gabbroid xenoliths (similar in bulk chemical composition to many lower–middle crustal xenoliths) revealed significant amounts of previously unaccounted aegirine (up to 13 and 4–9 mol %, respectively), which holds the potential for deciphering redox conditions in many rocks.

斜斜辉石中氮基端元(NaFe3+Si2O6)是由Fe3+掺入到矿物结构中引起的。它的存在影响了高变质岩中P-T条件重建的准确性,并有助于评价其形成的氧化还原条件。斜辉石中这种端元的含量通常是用微探针分析的晶体化学重新计算来估计的。然而,在一些关于榴辉岩的出版物中,将基于微探针的重新计算与Mössbauer数据进行比较,结果显示Fe3+/ΣFe的实测值与计算值存在显著差异,这将显著影响地热测量结果。本文介绍了乌达奇纳亚金伯利岩管中3个石榴石-斜辉石麻粒岩样品中斜辉石组分的Mössbauer光谱测量结果。斜斜石中测得的Fe3+/ΣFe = 0.22-0.26的比值相当于6-10 mol %的埃吉林。这些估计值与用电荷平衡法重新计算微探针分析得到的相同斜辉石的值很好地一致。根据这一结论,我们认为,通过对非榴辉岩斜辉石显微分析的晶体化学重新计算,可以正确估计其Fe3+含量。对来自其他地区的地壳捕虏体中的斜辉石进行类似的微探针分析,以及来自大陆洪泛玄武岩省的铁玄武岩、铁白云石岩脉和辉长岩捕虏体(与许多中下地壳捕虏体的总体化学成分相似)的微探针分析,发现了大量以前未计算的硫胺(分别高达13%和4% - 9%),这有可能破译许多岩石的氧化还原条件。
{"title":"Aegirine-Bearing Clinopyroxenes in Granulite Xenoliths from the Udachnaya Kimberlite Pipe, Siberian Craton: Comparison of the Mössbauer and Micropobe Data","authors":"A. V. Sapegina,&nbsp;M. V. Voronin,&nbsp;A. L. Perchuk,&nbsp;O. G. Safonov","doi":"10.1134/S0869591123010083","DOIUrl":"10.1134/S0869591123010083","url":null,"abstract":"<div><p>The aegirine end-member (NaFe<sup>3+</sup>Si<sub>2</sub>O<sub>6</sub>) in clinopyroxenes resulted from incorporation of Fe<sup>3+</sup> into the mineral structure. Its presence affects the accuracy of reconstruction of the <i>P-T</i> conditions in the high-grade metamorphic rocks and allows the evaluation of the redox conditions of their formation. The content of this end-member in clinopyroxenes is usually estimated using crystal chemical recalculations of microprobe analyses. However, in some publications on eclogites, the comparison of microprobe-based recalculations with Mössbauer data revealed significant difference between the measured and calculated Fe<sup>3+</sup>/ΣFe ratios, which can significantly affect the results of geothermometry. This paper presents the results of the Mössbauer spectroscopy measurements of clinopyroxene fractions separated from three samples of garnet–clinopyroxene granulites from the Udachnaya kimberlite pipe. The ratios Fe<sup>3+</sup>/ΣFe = 0.22–0.26 measured in the clinopyroxenes correspond to 6–10 mol % aegirine. These estimates are in good agreement with the values obtained for the same clinopyroxenes by the recalculation of microprobe analyses using the charge balance method. Following this conclusion, we believe that crystal chemical recalculations of microprobe analyzes of clinopyroxenes from non-eclogitic rocks make it possible to correctly estimate the Fe<sup>3+</sup> content in them. Similar recalculation of microprobe analyses of clinopyroxenes in crustal xenoliths from other localities, as well as from ferrobasalts of the continental flood basalts provinces, ferrodolerite dikes, and gabbroid xenoliths (similar in bulk chemical composition to many lower–middle crustal xenoliths) revealed significant amounts of previously unaccounted aegirine (up to 13 and 4–9 mol %, respectively), which holds the potential for deciphering redox conditions in many rocks.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S119 - S130"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4828030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petrogenesis and Metallogeny of Intrusive Aplite Dyke from the Malanjkhand Pluton, Central India 印度中部Malanjkhand岩体侵入型阿普立特岩脉的岩石成因及成矿作用
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S086959112301006X
Dinesh Pandit

The relationships between textural variations and structural trends of the aplite dyke enclosed in the Malanjkhand pluton were investigated in this study. The estimated zircon saturation temperature (747–835°C) and pressure of crystallization (2.5–6.1 kbar) suggested that the aplite dyke was emplaced in the lower-middle level in the continental crust. Water solubility calculations indicated that the aplite dyke originated from the silicic magma under water undersaturated conditions. Primitive mantle normalized spider diagram showed enrichment of large-ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). The aplite dyke displayed LREE-enriched and MREE-depleted patterns, with significant positive Eu-anomaly in the REE patterns. This observation alluded the accumulation of plagioclase crystals before the crystallization of felsic magma in the reduced environment. The presence of the positive Eu-anomaly signified that the pre-existing granitic source at the lower-middle level of the crust generated aplitic magma owing to partial melting above the felsic source rock. Trace element discrimination diagrams presented evidence for possible extensional tectonic settings coupled with felsic magmatic episodes and granitic plutonic activity in a continental rift environment, thus favoring the emplacement of the aplite dyke. Th/U ratios in the aplite dyke implied that the melt fractionation in the magma chamber and the post-magmatic hydrothermal processes exerted negligible effect on the crystallization evolution of the aplitic magma. The aplite dyke pointed to a single pulse of silicic magmatism and a continuous process of injection, thus reflecting subtle variations in the physical conditions of the formation of the host Malanjkhand pluton.

本文研究了马兰杰坎德岩体中围合的阿普立特岩脉的结构变化与构造走向之间的关系。锆石饱和温度(747 ~ 835℃)和结晶压力(2.5 ~ 6.1 kbar)表明,该长石岩脉位于陆壳中下位。水溶解度计算表明,该岩脉起源于水欠饱和条件下的硅质岩浆。原始地幔归一化蜘蛛图显示大离子亲石元素(LILEs)富集,高场强元素(hfse)耗散。阿普里特岩脉呈现低稀土富集和低稀土亏缺模式,稀土模式呈显著的正eu异常。这一发现暗示了在还原环境中,长英质岩浆结晶之前,斜长石晶体的积累。eu -正异常的存在表明,在地壳中下位已存在的花岗质烃源岩由于在长英质烃源岩上方部分熔融而产生了黏液岩浆。微量元素判别图显示了大陆裂谷环境下可能的伸展构造背景,并结合了长英质岩浆活动和花岗质深部活动,因此有利于阿普立特岩脉的侵位。岩脉Th/U比值表明岩浆房中熔体分馏作用和岩浆期后热液作用对岩浆结晶演化的影响可以忽略不计。阿普立特岩脉指向单一的硅质岩浆活动脉冲和连续的注入过程,从而反映了寄主Malanjkhand岩体形成物理条件的微妙变化。
{"title":"Petrogenesis and Metallogeny of Intrusive Aplite Dyke from the Malanjkhand Pluton, Central India","authors":"Dinesh Pandit","doi":"10.1134/S086959112301006X","DOIUrl":"10.1134/S086959112301006X","url":null,"abstract":"<p>The relationships between textural variations and structural trends of the aplite dyke enclosed in the Malanjkhand pluton were investigated in this study. The estimated zircon saturation temperature (747–835°C) and pressure of crystallization (2.5–6.1 kbar) suggested that the aplite dyke was emplaced in the lower-middle level in the continental crust. Water solubility calculations indicated that the aplite dyke originated from the silicic magma under water undersaturated conditions. Primitive mantle normalized spider diagram showed enrichment of large-ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). The aplite dyke displayed LREE-enriched and MREE-depleted patterns, with significant positive Eu-anomaly in the REE patterns. This observation alluded the accumulation of plagioclase crystals before the crystallization of felsic magma in the reduced environment. The presence of the positive Eu-anomaly signified that the pre-existing granitic source at the lower-middle level of the crust generated aplitic magma owing to partial melting above the felsic source rock. Trace element discrimination diagrams presented evidence for possible extensional tectonic settings coupled with felsic magmatic episodes and granitic plutonic activity in a continental rift environment, thus favoring the emplacement of the aplite dyke. Th/U ratios in the aplite dyke implied that the melt fractionation in the magma chamber and the post-magmatic hydrothermal processes exerted negligible effect on the crystallization evolution of the aplitic magma. The aplite dyke pointed to a single pulse of silicic magmatism and a continuous process of injection, thus reflecting subtle variations in the physical conditions of the formation of the host Malanjkhand pluton.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S140 - S156"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4830821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Condensate in Impact Glass Samples from the Lonar Crater, India 印度洛纳尔陨石坑撞击玻璃样品中的冷凝物
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010046
T. A. Gornostaeva, A. V. Mokhov, A. P. Rybchuk, P. M. Kartashov

Polycomponent condensate glasses found in nature provide an insight into condensation mechanisms, which are still understood inadequately poorly. Condensate glasses found in the impactites of the Lonar crater contain nanosized inclusions of metallic Fe, Cr, Cu, Zn, Ag, In, Te, Au, Pt, and Bi, along with Fe, Cu, and Zn sulfides. This combination may be indicative either of a brief condensation window for the almost simultaneous condensation of components with so different fugacity or of a possible mechanism of cluster condensation, provided that the condensation temperatures of such clusters are close.

在自然界中发现的多组分冷凝玻璃提供了对冷凝机制的深入了解,这些机制仍然不够充分。在月球陨石坑的撞击物中发现的冷凝玻璃含有纳米大小的金属铁、铬、铜、锌、银、银、碲、金、铂和铋,以及铁、铜和锌的硫化物。这种组合可能表明,具有如此不同逸度的组分几乎同时凝结的短暂凝结窗口,或可能的团簇凝结机制,只要这些团簇的凝结温度接近。
{"title":"Condensate in Impact Glass Samples from the Lonar Crater, India","authors":"T. A. Gornostaeva,&nbsp;A. V. Mokhov,&nbsp;A. P. Rybchuk,&nbsp;P. M. Kartashov","doi":"10.1134/S0869591123010046","DOIUrl":"10.1134/S0869591123010046","url":null,"abstract":"<p>Polycomponent condensate glasses found in nature provide an insight into condensation mechanisms, which are still understood inadequately poorly. Condensate glasses found in the impactites of the Lonar crater contain nanosized inclusions of metallic Fe, Cr, Cu, Zn, Ag, In, Te, Au, Pt, and Bi, along with Fe, Cu, and Zn sulfides. This combination may be indicative either of a brief condensation window for the almost simultaneous condensation of components with so different fugacity or of a possible mechanism of cluster condensation, provided that the condensation temperatures of such clusters are close.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S131 - S139"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5130070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia 中亚晚新生代乌多坎火山高原结晶参数、熔体成因及岩浆来源
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010101
V. V. Yarmolyuk, V. M. Savatenkov, A. M. Kozlovsky, F. M. Stupak, M. V. Kuznetsov, L. V. Shpakovich

Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO2 contents (<45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO2 was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.

与中亚晚新生代火山省的其他地区相似,乌多坎火山高原形成于中中新世至更新世之间。其岩石呈高碱性,从碱性微玄武岩和玄武岩到碱性粗叶岩不一而足。岩石成分的变化受两种分异趋势的控制,这两种分异趋势对应于母岩浆的不同生成条件。低SiO2含量(45 wt %)的岩石是由低熔融程度的熔体形成的,这些熔体是在高压和高温下形成的。SiO2含量为45 ~ 61 wt %的岩石的形成与玄武岩熔体的分异有关,这些熔体来源于较浅的深度和较低的温度。UVP玄武岩的地球化学特征与obb型玄武岩相似。Sr、Nd、Pb同位素组成接近,与中贫地幔参数相对应,与深部地幔柱相对应的洋玄武岩源组成接近。中亚晚新生代板内火山省其它火山岩源区中均存在相应的地幔成分,表明这些地区的形成中有下地幔柱物质参与。
{"title":"Crystallization Parameters, Genesis of Melts, and Sources of Magmas of the Late Cenozoic Udokan Volcanic Plateau, Central Asia","authors":"V. V. Yarmolyuk,&nbsp;V. M. Savatenkov,&nbsp;A. M. Kozlovsky,&nbsp;F. M. Stupak,&nbsp;M. V. Kuznetsov,&nbsp;L. V. Shpakovich","doi":"10.1134/S0869591123010101","DOIUrl":"10.1134/S0869591123010101","url":null,"abstract":"<p>Similar to the other areas of the Late Cenozoic volcanic province of Central Asia, the Udokan volcanic plateau (UVP) was formed in the time span between the Middle Miocene and the Pleistocene. Its rocks are highly alkaline and vary from alkaline picrobasalts and basanites to alkaline trachytes. The compositional variations of the rocks were controlled by two differentiation trends, which corresponded to different generation conditions of the parental magmas. The rocks with low SiO<sub>2</sub> contents (&lt;45 wt %) were formed by melts of low degrees of melting, whose melts were derived under elevated pressures and temperatures. The formation of the rocks with 45–61 wt % SiO<sub>2</sub> was associated with the differentiation of basalt melts, which were derived at shallower depths and at lower temperatures. The geochemical characteristics of the UVP basaltoids make them similar to OIB-type basalts. They are also close in Sr, Nd, and Pb isotopic composition, corresponding to the parameters of the moderately depleted mantle, which is close to the composition of oceanic basalt sources corresponding to the mantle of deep mantle plumes. The corresponding mantle component is present in the sources of other volcanic regions of the Late Cenozoic intraplate volcanic province in Central Asia, which indicates that the material of a lower mantle plume was involved in the formation of these regions.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S1 - S24"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4834275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ti and Cr in High-Pressure Mica: Experimental Study and Application to the Mantle Assemblages 高压云母中Ti和Cr的实验研究及其在地幔组合中的应用
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010113
A. A. Bendeliani, A. V. Bobrov, L. Bindi, N. N. Eremin

Experiments aimed at the synthesis of Cr- and Ti-bearing phlogopite in the silicate-carbonate systems peridotite—K2CO3 + H2O and basalt—K2CO3 + H2O at 7 GPa and 900–1200°С were carried out. It is shown that the crystallization of titanium-bearing phlogopite requires subducted crustal material at mantle depths. However, the mantle peridotite should predominate over basalt for Ti-phlogopite crystallization; otherwise, dioctahedral mica (aluminoceladonite) with (Mg + Fe)/VIAl > 1 is formed via the scheme 2VIAl = VITi4+ + VI(Mg + Fe). The competitive behavior of Ti and Cr upon incorporation into phlogopite is considered. It is shown that the presence of >1.3 wt % TiO2 introduces a limitation on the high concentrations of Cr2O3 via the scheme VI(Mg2+) + IV(Si4+) = VI(Cr3+) + IV(Al3+). This can explain the compositional patterns of phlogopite from inclusions in natural diamonds, in which the Ti content is much higher than that of Cr. The results obtained support the original idea that the composition of phlogopite may be applied to distinguish the paragenetic associations of diamond.

在7 GPa、900 ~ 1200°С温度条件下,在硅酸盐-碳酸盐体系中,橄榄岩- k2co3 + H2O和玄武岩- k2co3 + H2O中合成了含Cr和含ti的云母。结果表明,含钛云母的结晶需要地幔深处俯冲的地壳物质。而在钛辉云母结晶过程中,地幔橄榄岩占主导地位,玄武岩占主导地位;反之,二八面体云母(铝钙石)与(Mg + Fe)/VIAl >1由方案2VIAl = VITi4+ + VI(Mg + Fe)组成。考虑了钛和铬掺入银云母后的竞争行为。结果表明,当掺杂>1.3 wt % TiO2时,通过VI(Mg2+) + IV(Si4+) = VI(Cr3+) + IV(Al3+)的方案限制了Cr2O3的高浓度。这可以解释天然金刚石中钛含量远高于铬含量的包裹体中金云母的组成模式。所得结果支持了用金云母的组成来区分金刚石共生组合的最初想法。
{"title":"Ti and Cr in High-Pressure Mica: Experimental Study and Application to the Mantle Assemblages","authors":"A. A. Bendeliani,&nbsp;A. V. Bobrov,&nbsp;L. Bindi,&nbsp;N. N. Eremin","doi":"10.1134/S0869591123010113","DOIUrl":"10.1134/S0869591123010113","url":null,"abstract":"<p>Experiments aimed at the synthesis of Cr- and Ti-bearing phlogopite in the silicate-carbonate systems peridotite—K<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>O and basalt—K<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>O at 7 GPa and 900–1200°С were carried out. It is shown that the crystallization of titanium-bearing phlogopite requires subducted crustal material at mantle depths. However, the mantle peridotite should predominate over basalt for Ti-phlogopite crystallization; otherwise, dioctahedral mica (aluminoceladonite) with (Mg + Fe)/<sup>VI</sup>Al &gt; 1 is formed via the scheme 2<sup>VI</sup>Al = <sup>VI</sup>Ti<sup>4+</sup> + <sup>VI</sup>(Mg + Fe). The competitive behavior of Ti and Cr upon incorporation into phlogopite is considered. It is shown that the presence of &gt;1.3 wt % TiO<sub>2</sub> introduces a limitation on the high concentrations of Cr<sub>2</sub>O<sub>3</sub> via the scheme <sup>VI</sup>(Mg<sup>2+</sup>) + <sup>IV</sup>(Si<sup>4+</sup>) = <sup>VI</sup>(Cr<sup>3+</sup>) + <sup>IV</sup>(Al<sup>3+</sup>). This can explain the compositional patterns of phlogopite from inclusions in natural diamonds, in which the Ti content is much higher than that of Cr. The results obtained support the original idea that the composition of phlogopite may be applied to distinguish the paragenetic associations of diamond.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S157 - S173"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4829485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Monticellite-bearing Rocks of the Krestovskaya Intrusion: Genesis according to Melt Inclusion Study 克列斯托夫斯卡亚岩体含蒙地长辉石岩:熔融包裹体研究的成因
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010071
L. I. Panina, A. T. Isakova, E. Yu. Rokosova

The investigation of monticellitolites and olivine–monticellite rocks from the Krestovskaya Intrusion shows that the major minerals (olivine and monticellite) have higher MgO content than the same minerals in olivinites and kugdites of the intrusion. In the studied rocks olivine contains 90–93 mol % Fo and monticellite has 41.6–42.3 mol % Fo, whereas olivine and monticellite in olivinites and kugdites contain 86–87 and 37.2–41.2 mol % Fo, respectively. Melt inclusion study in minerals of monticellite rocks demonstrates that the monticellite rocks of the Krestovskaya Intrusion were formed by mixing of volatile-rich melts of different composition: K-rich high-iron low-alumina kamafugitic melt and Na-rich high-magnesium high-alumina picritic melt. Minerals crystallized at high temperatures in the following sequence: perovskite I (1250–1230°C) → perovskite II (≥1200°C) ↔ olivine (>1200°C) → monticellite (>1150°C). Perovskite I in monticellite rocks, as well as olivine in olivinites, crystallized from K-rich high-iron (Mg# = MgO/(MgO + FeO) = 0.37), low-alumina kamafugitic melt. During crystallization of late perovskite II in the monticellite rocks, the melt became more enriched in MgO (Mg# = 0.41) and richer in Na2O and Al2O3, which is intermediate in composition between kamafugite and alkali picrite. Olivine in the monticellite rocks crystallized from melts similar in composition to melilitite, having a K-rich composition with Mg# = 0.39, whereas monticellite formed from a heterogeneous high-Mg Si-undersaturated melt, which is highly enriched with volatile components (including H2O) and salts. The crystallization of minerals was accompanied by subsequent accumulation of volatile components in mixing melts, silicate–carbonate liquid immiscibility under 1250–1190°C, and polyphase carbonate–salt immiscibility under below 1190°C. In the latter event, the exsolved carbonate melt began to split into simpler immiscible fractions: alkali–sulfate–carbonate, alkali–phosphate–carbonate, and calcio–carbonate.

对克列斯托夫斯卡亚侵入岩的蒙长石和橄榄石-蒙长石岩石的研究表明,其主要矿物(橄榄石和蒙长石)的MgO含量高于侵入岩的橄榄岩和孔德岩中的相同矿物。研究岩石中橄榄石的Fo含量为90 ~ 93 mol %, monticellite的Fo含量为41.6 ~ 42.3 mol %,而橄榄岩中的橄榄石和铜榴石中的monticellite的Fo含量分别为86 ~ 87和37.2 ~ 41.2 mol %。蒙脱石岩石矿物熔体包裹体研究表明,Krestovskaya岩体的蒙脱石岩石是由富钾高铁低铝马马辉石熔体和富钠高镁高铝苦辉石熔体这两种不同组成的富挥发物混合形成的。矿物在高温下的结晶顺序如下:钙钛矿I(1250 ~ 1230℃)→钙钛矿II(≥1200℃)↔橄榄石(>1200℃)→蒙蒂石(>1150℃)。钙钛矿I和橄榄石中的橄榄石由富钾高铁(Mg# = MgO/(MgO + FeO) = 0.37)、低铝马马辉石熔体结晶而成。钙钛矿II型晚期钙钛矿在蒙脱石中结晶过程中,熔体中MgO (Mg# = 0.41)含量增加,Na2O和Al2O3含量增加,介于卡玛辉石和碱苦铁铁矿之间。monticellite岩石中的橄榄石是由组成类似于melmelite的熔体结晶而成,具有富k组成,Mg# = 0.39,而monticellite则是由非均质高Mg si欠饱和熔体结晶而成,其挥发性成分(包括H2O)和盐高度富集。矿物结晶过程伴随着挥发性组分在混合熔体中的积累,在1250 ~ 1190℃范围内硅酸盐-碳酸盐液体不混相,在1190℃以下范围内碳酸盐-盐多相不混相。在后一种情况下,溶解的碳酸盐熔体开始分裂成更简单的不可混溶的部分:碱-硫酸盐-碳酸盐、碱-磷酸盐-碳酸盐和碳酸钙。
{"title":"The Monticellite-bearing Rocks of the Krestovskaya Intrusion: Genesis according to Melt Inclusion Study","authors":"L. I. Panina,&nbsp;A. T. Isakova,&nbsp;E. Yu. Rokosova","doi":"10.1134/S0869591123010071","DOIUrl":"10.1134/S0869591123010071","url":null,"abstract":"<div><p>The investigation of monticellitolites and olivine–monticellite rocks from the Krestovskaya Intrusion shows that the major minerals (olivine and monticellite) have higher MgO content than the same minerals in olivinites and kugdites of the intrusion. In the studied rocks olivine contains 90–93 mol % <i>Fo</i> and monticellite has 41.6–42.3 mol % <i>Fo,</i> whereas olivine and monticellite in olivinites and kugdites contain 86–87 and 37.2–41.2 mol % <i>Fo</i>, respectively. Melt inclusion study in minerals of monticellite rocks demonstrates that the monticellite rocks of the Krestovskaya Intrusion were formed by mixing of volatile-rich melts of different composition: K-rich high-iron low-alumina kamafugitic melt and Na-rich high-magnesium high-alumina picritic melt. Minerals crystallized at high temperatures in the following sequence: perovskite I (1250–1230°C) → perovskite II (≥1200°C) ↔ olivine (&gt;1200°C) → monticellite (&gt;1150°C). Perovskite I in monticellite rocks, as well as olivine in olivinites, crystallized from K-rich high-iron (Mg# = MgO/(MgO + FeO) = 0.37), low-alumina kamafugitic melt. During crystallization of late perovskite II in the monticellite rocks, the melt became more enriched in MgO (Mg# = 0.41) and richer in Na<sub>2</sub>O and Al<sub>2</sub>O<sub>3</sub>, which is intermediate in composition between kamafugite and alkali picrite. Olivine in the monticellite rocks crystallized from melts similar in composition to melilitite, having a K-rich composition with Mg# = 0.39, whereas monticellite formed from a heterogeneous high-Mg Si-undersaturated melt, which is highly enriched with volatile components (including H<sub>2</sub>O) and salts. The crystallization of minerals was accompanied by subsequent accumulation of volatile components in mixing melts, silicate–carbonate liquid immiscibility under 1250–1190°C, and polyphase carbonate–salt immiscibility under below 1190°C. In the latter event, the exsolved carbonate melt began to split into simpler immiscible fractions: alkali–sulfate–carbonate, alkali–phosphate–carbonate, and calcio–carbonate.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S101 - S118"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4834277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Staurolite in Metabasites: P–T–X Parameters and the Ratios of Major Components as Criteria of Staurolite Stability 变质岩中的小晶石:P-T-X参数和主要成分比值作为小晶石稳定性的判据
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010034
E. B. Borisova, Sh. K. Baltybaev, J. A. D. Connolly

Fe–Mg staurolite is a typical and widespread mineral of medium-temperature high-alumina metapelites, whereas magnesian staurolite is only relatively rarely found in metamorphosed mafic rocks (metabasites). The most significant factors controlling staurolite stability in metabasites were identified by thermodynamic modeling and analysis of the common features of the mineral-forming processes. In contrast to staurolite in low- and medium-pressure metapelites, staurolite in metabasites is stable at medium- and high-pressure metamorphism. An increase in the proportion of carbon dioxide in the water–carbon dioxide fluid shifts the staurolite-forming mineral reactions to lower temperatures and higher pressures. Al, Fe, Mg, and Ca are the major components of rocks that are critically important for the formation of magnesian staurolite in these rocks, and the contents and ratios of these components are of crucial importance for the stability of staurolite in metabasites. To understand the processes forming the mineral in metabasites, it is instrumental to subdivide metabasites into subgroups of predominantly magnesian, ferruginous–magnesian, and ferruginous protoliths. With regard to this subdivision, three petrochemical modules are proposed in the form of ratios of major components: MgO/CaO, CaO/FM, and Al2O3/FM, based on which it is possible to predict the stability of staurolite in mafic rocks at appropriate P–T parameters of metamorphism.

铁镁双晶石是中温高铝偏长岩中常见的典型矿物,镁质双晶石仅在变质基性岩(变质岩)中相对较少发现。通过热力学模拟和矿物形成过程的共同特征分析,确定了控制变质岩中橄榄石稳定性的最重要因素。相对于中、低压变质岩中的橄榄石,变质岩中的橄榄石在中、高压变质作用下是稳定的。水-二氧化碳流体中二氧化碳比例的增加使形成星黄岩的矿物反应转向更低的温度和更高的压力。Al、Fe、Mg和Ca是岩石的主要成分,它们对镁质小沸石的形成起着至关重要的作用,其含量和比例对变质岩中小沸石的稳定性起着至关重要的作用。为了了解变质岩中矿物的形成过程,将变质岩细分为主要为镁质原岩、含铁-镁质原岩和含铁原岩的亚群是很有帮助的。在此基础上,提出了MgO/CaO、CaO/FM和Al2O3/FM三个主要组分比值的石化模块,并以此为基础,在适当的变质P-T参数下,预测基性岩中橄榄石的稳定性。
{"title":"Staurolite in Metabasites: P–T–X Parameters and the Ratios of Major Components as Criteria of Staurolite Stability","authors":"E. B. Borisova,&nbsp;Sh. K. Baltybaev,&nbsp;J. A. D. Connolly","doi":"10.1134/S0869591123010034","DOIUrl":"10.1134/S0869591123010034","url":null,"abstract":"<p>Fe–Mg staurolite is a typical and widespread mineral of medium-temperature high-alumina metapelites, whereas magnesian staurolite is only relatively rarely found in metamorphosed mafic rocks (metabasites). The most significant factors controlling staurolite stability in metabasites were identified by thermodynamic modeling and analysis of the common features of the mineral-forming processes. In contrast to staurolite in low- and medium-pressure metapelites, staurolite in metabasites is stable at medium- and high-pressure metamorphism. An increase in the proportion of carbon dioxide in the water–carbon dioxide fluid shifts the staurolite-forming mineral reactions to lower temperatures and higher pressures. Al, Fe, Mg, and Ca are the major components of rocks that are critically important for the formation of magnesian staurolite in these rocks, and the contents and ratios of these components are of crucial importance for the stability of staurolite in metabasites. To understand the processes forming the mineral in metabasites, it is instrumental to subdivide metabasites into subgroups of predominantly magnesian, ferruginous–magnesian, and ferruginous protoliths. With regard to this subdivision, three petrochemical modules are proposed in the form of ratios of major components: MgO/CaO, CaO/FM, and Al<sub>2</sub>O<sub>3</sub>/FM, based on which it is possible to predict the stability of staurolite in mafic rocks at appropriate <i>P–T</i> parameters of metamorphism.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S53 - S71"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4829855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grenville and Valhalla Tectonic Events at the Western Margin of the Siberian Craton: Evidence from Rocks of the Garevka Complex, Northern Yenisei Range, Russia 西伯利亚克拉通西缘的Grenville和Valhalla构造事件:来自俄罗斯叶尼塞山脉北部Garevka杂岩的证据
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010058
I. I. Likhanov

Understanding the tectonic evolution of the Yenisei Range offers important clues not only for the tectonic evolution of orogenic belts at margins of ancient cratons but also for solving the problem of the incorporation of the Siberian craton into the Rodinia supercontinent. Results of mineralogical−petrological, geochemical, and isotope–geochemical studies provide an insight into the petrogenesis, geotectonic settings, thermodynamic parameters of formation, and the ages of the metamorphism and protoliths for the contrastingly compositionally different rocks of the Garevka metamorphic complex. The paper discusses the possible models for the origin of the rock complexes and the geodynamic settings in which they were formed. The western margin of the Siberian craton was determined to have been affected by two pulses of Neoproterozoic endogenic activity, which were related to the origin of the Rodinia supercontinent (930–900 and 880–845 Ma), and which correlated with Grenville and post-Grenville processes responsible for Valhalla folding. The regional geodynamic history is correlated with the coeval sequence and similar style of tectono−thermal events in the peripheries of the large Precambrian cratons Laurentia and Baltica, which is consistent with the proposed Neoproterozoic paleogeographic reconstructions of close spatiotemporal relationships between these cratons and their incorporation into Rodinia configuration.

了解叶尼塞山脉的构造演化,不仅为古克拉通边缘造山带的构造演化提供了重要线索,而且为解决西伯利亚克拉通并入罗迪尼亚超大陆的问题提供了重要线索。矿物-岩石学、地球化学和同位素-地球化学研究的结果,为了解Garevka变质杂岩的岩石成因、大地构造背景、形成的热力学参数以及变质作用和原岩的年龄提供了依据。本文讨论了杂岩的可能成因模式及其形成的地球动力学背景。西伯利亚克拉通西缘受两次新元古代内生活动的影响,这两次内生活动与Rodinia超大陆的起源(930-900和880-845 Ma)有关,并与导致Valhalla褶皱的Grenville和后Grenville过程相关。区域地球动力学历史与Laurentia和Baltica大型前寒武纪克拉通周缘的同期序列和相似的构造-热事件类型相关联,这与新元古代古地理重建所提出的这两个克拉通与它们并入Rodinia构造之间密切的时空关系相一致。
{"title":"Grenville and Valhalla Tectonic Events at the Western Margin of the Siberian Craton: Evidence from Rocks of the Garevka Complex, Northern Yenisei Range, Russia","authors":"I. I. Likhanov","doi":"10.1134/S0869591123010058","DOIUrl":"10.1134/S0869591123010058","url":null,"abstract":"<p>Understanding the tectonic evolution of the Yenisei Range offers important clues not only for the tectonic evolution of orogenic belts at margins of ancient cratons but also for solving the problem of the incorporation of the Siberian craton into the Rodinia supercontinent. Results of mineralogical−petrological, geochemical, and isotope–geochemical studies provide an insight into the petrogenesis, geotectonic settings, thermodynamic parameters of formation, and the ages of the metamorphism and protoliths for the contrastingly compositionally different rocks of the Garevka metamorphic complex. The paper discusses the possible models for the origin of the rock complexes and the geodynamic settings in which they were formed. The western margin of the Siberian craton was determined to have been affected by two pulses of Neoproterozoic endogenic activity, which were related to the origin of the Rodinia supercontinent (930–900 and 880–845 Ma), and which correlated with Grenville and post-Grenville processes responsible for Valhalla folding. The regional geodynamic history is correlated with the coeval sequence and similar style of tectono−thermal events in the peripheries of the large Precambrian cratons Laurentia and Baltica, which is consistent with the proposed Neoproterozoic paleogeographic reconstructions of close spatiotemporal relationships between these cratons and their incorporation into Rodinia configuration.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S72 - S100"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4830802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Carbonation of Serpentinites of the Mid-Atlantic Ridge: 1. Geochemical Trends and Mineral Assemblages 大西洋中脊蛇纹岩的碳酸化作用:1。地球化学趋势与矿物组合
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010095
S. A. Silantyev, E. A. Krasnova, D. D. Badyukov, A. V. Zhilkina, T. G. Kuzmina, A. S. Gryaznova, V. D. Shcherbakov

Abyssal peridotite outcrops compose vast areas of the ocean floor in the Atlantic, Indian, and Arctic Oceans, where they are an indispensable part of the oceanic crust section formed in the slow-spreading oceanic ridges (Mid-Atlantic Ridge, Southwest Indian Ridge, and Gakkel Ridge). The final stage in the evolution of abyssal peridotites in the oceanic crust is their carbonation, which they experience on the ocean floor surface or near it. The main goal of this study was to reconstruct the geochemical trends accompanying the carbonation of abyssal peridotites using MAR ultramafic rocks as an example and to identify the main factors that determine their geochemical and mineralogical differences. The composition variations of rock-forming minerals and their characteristic assemblages indicate that the initial stages of carbonation of abyssal peridotites occurred in crustal conditions simultaneously with the serpentinization of these rocks. The final stage in the crustal evolution of the abyssal peridotites is their exhumation on the ocean floor where they were brought up along the detachment faults. On the ocean floor, the abyssal peridotites in close association with gabbro form oceanic core complexes, and the degree of their carbonation sharply increases with time of their exposure on the ocean floor. The presented data made it possible to qualitatively reconstruct the sequence of events that determined the mineralogical and geochemical features of carbonatized abyssal peridotites of the MAR.

深海橄榄岩露头构成了大西洋、印度洋和北冰洋海底的大片区域,它们是缓慢扩张的海洋脊(大西洋中脊、西南印度洋脊和Gakkel脊)形成的海洋地壳部分不可或缺的一部分。海洋地壳中深海橄榄岩演化的最后阶段是它们在海底表面或海底附近经历的碳酸化。以MAR超镁质岩为例,重建深海橄榄岩碳酸化过程中的地球化学趋势,并找出影响其地球化学和矿物学差异的主要因素。造岩矿物组成变化及其特征组合表明,深海橄榄岩碳酸化的初始阶段与蛇纹岩化同时发生在地壳条件下。深海橄榄岩地壳演化的最后阶段是它们在海底的发掘,它们是沿着拆离断层被带上来的。在海底,与辉长岩密切联系的深海橄榄岩形成海洋岩心杂岩,其碳酸化程度随着暴露时间的增加而急剧增加。所提供的数据使定性地重建事件序列成为可能,这些事件序列决定了MAR碳酸化深海橄榄岩的矿物学和地球化学特征。
{"title":"Carbonation of Serpentinites of the Mid-Atlantic Ridge: 1. Geochemical Trends and Mineral Assemblages","authors":"S. A. Silantyev,&nbsp;E. A. Krasnova,&nbsp;D. D. Badyukov,&nbsp;A. V. Zhilkina,&nbsp;T. G. Kuzmina,&nbsp;A. S. Gryaznova,&nbsp;V. D. Shcherbakov","doi":"10.1134/S0869591123010095","DOIUrl":"10.1134/S0869591123010095","url":null,"abstract":"<div><p>Abyssal peridotite outcrops compose vast areas of the ocean floor in the Atlantic, Indian, and Arctic Oceans, where they are an indispensable part of the oceanic crust section formed in the slow-spreading oceanic ridges (Mid-Atlantic Ridge, Southwest Indian Ridge, and Gakkel Ridge). The final stage in the evolution of abyssal peridotites in the oceanic crust is their carbonation, which they experience on the ocean floor surface or near it. The main goal of this study was to reconstruct the geochemical trends accompanying the carbonation of abyssal peridotites using MAR ultramafic rocks as an example and to identify the main factors that determine their geochemical and mineralogical differences. The composition variations of rock-forming minerals and their characteristic assemblages indicate that the initial stages of carbonation of abyssal peridotites occurred in crustal conditions simultaneously with the serpentinization of these rocks. The final stage in the crustal evolution of the abyssal peridotites is their exhumation on the ocean floor where they were brought up along the detachment faults. On the ocean floor, the abyssal peridotites in close association with gabbro form oceanic core complexes, and the degree of their carbonation sharply increases with time of their exposure on the ocean floor. The presented data made it possible to qualitatively reconstruct the sequence of events that determined the mineralogical and geochemical features of carbonatized abyssal peridotites of the MAR.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S25 - S52"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5130083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Petrology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1