首页 > 最新文献

Petrology最新文献

英文 中文
Subduction and Oceanic Magmatism Records in Plutonic Rocks of the Kamchatsky Mys Ophiolite, Eastern Kamchatka 堪察加东部堪察加梅斯蛇绿岩深成岩中的俯冲和大洋岩浆作用记录
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-28 DOI: 10.1134/S0869591123030025
B. A. Bazylev, M. V. Portnyagin, D. P. Savelyev, G. V. Ledneva, N. N. Kononkova

The paper presents petrographic, mineralogical, and geochemical data on dunites, pyroxenites, peridotites, and gabbroids of the Kamchatsky Mys ophiolite. These data were acquired to distinguish cogenetic assemblages of igneous rocks, gain an insight into their geodynamic settings, and test various criteria of genetic links between the different magmatic rocks of ophiolites. The ultramafic and mafic rocks are shown to belong to two series, which differ in the compositions of the primary minerals, bulk rocks, and estimated trapped melts. The rocks of these series are found out to have been produced by geochemically different melts in different geodynamic settings, and during different episodes of mantle magmatism. The rocks of the high-Ti series (gabbro of the Olenegorsk massif, dunite and melanogabbro xenoliths in them, and vein gabbro in these xenoliths) crystallized from N-MORB melts in an oceanic spreading center. The rocks of the low-Ti series (dunite, pyroxenite, and gabbro veins in the residual spinel peridotites of the Mount Soldatskaya massif, as well as pyroxenite, peridotite, and gabbro alluvium and diluvium in the central and western parts of the peninsula) crystallized from water-rich boninite melts in relation to initial subduction magmatism. Taken into account the absence of boninite lavas from the Kamchatsky Mys ophiolite, the plutonic ultramafic rocks (including the rocks of the veins) might be the only evidence of subduction boninitic magmatism in the ophiolites. It was demonstrated that conclusions about the geodynamic settings of plutonic ultramafic and mafic rocks and recognition of cogenetic relations of these rocks with spatially associated basalts are more reliable when derived from the compositions of the trapped melts, which are estimated from their bulk geochemistry and primary mineral compositions, than when they are based on the mineral compositions only.

本文介绍了堪察加梅斯蛇绿岩的泥质岩、辉石岩、橄榄岩和辉长岩的岩石学、矿物学和地球化学资料。获取这些数据是为了区分火成岩的共成组合,了解它们的地球动力学背景,并测试蛇绿岩不同岩浆岩之间的成因联系的各种标准。超镁铁质岩和基性岩分属于两个系列,它们在原生矿物、大块岩石和估计的圈闭熔体组成上存在差异。这些系列的岩石在不同的地球动力学背景下,在不同的地幔岩浆活动时期,由地球化学上不同的熔体形成。高钛系列岩石(奥列涅戈尔斯克地块的辉长岩、其中的暗长辉长岩和黑长辉长捕虏体以及这些捕虏体中的脉状辉长岩)在一个海洋扩张中心的N-MORB熔体中结晶。低钛系列岩石(Soldatskaya山地块残余尖晶石橄榄岩中的泥质、辉石岩和辉长岩脉,以及半岛中部和西部的辉石岩、橄榄岩和辉长岩冲积层和洪积层)是在初始俯冲岩浆作用下由富水的博长岩熔体结晶而成的。考虑到堪察加梅斯蛇绿岩中不存在博英质熔岩,深成超基性岩石(包括脉状岩石)可能是蛇绿岩中俯冲博英质岩浆作用的唯一证据。研究结果表明,通过圈闭熔体的整体地球化学特征和原生矿物组成估算其地球动力学背景,以及与空间伴生玄武岩的同成关系,要比仅根据矿物组成推断更为可靠。
{"title":"Subduction and Oceanic Magmatism Records in Plutonic Rocks of the Kamchatsky Mys Ophiolite, Eastern Kamchatka","authors":"B. A. Bazylev,&nbsp;M. V. Portnyagin,&nbsp;D. P. Savelyev,&nbsp;G. V. Ledneva,&nbsp;N. N. Kononkova","doi":"10.1134/S0869591123030025","DOIUrl":"10.1134/S0869591123030025","url":null,"abstract":"<p>The paper presents petrographic, mineralogical, and geochemical data on dunites, pyroxenites, peridotites, and gabbroids of the Kamchatsky Mys ophiolite. These data were acquired to distinguish cogenetic assemblages of igneous rocks, gain an insight into their geodynamic settings, and test various criteria of genetic links between the different magmatic rocks of ophiolites. The ultramafic and mafic rocks are shown to belong to two series, which differ in the compositions of the primary minerals, bulk rocks, and estimated trapped melts. The rocks of these series are found out to have been produced by geochemically different melts in different geodynamic settings, and during different episodes of mantle magmatism. The rocks of the high-Ti series (gabbro of the Olenegorsk massif, dunite and melanogabbro xenoliths in them, and vein gabbro in these xenoliths) crystallized from N-MORB melts in an oceanic spreading center. The rocks of the low-Ti series (dunite, pyroxenite, and gabbro veins in the residual spinel peridotites of the Mount Soldatskaya massif, as well as pyroxenite, peridotite, and gabbro alluvium and diluvium in the central and western parts of the peninsula) crystallized from water-rich boninite melts in relation to initial subduction magmatism. Taken into account the absence of boninite lavas from the Kamchatsky Mys ophiolite, the plutonic ultramafic rocks (including the rocks of the veins) might be the only evidence of subduction boninitic magmatism in the ophiolites. It was demonstrated that conclusions about the geodynamic settings of plutonic ultramafic and mafic rocks and recognition of cogenetic relations of these rocks with spatially associated basalts are more reliable when derived from the compositions of the trapped melts, which are estimated from their bulk geochemistry and primary mineral compositions, than when they are based on the mineral compositions only.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 3","pages":"338 - 357"},"PeriodicalIF":1.5,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5087076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magmatism in Kamchatka and the Kurile Islands 堪察加和千岛群岛的岩浆活动
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-28 DOI: 10.1134/S0869591123030086
{"title":"Magmatism in Kamchatka and the Kurile Islands","authors":"","doi":"10.1134/S0869591123030086","DOIUrl":"10.1134/S0869591123030086","url":null,"abstract":"","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 3","pages":"261 - 262"},"PeriodicalIF":1.5,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5088963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compositions of Kimberlite Melts: A Review of Melt Inclusions in Kimberlite Minerals 金伯利岩熔体成分:金伯利岩矿物熔体包裹体研究综述
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-15 DOI: 10.1134/S0869591123020030
A. V. Golovin, V. S. Kamenetsky
<p>The paper presents a comprehensive review of currently available data on melt inclusions entrapped in minerals of kimberlites of different age and different provenance in ancient cratons. The crystallized melt inclusions represent snapshots of kimberlite melts at different stages of their evolution. All of the inclusions are completely crystallized and consist of daughter minerals and shrinkage bubbles, which sometimes contain low-density CO<sub>2</sub>, but no aqueous fluids and quenched silicate glasses have been found so far. Although more than 60 mineral species have been identified among the daughter phases in the inclusions, all inclusions hosted in various minerals from different kimberlites have closely similar or even identical composition. The daughter minerals are various Na–K–Ca, Na–Ca, Na–Mg, K–Ca, Ca–Mg, Ca, Mg, and Na carbonates; Na–Mg and Na carbonates with additional anions Cl<sup>–</sup>, <span>({text{SO}}_{4}^{{2 - }})</span>, and <span>(text{PO}_{4}^{3 - })</span>; and alkali sulfates, chlorides, phosphates, sulfides, oxides, and silicates. Alkali carbonates, sulfates, and chlorides are usually absent from among the groundmass phases of most kimberlites sampled worldwide, except the Udachnaya-East kimberlite in Siberia. However, this mineral assemblage, in association with such widespread kimberlite minerals as olivine, micas, monticellite, spinel-group minerals, perovskite, rutile, ilmenite, calcite, and dolomite, is common in the crystallized melt inclusions in all studied kimberlites. Carbonates (~30 to 85 vol %) always dominate over silicates (no more than 18 vol %) in all inclusions. All inclusions also contain variable (2 to 55 vol %.) amounts of chlorides (halite and sylvite). In cases where the abundance of carbonates is relatively low (30–50 vol %), the other major phases within inclusions are chlorides (18–55 vol %) rather than daughter silicates, as could be expected based on the traditional paradigm of the silicate composition of kimberlite melts. Published data on melt inclusions in the kimberlite minerals strongly imply that parental kimberlite melts were generated and further evolved within the Na<sub>2</sub>O–K<sub>2</sub>O–CaO–MgO–CO<sub>2</sub>–Cl system, that is, they were alkali-rich carbonate/carbonate–chloride liquids. According to various estimates, SiO<sub>2</sub> content in kimberlite melts could have varied during different stages of their evolution from a few to 19 wt %. Clearly, kimberlite bodies are altered in the crust via interaction with meteoric and/or connate waters, resulting in serpentinization of kimberlite olivine and dissolution of many bona fide magmatic minerals, such as alkali carbonates, sulfates, and chlorides. In the traditional approach to studying kimberlites, the role of such components as Na<sub>2</sub>O, CO<sub>2</sub>, Cl, and to a lesser extent K<sub>2</sub>O, S, and F in the petrogenesis of kimberlite magmas and rocks have been largely underestimated, while the roles of o
本文综合评述了古克拉通不同年代、不同物源金伯利岩矿物中包裹体的现有资料。结晶的熔体包裹体代表了金伯利岩熔体在不同演化阶段的快照。所有的包裹体都是完全结晶的,由子矿物和收缩气泡组成,其中有时含有低密度的二氧化碳,但到目前为止还没有发现含水流体和淬火的硅酸盐玻璃。虽然在包裹体的子相中已鉴定出60多种矿物,但来自不同金伯利岩的各种矿物所含的包裹体都具有非常相似甚至相同的成分。子矿物为各种Na - K-Ca、Na - Ca、Na - Mg、K-Ca、Ca - Mg、Ca、Mg、Na碳酸盐;Na - mg和Na碳酸盐与附加阴离子Cl -, ({text{SO}}_{4}^{{2 - }})和(text{PO}_{4}^{3 - });以及碱硫酸盐、氯化物、磷酸盐、硫化物、氧化物和硅酸盐。除了西伯利亚的Udachnaya-East金伯利岩外,在世界上大多数金伯利岩的取样中,通常不存在碱碳酸盐、硫酸盐和氯化物。然而,这种矿物组合与广泛分布的金伯利岩矿物如橄榄石、云母、蒙脱石、尖晶石群矿物、钙钛矿、金红石、钛铁矿、方解石和白云石一起,在所有研究的金伯利岩的结晶熔融包裹体中是常见的。碳酸盐(30至85卷 %) always dominate over silicates (no more than 18 vol %) in all inclusions. All inclusions also contain variable (2 to 55 vol %.) amounts of chlorides (halite and sylvite). In cases where the abundance of carbonates is relatively low (30–50 vol %), the other major phases within inclusions are chlorides (18–55 vol %) rather than daughter silicates, as could be expected based on the traditional paradigm of the silicate composition of kimberlite melts. Published data on melt inclusions in the kimberlite minerals strongly imply that parental kimberlite melts were generated and further evolved within the Na2O–K2O–CaO–MgO–CO2–Cl system, that is, they were alkali-rich carbonate/carbonate–chloride liquids. According to various estimates, SiO2 content in kimberlite melts could have varied during different stages of their evolution from a few to 19 wt %. Clearly, kimberlite bodies are altered in the crust via interaction with meteoric and/or connate waters, resulting in serpentinization of kimberlite olivine and dissolution of many bona fide magmatic minerals, such as alkali carbonates, sulfates, and chlorides. In the traditional approach to studying kimberlites, the role of such components as Na2O, CO2, Cl, and to a lesser extent K2O, S, and F in the petrogenesis of kimberlite magmas and rocks have been largely underestimated, while the roles of olivine- and serpentine-forming components, such as of SiO2, MgO, and H2O are still exaggerated.
{"title":"Compositions of Kimberlite Melts: A Review of Melt Inclusions in Kimberlite Minerals","authors":"A. V. Golovin,&nbsp;V. S. Kamenetsky","doi":"10.1134/S0869591123020030","DOIUrl":"10.1134/S0869591123020030","url":null,"abstract":"&lt;p&gt;The paper presents a comprehensive review of currently available data on melt inclusions entrapped in minerals of kimberlites of different age and different provenance in ancient cratons. The crystallized melt inclusions represent snapshots of kimberlite melts at different stages of their evolution. All of the inclusions are completely crystallized and consist of daughter minerals and shrinkage bubbles, which sometimes contain low-density CO&lt;sub&gt;2&lt;/sub&gt;, but no aqueous fluids and quenched silicate glasses have been found so far. Although more than 60 mineral species have been identified among the daughter phases in the inclusions, all inclusions hosted in various minerals from different kimberlites have closely similar or even identical composition. The daughter minerals are various Na–K–Ca, Na–Ca, Na–Mg, K–Ca, Ca–Mg, Ca, Mg, and Na carbonates; Na–Mg and Na carbonates with additional anions Cl&lt;sup&gt;–&lt;/sup&gt;, &lt;span&gt;({text{SO}}_{4}^{{2 - }})&lt;/span&gt;, and &lt;span&gt;(text{PO}_{4}^{3 - })&lt;/span&gt;; and alkali sulfates, chlorides, phosphates, sulfides, oxides, and silicates. Alkali carbonates, sulfates, and chlorides are usually absent from among the groundmass phases of most kimberlites sampled worldwide, except the Udachnaya-East kimberlite in Siberia. However, this mineral assemblage, in association with such widespread kimberlite minerals as olivine, micas, monticellite, spinel-group minerals, perovskite, rutile, ilmenite, calcite, and dolomite, is common in the crystallized melt inclusions in all studied kimberlites. Carbonates (~30 to 85 vol %) always dominate over silicates (no more than 18 vol %) in all inclusions. All inclusions also contain variable (2 to 55 vol %.) amounts of chlorides (halite and sylvite). In cases where the abundance of carbonates is relatively low (30–50 vol %), the other major phases within inclusions are chlorides (18–55 vol %) rather than daughter silicates, as could be expected based on the traditional paradigm of the silicate composition of kimberlite melts. Published data on melt inclusions in the kimberlite minerals strongly imply that parental kimberlite melts were generated and further evolved within the Na&lt;sub&gt;2&lt;/sub&gt;O–K&lt;sub&gt;2&lt;/sub&gt;O–CaO–MgO–CO&lt;sub&gt;2&lt;/sub&gt;–Cl system, that is, they were alkali-rich carbonate/carbonate–chloride liquids. According to various estimates, SiO&lt;sub&gt;2&lt;/sub&gt; content in kimberlite melts could have varied during different stages of their evolution from a few to 19 wt %. Clearly, kimberlite bodies are altered in the crust via interaction with meteoric and/or connate waters, resulting in serpentinization of kimberlite olivine and dissolution of many bona fide magmatic minerals, such as alkali carbonates, sulfates, and chlorides. In the traditional approach to studying kimberlites, the role of such components as Na&lt;sub&gt;2&lt;/sub&gt;O, CO&lt;sub&gt;2&lt;/sub&gt;, Cl, and to a lesser extent K&lt;sub&gt;2&lt;/sub&gt;O, S, and F in the petrogenesis of kimberlite magmas and rocks have been largely underestimated, while the roles of o","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 2","pages":"143 - 178"},"PeriodicalIF":1.5,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4618789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Variations in Trace Element and Isotope Composition of Neoarchean Mafic Granulites of the Southwest Siberian Craton: a Consequence of Various Mantle Sources or Crustal Contamination 西南西伯利亚克拉通新太古代基性麻粒岩微量元素和同位素组成的变化:不同地幔源或地壳污染的结果
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-15 DOI: 10.1134/S0869591123020066
O. M. Turkina

The paper presents geochemical and isotopic characteristics of Neoarchean (2.7–2.66 Ga) mafic granulites of the Sharyzhalgay uplift in the southwestern Siberian craton. Mafic and predominant felsic granulites compose fragments of the metamorphic complex among the Neoarchean and Paleoproterozoic granitoids. The mafic granulites are characterized by the mineral association Cpx + Pl ± Hbl ± Opx ± Qz and include two types with different major and immobile trace element contents. The dominant rocks of the first type have a wide range of Mg# and concentrations of TiO2 and immobile trace elements (REE, Zr, Nb), and mainly positive εNd(Т) values. The first type of mafic granulites show elevated (La/Sm)n and enrichment in Th and LREE relative to Nb, which is typical of subduction-related or crustally contaminated basalts. The absence of negative correlation between (La/Sm)n and εNd(Т) and a clear positive correlation of TiO2 with Nb testify against the effect of crustal contamination on the composition of the mafic granulites. The magmatic protoliths of the first type of mafic granulites are suggested to form by the melting of depleted peridotites of the subcontinental lithospheric mantle modified by melts derived from basalts or terrigenous sediments of the subducting plate. Mafic granulites of the second type have a narrower range of Mg#, TiO2 content, positive εNd(Т), flat rare earth patterns and no subduction signatures, which indicates an asthenospheric depleted mantle source. Mafic granulites contaminated by the Paleoarchean crust are characterized by increased (La/Sm)n, depletion in Nb relative to Th and LREE, and negative εNd(Т) values. Post-magmatic influence of granitoids leads to the enrichment of mafic granulites in biotite and apatite, an increase in concentrations of K2O, P2O5, a significant enrichment in Zr, Nb, Th, LREE, and negative εNd(Т) values. The difference between mafic granulites of the first and second types is not related to crustal contamination, but is caused by melting of two types of sources: asthenospheric and subcontinental lithospheric mantle. The subcontinental lithospheric mantle of the Irkut block was isotopically depleted at the Neoarchean time (∼2.7 Ga), and its enrichment in incompatible trace elements was likely caused by felsic melts generated from the rocks of subducting plate immediately prior to mafic magmatism.

本文介绍了西伯利亚克拉通西南部沙里扎盖隆起新太古代(2.7 ~ 2.66 Ga)基性麻粒岩的地球化学和同位素特征。镁铁质麻粒岩和长英质麻粒岩组成了新太古代和古元古代花岗岩类变质杂岩的碎片。基性麻粒岩以矿物组合Cpx + Pl±Hbl±Opx±Qz为特征,包括两种主要和不可移动微量元素含量不同的类型。第一类优势岩的mg#、TiO2和不动微量元素(REE、Zr、Nb)含量范围广,εNd(Т)值主要为正;第一类基性麻粒岩(La/Sm)n较高,Th和LREE相对于Nb富集,为典型的俯冲相关或地壳污染玄武岩。(La/Sm)n与εNd(Т)之间不存在负相关关系,TiO2与Nb之间存在明显的正相关关系,说明地壳污染对基性麻粒岩的组成没有影响。第一类基性麻粒岩的岩浆原岩被认为是由次大陆岩石圈地幔的贫橄榄岩熔融形成的,这些橄榄岩被俯冲板块的玄武岩或陆源沉积物的熔体修饰。第二类镁铁质麻粒岩的Mg#、TiO2含量范围较窄,εNd(Т)正,稀土模式平坦,无俯冲特征,表明其为软流圈贫地幔源。受古太古代地壳污染的镁铁质麻粒岩表现为(La/Sm)n增加,Nb相对于Th和LREE减少,εNd(Т)值为负。花岗岩类的后岩浆作用导致黑云母和磷灰石中的基性麻粒岩富集,K2O、P2O5浓度增加,Zr、Nb、Th、LREE显著富集,εNd(Т)值为负。第一类和第二类基性麻粒岩的差异与地壳污染无关,而是软流圈和次大陆岩石圈地幔两种来源的熔融作用所致。伊尔库特地块的次大陆岩石圈地幔在新太古代(~ 2.7 Ga)发生了同位素衰竭,其不相容微量元素的富集可能是由俯冲板块岩石在基性岩浆活动之前产生的长硅熔体造成的。
{"title":"Variations in Trace Element and Isotope Composition of Neoarchean Mafic Granulites of the Southwest Siberian Craton: a Consequence of Various Mantle Sources or Crustal Contamination","authors":"O. M. Turkina","doi":"10.1134/S0869591123020066","DOIUrl":"10.1134/S0869591123020066","url":null,"abstract":"<div><p>The paper presents geochemical and isotopic characteristics of Neoarchean (2.7–2.66 Ga) mafic granulites of the Sharyzhalgay uplift in the southwestern Siberian craton. Mafic and predominant felsic granulites compose fragments of the metamorphic complex among the Neoarchean and Paleoproterozoic granitoids. The mafic granulites are characterized by the mineral association <i>Cpx + Pl ± Hbl ± Opx ± Qz</i> and include two types with different major and immobile trace element contents. The dominant rocks of the first type have a wide range of Mg# and concentrations of TiO<sub>2</sub> and immobile trace elements (REE, Zr, Nb), and mainly positive ε<sub>Nd</sub>(Т) values. The first type of mafic granulites show elevated (La/Sm)<sub>n</sub> and enrichment in Th and LREE relative to Nb, which is typical of subduction-related or crustally contaminated basalts. The absence of negative correlation between (La/Sm)<sub>n</sub> and ε<sub>Nd</sub>(Т) and a clear positive correlation of TiO<sub>2</sub> with Nb testify against the effect of crustal contamination on the composition of the mafic granulites. The magmatic protoliths of the first type of mafic granulites are suggested to form by the melting of depleted peridotites of the subcontinental lithospheric mantle modified by melts derived from basalts or terrigenous sediments of the subducting plate. Mafic granulites of the second type have a narrower range of Mg#, TiO<sub>2</sub> content, positive ε<sub>Nd</sub>(Т), flat rare earth patterns and no subduction signatures, which indicates an asthenospheric depleted mantle source. Mafic granulites contaminated by the Paleoarchean crust are characterized by increased (La/Sm)<sub>n,</sub> depletion in Nb relative to Th and LREE, and negative ε<sub>Nd</sub>(Т) values. Post-magmatic influence of granitoids leads to the enrichment of mafic granulites in biotite and apatite, an increase in concentrations of K<sub>2</sub>O, P<sub>2</sub>O<sub>5</sub>, a significant enrichment in Zr, Nb, Th, LREE, and negative ε<sub>Nd</sub>(Т) values. The difference between mafic granulites of the first and second types is not related to crustal contamination, but is caused by melting of two types of sources: asthenospheric and subcontinental lithospheric mantle. The subcontinental lithospheric mantle of the Irkut block was isotopically depleted at the Neoarchean time (∼2.7 Ga), and its enrichment in incompatible trace elements was likely caused by felsic melts generated from the rocks of subducting plate immediately prior to mafic magmatism.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 2","pages":"204 - 222"},"PeriodicalIF":1.5,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4615613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Native Iron in Siberian Traps 西伯利亚圈闭中的天然铁
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-15 DOI: 10.1134/S0869591123020054
M. D. Tomshin, A. G. Kopylova, A. E. Vasilyeva

The study of trap intrusions with a large-scale occurrence of native iron allowed us to identify general features in their composition and origin. Intrusive bodies are weakly differentiated and have similar structure and mineralogical, petrochemical and geochemical composition. Two associations of rock-forming minerals were found in all studied bodies: early deep-seated (pre-chamber) and intra-chamber. Native iron forms nodular segregations, with a subordinate amount of cohenite, troilite and magnetite–wüstite. Metallic iron can accumulate Ni, Co, Au, and PGE. Their content in metal increases by hundreds or even thousands of times compared to host silicate rock. The formation of native iron is based on the fluid-magmatic interaction between magma and reducing components of the fluid, mainly of methane–hydrogen composition. As a result, an initially homogeneous basalt liquid is dispersed into silicate and metallic components. In the course of transportation, finely dispersed iron phases form droplet-liquid segregations with a monomolecular gas layer on their surface, thus preventing enlargement of metallic droplets. In the hypabyssal chamber, magma, including metallic spherules, is degassed, and droplets are merged to form nodular segregations of native iron.

对具有大规模天然铁赋存的圈闭侵入体的研究,使我们能够确定其组成和成因的一般特征。侵入体分异弱,构造相似,矿物学、石油化学和地球化学组成相似。在所有被研究的岩体中发现了两种形成岩石的矿物组合:早期深埋(前腔)和腔内。原生铁形成球状偏析,其次为纯白铁矿、三黄铁矿和磁铁矿。金属铁可以积累Ni、Co、Au和PGE。它们在金属中的含量比宿主硅酸盐岩石增加数百甚至数千倍。天然铁的形成是基于岩浆与流体还原性组分(主要是甲烷-氢成分)的流体-岩浆相互作用。结果,最初均匀的玄武岩液体分散成硅酸盐和金属成分。在运输过程中,分散较细的铁相形成液滴-液分离,表面形成单分子气体层,阻止了金属液滴的扩大。在浅成岩浆室,岩浆,包括金属球粒,被脱气,液滴合并形成原生铁的球状分离。
{"title":"Native Iron in Siberian Traps","authors":"M. D. Tomshin,&nbsp;A. G. Kopylova,&nbsp;A. E. Vasilyeva","doi":"10.1134/S0869591123020054","DOIUrl":"10.1134/S0869591123020054","url":null,"abstract":"<p>The study of trap intrusions with a large-scale occurrence of native iron allowed us to identify general features in their composition and origin. Intrusive bodies are weakly differentiated and have similar structure and mineralogical, petrochemical and geochemical composition. Two associations of rock-forming minerals were found in all studied bodies: early deep-seated (pre-chamber) and intra-chamber. Native iron forms nodular segregations, with a subordinate amount of cohenite, troilite and magnetite–wüstite. Metallic iron can accumulate Ni, Co, Au, and PGE. Their content in metal increases by hundreds or even thousands of times compared to host silicate rock. The formation of native iron is based on the fluid-magmatic interaction between magma and reducing components of the fluid, mainly of methane–hydrogen composition. As a result, an initially homogeneous basalt liquid is dispersed into silicate and metallic components. In the course of transportation, finely dispersed iron phases form droplet-liquid segregations with a monomolecular gas layer on their surface, thus preventing enlargement of metallic droplets. In the hypabyssal chamber, magma, including metallic spherules, is degassed, and droplets are merged to form nodular segregations of native iron.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 2","pages":"223 - 236"},"PeriodicalIF":1.5,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4615614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Moissanite in Rocks of the Bobruisk Basement Inlier, Belarusian Crystalline Massif, East European Craton 东欧克拉通白俄罗斯结晶地块Bobruisk基底岩石中的莫桑石
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-15 DOI: 10.1134/S0869591123020042
V. I. Levitskiy, I. V. Levitskiy, L. A. Pavlova, M. V. Lukashova

A large range of minerals, native, intermetallic, and amorphous compounds containing K, Na, Fe, Mn, Ca, Ba, Sr, Cu, Pb, Co, Ni, Sn, Zn, Al, Ce, Nd, La, Pr, Sm, Y, Yb, Nb, Hf, W, Mo, Zr, Cr, V, Ag, Ti, Si, As, P, Bi, O, H, F, Cl, S, Se, C, B, N, and F has been identified in rocks from the Bobruisk basement inlier of the Belarusian crystalline massif in the western part of the East European craton. One of the identified phases was moissanite, which occurs as anhedral and subhedral grains up to 1.5 mm and is the 6H hexagonal polytype. One of the moissanite grains contained mineral inclusions inherent in meteorites: sinoite (Si2N2O), xifengite (Si5Fe3), and awaruite (Ni3Fe). The moissanite and native, intermetallic, and amorphous phases associated with it occur as rare disseminated grains of various size in rocks of three rock complexes in the basement of the Bobruisk inlier. This indicates that the mineralization is overprinted. The whole set of crystalline and amorphous phases found in association with moissanite is proposed to be named bobruiskites. The minerals were most probably formed by an meteorite impact on rocks of the East European craton.

一个大范围的矿物质,原生金属间化合物,和非晶态化合物含有钾、钠、铁、锰、钙、Ba、Sr、铜、铅、有限公司镍、锡、锌、铝、Ce、Nd,洛杉矶,公关,Sm, Y, Yb, Nb,高频,W,密苏里州,锆、Cr、V, Ag)、钛、硅、,P, Bi, O, H, F, Cl,年代,Se、C、B、N, F已被确定在岩石的地下室Bobruisk窗白俄罗斯水晶在东欧的西部克拉通地块。其中一种相为莫桑石,晶粒大小为半面体和半面体,尺寸为1.5 mm,为6H六方多型。其中一种莫桑石颗粒含有陨石中固有的矿物包裹体:硅辉石(Si2N2O)、锡云石(Si5Fe3)和硅辉石(Ni3Fe)。莫桑石和与之相关的原生、金属间和非晶相以不同大小的罕见浸染颗粒的形式出现在Bobruisk盆地基底的三个岩石复岩中。这表明成矿作用是套印的。与莫桑石有关的整套结晶相和非晶相被提议命名为波布里斯基。这些矿物很可能是由陨石撞击东欧克拉通的岩石形成的。
{"title":"Moissanite in Rocks of the Bobruisk Basement Inlier, Belarusian Crystalline Massif, East European Craton","authors":"V. I. Levitskiy,&nbsp;I. V. Levitskiy,&nbsp;L. A. Pavlova,&nbsp;M. V. Lukashova","doi":"10.1134/S0869591123020042","DOIUrl":"10.1134/S0869591123020042","url":null,"abstract":"<p>A large range of minerals, native, intermetallic, and amorphous compounds containing K, Na, Fe, Mn, Ca, Ba, Sr, Cu, Pb, Co, Ni, Sn, Zn, Al, Ce, Nd, La, Pr, Sm, Y, Yb, Nb, Hf, W, Mo, Zr, Cr, V, Ag, Ti, Si, As, P, Bi, O, H, F, Cl, S, Se, C, B, N, and F has been identified in rocks from the Bobruisk basement inlier of the Belarusian crystalline massif in the western part of the East European craton. One of the identified phases was moissanite, which occurs as anhedral and subhedral grains up to 1.5 mm and is the 6H hexagonal polytype. One of the moissanite grains contained mineral inclusions inherent in meteorites: sinoite (Si<sub>2</sub>N<sub>2</sub>O), xifengite (Si<sub>5</sub>Fe<sub>3</sub>), and awaruite (Ni<sub>3</sub>Fe). The moissanite and native, intermetallic, and amorphous phases associated with it occur as rare disseminated grains of various size in rocks of three rock complexes in the basement of the Bobruisk inlier. This indicates that the mineralization is overprinted. The whole set of crystalline and amorphous phases found in association with moissanite is proposed to be named <i>bobruiskites</i>. The minerals were most probably formed by an meteorite impact on rocks of the East European craton.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 2","pages":"237 - 260"},"PeriodicalIF":1.5,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4615615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Fractionated Granites of the Raumid Massif (S. Pamir): Oxygen Isotope and Geochemical Study Raumid地块(S. Pamir)高分选花岗岩:氧同位素与地球化学研究
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-15 DOI: 10.1134/S0869591123020029
E. O. Dubinina, A. S. Avdeenko, V. N. Volkov, S. A. Kossova, E. V. Kovalchuk

The processes of crystallization differentiation, retrograde isotopic exchange, and autometamorphism are considered with reference to the Eocene granites of the Raumid massif, which consists of eight intrusive phases and serves as an example of a “natural laboratory”. The work is based on oxygen isotope, petrographic, and geochemical study of representative samples from each intrusive phase of the massif. The isotopic and geochemical studies were carried out for all rock-forming minerals (Qz, Pl, Kfs, Bt) and their altered varieties. Based on geochemical features, the Raumid granites correspond both to A-type granites and to highly fractionated I-type granites. Our results show that the rocks of the Raumid massif are not the geochemical analog of the Eocene granitoids from the Qiangtang terrane of the Central Tibet or the Vanj complex, as it previously assumed (Chapman et al., 2018). We estimated that differentiation of felsic melts of the Raumid pluton occurred at T = 750–800°C, and P = 4.5–7.8 kbar and was mainly controlled by Pl crystallization. The melts were intruded into the hypabyssal zone in at least two stages: early (γ1–γ3) and late (γ4–γ8), although it is possible that the rocks of the γ7 and γ8 phases formed an additional separate stage. The closure temperature of the oxygen isotopic system of quartz (TQz) ranges from 420 to 610°C. The effect of the multiple intrusions of the melts on the TQz and apparent cooling rates is considered. The study of altered and unaltered minerals showed that autometamorphism partially overlapped with the retrograde oxygen isotope exchange in the cooling rock. The modelled δ18О values during Pl and Kfs alteration describes well the observed isotope data when the crystallization takes place at limited content of water fluid (W/M = 0.3–0.05) which could release during the Raumid’s magmas crystallization.

以Raumid地块始新世花岗岩为例,研究了其结晶分异、逆向同位素交换和自变质作用的过程。Raumid地块由8个侵入期组成,是一个“天然实验室”。这项工作是基于对该地块每个侵入期的代表性样品的氧同位素、岩石学和地球化学研究。对所有造岩矿物(Qz、Pl、Kfs、Bt)及其蚀变品种进行了同位素和地球化学研究。根据地球化学特征,Raumid花岗岩既属于a型花岗岩,也属于高分异的i型花岗岩。我们的研究结果表明,Raumid地块的岩石并不像之前假设的那样,是西藏中部羌塘地块或Vanj杂岩的始新世花岗岩类的地球化学模拟物(Chapman et al., 2018)。我们估计Raumid岩体的长硅熔体分异发生在T = 750 ~ 800℃,P = 4.5 ~ 7.8 kbar,主要受Pl结晶控制。熔体侵入浅成带至少分为两个阶段:早期(γ - 1 - γ - 3)和晚期(γ - 4 - γ - 8),尽管γ - 7和γ - 8相的岩石可能形成另外一个单独的阶段。石英氧同位素体系的封闭温度(TQz)为420 ~ 610℃。考虑了熔体多次侵入对TQz和表观冷却速率的影响。对蚀变和未蚀变矿物的研究表明,自变质作用与冷却岩石中的逆行氧同位素交换有部分重叠。模拟的Pl和Kfs蚀变δ18О值很好地描述了在Raumid岩浆结晶过程中释放的有限含量的水流体(W/M = 0.3 ~ 0.05)发生结晶时观测到的同位素数据。
{"title":"Highly Fractionated Granites of the Raumid Massif (S. Pamir): Oxygen Isotope and Geochemical Study","authors":"E. O. Dubinina,&nbsp;A. S. Avdeenko,&nbsp;V. N. Volkov,&nbsp;S. A. Kossova,&nbsp;E. V. Kovalchuk","doi":"10.1134/S0869591123020029","DOIUrl":"10.1134/S0869591123020029","url":null,"abstract":"<div><p>The processes of crystallization differentiation, retrograde isotopic exchange, and autometamorphism are considered with reference to the Eocene granites of the Raumid massif, which consists of eight intrusive phases and serves as an example of a “natural laboratory”. The work is based on oxygen isotope, petrographic, and geochemical study of representative samples from each intrusive phase of the massif. The isotopic and geochemical studies were carried out for all rock-forming minerals (<i>Qz</i>, <i>Pl</i>, <i>Kfs</i>, <i>Bt</i>) and their altered varieties. Based on geochemical features, the Raumid granites correspond both to A-type granites and to highly fractionated I-type granites. Our results show that the rocks of the Raumid massif are not the geochemical analog of the Eocene granitoids from the Qiangtang terrane of the Central Tibet or the Vanj complex, as it previously assumed (Chapman et al., 2018). We estimated that differentiation of felsic melts of the Raumid pluton occurred at <i>T</i> = 750–800°C, and <i>P</i> = 4.5–7.8 kbar and was mainly controlled by Pl crystallization. The melts were intruded into the hypabyssal zone in at least two stages: early (γ1–γ3) and late (γ4–γ8), although it is possible that the rocks of the γ7 and γ8 phases formed an additional separate stage. The closure temperature of the oxygen isotopic system of quartz (<i>T</i><sub>Qz</sub>) ranges from 420 to 610°C. The effect of the multiple intrusions of the melts on the T<sub>Qz</sub> and apparent cooling rates is considered. The study of altered and unaltered minerals showed that autometamorphism partially overlapped with the retrograde oxygen isotope exchange in the cooling rock. The modelled δ<sup>18</sup>О values during <i>Pl</i> and <i>Kfs</i> alteration describes well the observed isotope data when the crystallization takes place at limited content of water fluid (W/M = 0.3–0.05) which could release during the Raumid’s magmas crystallization.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 2","pages":"179 - 203"},"PeriodicalIF":1.5,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4903573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Late Mesozoic Carbonatite of Central Asia 中亚晚中生代碳酸盐岩
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-13 DOI: 10.1134/S0869591123010137
A. V. Nikiforov

Late Mesozoic carbonatites of Central Asia are developed within the Central Asian Orogenic Belt and adjacent territories of the Siberian and North China platforms. In terms of their structural position, age, geochemical characteristics, and other parameters, they differ from other carbonatite occurrences of Central Asia and are distinguished as the Late Mesozoic carbonatite province in Central Asia. The province includes separate areas of carbonatite magmatism, the geological position of which is determined by the relation with Late Mesozoic rift zones of intracontinental Asia. The carbonatites were formed within a relatively narrow time range (between 150 and 118 Ma) at the early evolution stages of these zones. The carbonatite-bearing complexes of the province are represented by subolcanic and volcanic associations of silicate rocks, carbonatites, magmatic non-silicate rocks (phosphates, sulfates, and others), as well as products of hydrothermal activity. The carbonatites are characterized by diverse composition and include calciocarbonatites, magnesiocarbonatites, and ferrocarbonatites. The silicate rocks are dominated by K–Na and K intermediate rocks. All these rocks have similar geochemical features determined by the elevated contents of LREE, Sr, Ba, and Pb, at low Nb and Ta contents. The typomorphic minerals of carbonatites of the province, in addition to carbonates, are fluorite, Ba and Sr sulfates or carbonates, LREE F-carbonates, and apatite. Unaltered carbonatites are enriched in 18О and 13С relative to mantle values, but in general fall within the compositional range of carbonatites around the world. Hydrothermal and supergene processes modified the mineral composition of carbonatites, which was accompanied by a change of the initial Sr, O, and C isotope composition. The Sr and Nd isotope composition of rocks of carbonatite complexes of the province in general depends on the age of the basement of a definite volcanic area. Carbonatites and associated silicate rocks have close isotope characteristics, but carbonatites usually show relative enrichment in (87Sr) and depletion in radiogenic neodymium (143Nd). The formation of the Late Mesozoic carbonatite province is related to the activity of mantle plumes, which controlled the Late Mesozoic magmatism in Central Asia. The plumes obviously were accompanied by fluid flows enriched in СО2, F, and S. This caused the enrichment of lithospheric mantle in volatile components, as well as REE, Sr, Ba, and K, which were extracted by a fluid en route to the surface. Subsequent melting of metasomatized mantle produced parental melts of carbonate-bearing rock complexes.

中亚晚中生代碳酸盐岩发育在中亚造山带及其邻近的西伯利亚地台和华北地台内。在构造位置、年龄、地球化学特征等参数上,与中亚其他碳酸盐岩赋存地不同,属于中亚晚中生代碳酸盐岩省。本省有独立的碳酸盐岩岩浆活动区,其地质位置由其与晚中生代亚洲大陆内裂谷带的关系决定。碳酸盐岩的形成时间相对较短(150 ~ 118ma),为该区早期演化阶段。该省的含碳酸盐杂岩以次火山和火山组合的硅酸盐岩石、碳酸盐、岩浆非硅酸盐岩石(磷酸盐、硫酸盐等)以及热液活动的产物为代表。碳酸盐组成多样,包括钙碳酸盐、镁碳酸盐和铁碳酸盐。硅酸盐岩以钾钠和钾中间岩为主。这些岩石具有相似的地球化学特征,主要表现为LREE、Sr、Ba、Pb含量较高,而Nb、Ta含量较低。该省碳酸盐的标型矿物除碳酸盐外,还有萤石、钡、锶硫酸盐或碳酸盐、轻稀土f碳酸盐和磷灰石。相对于地幔值,未蚀变碳酸盐岩富集于18О和13С,但总体上属于世界范围内碳酸盐岩的组成范围。热液和表生作用改变了碳酸盐岩的矿物组成,并改变了初始Sr、O和C同位素组成。全省碳酸盐岩杂岩的Sr、Nd同位素组成一般取决于某一特定火山区基底的年龄。碳酸盐岩及其伴生硅酸盐岩具有相近的同位素特征,但碳酸盐岩通常表现为(87Sr)相对富集和(143Nd)相对富集。晚中生代碳酸盐岩省的形成与地幔柱的活动有关,地幔柱控制了中亚地区晚中生代岩浆活动。这些地幔柱明显伴随着富含СО2、F和s的流体流动,这导致岩石圈地幔挥发性组分以及REE、Sr、Ba和K的富集,这些挥发性组分被流至地表的流体提取。交代地幔随后的熔融作用产生了含碳酸盐杂岩的母熔体。
{"title":"Late Mesozoic Carbonatite of Central Asia","authors":"A. V. Nikiforov","doi":"10.1134/S0869591123010137","DOIUrl":"10.1134/S0869591123010137","url":null,"abstract":"<div><p>Late Mesozoic carbonatites of Central Asia are developed within the Central Asian Orogenic Belt and adjacent territories of the Siberian and North China platforms. In terms of their structural position, age, geochemical characteristics, and other parameters, they differ from other carbonatite occurrences of Central Asia and are distinguished as the Late Mesozoic carbonatite province in Central Asia. The province includes separate areas of carbonatite magmatism, the geological position of which is determined by the relation with Late Mesozoic rift zones of intracontinental Asia. The carbonatites were formed within a relatively narrow time range (between 150 and 118 Ma) at the early evolution stages of these zones. The carbonatite-bearing complexes of the province are represented by subolcanic and volcanic associations of silicate rocks, carbonatites, magmatic non-silicate rocks (phosphates, sulfates, and others), as well as products of hydrothermal activity. The carbonatites are characterized by diverse composition and include calciocarbonatites, magnesiocarbonatites, and ferrocarbonatites. The silicate rocks are dominated by K–Na and K intermediate rocks. All these rocks have similar geochemical features determined by the elevated contents of LREE, Sr, Ba, and Pb, at low Nb and Ta contents. The typomorphic minerals of carbonatites of the province, in addition to carbonates, are fluorite, Ba and Sr sulfates or carbonates, LREE F-carbonates, and apatite. Unaltered carbonatites are enriched in <sup>18</sup>О and <sup>13</sup>С relative to mantle values, but in general fall within the compositional range of carbonatites around the world. Hydrothermal and supergene processes modified the mineral composition of carbonatites, which was accompanied by a change of the initial Sr, O, and C isotope composition. The Sr and Nd isotope composition of rocks of carbonatite complexes of the province in general depends on the age of the basement of a definite volcanic area. Carbonatites and associated silicate rocks have close isotope characteristics, but carbonatites usually show relative enrichment in (<sup>87</sup>Sr) and depletion in radiogenic neodymium (<sup>143</sup>Nd). The formation of the Late Mesozoic carbonatite province is related to the activity of mantle plumes, which controlled the Late Mesozoic magmatism in Central Asia. The plumes obviously were accompanied by fluid flows enriched in СО<sub>2</sub>, F, and S. This caused the enrichment of lithospheric mantle in volatile components, as well as REE, Sr, Ba, and K, which were extracted by a fluid en route to the surface. Subsequent melting of metasomatized mantle produced parental melts of carbonate-bearing rock complexes.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"31 1","pages":"1 - 141"},"PeriodicalIF":1.5,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4541917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aegirine-Bearing Clinopyroxenes in Granulite Xenoliths from the Udachnaya Kimberlite Pipe, Siberian Craton: Comparison of the Mössbauer and Micropobe Data 西伯利亚克拉通Udachnaya金伯利岩管麻粒岩捕虏体中含硫斜辉石质:Mössbauer与micropoe资料比较
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S0869591123010083
A. V. Sapegina, M. V. Voronin, A. L. Perchuk, O. G. Safonov

The aegirine end-member (NaFe3+Si2O6) in clinopyroxenes resulted from incorporation of Fe3+ into the mineral structure. Its presence affects the accuracy of reconstruction of the P-T conditions in the high-grade metamorphic rocks and allows the evaluation of the redox conditions of their formation. The content of this end-member in clinopyroxenes is usually estimated using crystal chemical recalculations of microprobe analyses. However, in some publications on eclogites, the comparison of microprobe-based recalculations with Mössbauer data revealed significant difference between the measured and calculated Fe3+/ΣFe ratios, which can significantly affect the results of geothermometry. This paper presents the results of the Mössbauer spectroscopy measurements of clinopyroxene fractions separated from three samples of garnet–clinopyroxene granulites from the Udachnaya kimberlite pipe. The ratios Fe3+/ΣFe = 0.22–0.26 measured in the clinopyroxenes correspond to 6–10 mol % aegirine. These estimates are in good agreement with the values obtained for the same clinopyroxenes by the recalculation of microprobe analyses using the charge balance method. Following this conclusion, we believe that crystal chemical recalculations of microprobe analyzes of clinopyroxenes from non-eclogitic rocks make it possible to correctly estimate the Fe3+ content in them. Similar recalculation of microprobe analyses of clinopyroxenes in crustal xenoliths from other localities, as well as from ferrobasalts of the continental flood basalts provinces, ferrodolerite dikes, and gabbroid xenoliths (similar in bulk chemical composition to many lower–middle crustal xenoliths) revealed significant amounts of previously unaccounted aegirine (up to 13 and 4–9 mol %, respectively), which holds the potential for deciphering redox conditions in many rocks.

斜斜辉石中氮基端元(NaFe3+Si2O6)是由Fe3+掺入到矿物结构中引起的。它的存在影响了高变质岩中P-T条件重建的准确性,并有助于评价其形成的氧化还原条件。斜辉石中这种端元的含量通常是用微探针分析的晶体化学重新计算来估计的。然而,在一些关于榴辉岩的出版物中,将基于微探针的重新计算与Mössbauer数据进行比较,结果显示Fe3+/ΣFe的实测值与计算值存在显著差异,这将显著影响地热测量结果。本文介绍了乌达奇纳亚金伯利岩管中3个石榴石-斜辉石麻粒岩样品中斜辉石组分的Mössbauer光谱测量结果。斜斜石中测得的Fe3+/ΣFe = 0.22-0.26的比值相当于6-10 mol %的埃吉林。这些估计值与用电荷平衡法重新计算微探针分析得到的相同斜辉石的值很好地一致。根据这一结论,我们认为,通过对非榴辉岩斜辉石显微分析的晶体化学重新计算,可以正确估计其Fe3+含量。对来自其他地区的地壳捕虏体中的斜辉石进行类似的微探针分析,以及来自大陆洪泛玄武岩省的铁玄武岩、铁白云石岩脉和辉长岩捕虏体(与许多中下地壳捕虏体的总体化学成分相似)的微探针分析,发现了大量以前未计算的硫胺(分别高达13%和4% - 9%),这有可能破译许多岩石的氧化还原条件。
{"title":"Aegirine-Bearing Clinopyroxenes in Granulite Xenoliths from the Udachnaya Kimberlite Pipe, Siberian Craton: Comparison of the Mössbauer and Micropobe Data","authors":"A. V. Sapegina,&nbsp;M. V. Voronin,&nbsp;A. L. Perchuk,&nbsp;O. G. Safonov","doi":"10.1134/S0869591123010083","DOIUrl":"10.1134/S0869591123010083","url":null,"abstract":"<div><p>The aegirine end-member (NaFe<sup>3+</sup>Si<sub>2</sub>O<sub>6</sub>) in clinopyroxenes resulted from incorporation of Fe<sup>3+</sup> into the mineral structure. Its presence affects the accuracy of reconstruction of the <i>P-T</i> conditions in the high-grade metamorphic rocks and allows the evaluation of the redox conditions of their formation. The content of this end-member in clinopyroxenes is usually estimated using crystal chemical recalculations of microprobe analyses. However, in some publications on eclogites, the comparison of microprobe-based recalculations with Mössbauer data revealed significant difference between the measured and calculated Fe<sup>3+</sup>/ΣFe ratios, which can significantly affect the results of geothermometry. This paper presents the results of the Mössbauer spectroscopy measurements of clinopyroxene fractions separated from three samples of garnet–clinopyroxene granulites from the Udachnaya kimberlite pipe. The ratios Fe<sup>3+</sup>/ΣFe = 0.22–0.26 measured in the clinopyroxenes correspond to 6–10 mol % aegirine. These estimates are in good agreement with the values obtained for the same clinopyroxenes by the recalculation of microprobe analyses using the charge balance method. Following this conclusion, we believe that crystal chemical recalculations of microprobe analyzes of clinopyroxenes from non-eclogitic rocks make it possible to correctly estimate the Fe<sup>3+</sup> content in them. Similar recalculation of microprobe analyses of clinopyroxenes in crustal xenoliths from other localities, as well as from ferrobasalts of the continental flood basalts provinces, ferrodolerite dikes, and gabbroid xenoliths (similar in bulk chemical composition to many lower–middle crustal xenoliths) revealed significant amounts of previously unaccounted aegirine (up to 13 and 4–9 mol %, respectively), which holds the potential for deciphering redox conditions in many rocks.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S119 - S130"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4828030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petrogenesis and Metallogeny of Intrusive Aplite Dyke from the Malanjkhand Pluton, Central India 印度中部Malanjkhand岩体侵入型阿普立特岩脉的岩石成因及成矿作用
IF 1.5 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-03-21 DOI: 10.1134/S086959112301006X
Dinesh Pandit

The relationships between textural variations and structural trends of the aplite dyke enclosed in the Malanjkhand pluton were investigated in this study. The estimated zircon saturation temperature (747–835°C) and pressure of crystallization (2.5–6.1 kbar) suggested that the aplite dyke was emplaced in the lower-middle level in the continental crust. Water solubility calculations indicated that the aplite dyke originated from the silicic magma under water undersaturated conditions. Primitive mantle normalized spider diagram showed enrichment of large-ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). The aplite dyke displayed LREE-enriched and MREE-depleted patterns, with significant positive Eu-anomaly in the REE patterns. This observation alluded the accumulation of plagioclase crystals before the crystallization of felsic magma in the reduced environment. The presence of the positive Eu-anomaly signified that the pre-existing granitic source at the lower-middle level of the crust generated aplitic magma owing to partial melting above the felsic source rock. Trace element discrimination diagrams presented evidence for possible extensional tectonic settings coupled with felsic magmatic episodes and granitic plutonic activity in a continental rift environment, thus favoring the emplacement of the aplite dyke. Th/U ratios in the aplite dyke implied that the melt fractionation in the magma chamber and the post-magmatic hydrothermal processes exerted negligible effect on the crystallization evolution of the aplitic magma. The aplite dyke pointed to a single pulse of silicic magmatism and a continuous process of injection, thus reflecting subtle variations in the physical conditions of the formation of the host Malanjkhand pluton.

本文研究了马兰杰坎德岩体中围合的阿普立特岩脉的结构变化与构造走向之间的关系。锆石饱和温度(747 ~ 835℃)和结晶压力(2.5 ~ 6.1 kbar)表明,该长石岩脉位于陆壳中下位。水溶解度计算表明,该岩脉起源于水欠饱和条件下的硅质岩浆。原始地幔归一化蜘蛛图显示大离子亲石元素(LILEs)富集,高场强元素(hfse)耗散。阿普里特岩脉呈现低稀土富集和低稀土亏缺模式,稀土模式呈显著的正eu异常。这一发现暗示了在还原环境中,长英质岩浆结晶之前,斜长石晶体的积累。eu -正异常的存在表明,在地壳中下位已存在的花岗质烃源岩由于在长英质烃源岩上方部分熔融而产生了黏液岩浆。微量元素判别图显示了大陆裂谷环境下可能的伸展构造背景,并结合了长英质岩浆活动和花岗质深部活动,因此有利于阿普立特岩脉的侵位。岩脉Th/U比值表明岩浆房中熔体分馏作用和岩浆期后热液作用对岩浆结晶演化的影响可以忽略不计。阿普立特岩脉指向单一的硅质岩浆活动脉冲和连续的注入过程,从而反映了寄主Malanjkhand岩体形成物理条件的微妙变化。
{"title":"Petrogenesis and Metallogeny of Intrusive Aplite Dyke from the Malanjkhand Pluton, Central India","authors":"Dinesh Pandit","doi":"10.1134/S086959112301006X","DOIUrl":"10.1134/S086959112301006X","url":null,"abstract":"<p>The relationships between textural variations and structural trends of the aplite dyke enclosed in the Malanjkhand pluton were investigated in this study. The estimated zircon saturation temperature (747–835°C) and pressure of crystallization (2.5–6.1 kbar) suggested that the aplite dyke was emplaced in the lower-middle level in the continental crust. Water solubility calculations indicated that the aplite dyke originated from the silicic magma under water undersaturated conditions. Primitive mantle normalized spider diagram showed enrichment of large-ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). The aplite dyke displayed LREE-enriched and MREE-depleted patterns, with significant positive Eu-anomaly in the REE patterns. This observation alluded the accumulation of plagioclase crystals before the crystallization of felsic magma in the reduced environment. The presence of the positive Eu-anomaly signified that the pre-existing granitic source at the lower-middle level of the crust generated aplitic magma owing to partial melting above the felsic source rock. Trace element discrimination diagrams presented evidence for possible extensional tectonic settings coupled with felsic magmatic episodes and granitic plutonic activity in a continental rift environment, thus favoring the emplacement of the aplite dyke. Th/U ratios in the aplite dyke implied that the melt fractionation in the magma chamber and the post-magmatic hydrothermal processes exerted negligible effect on the crystallization evolution of the aplitic magma. The aplite dyke pointed to a single pulse of silicic magmatism and a continuous process of injection, thus reflecting subtle variations in the physical conditions of the formation of the host Malanjkhand pluton.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 1","pages":"S140 - S156"},"PeriodicalIF":1.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4830821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Petrology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1