首页 > 最新文献

Physical review letters最新文献

英文 中文
Skyrmion Hall Effect in Altermagnets 反向磁体中的 Skyrmion 霍尔效应
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.196701
Zhejunyu Jin, Zhaozhuo Zeng, Yunshan Cao, Peng Yan
It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this Letter, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge. We first show that the neutral skyrmion manifests as a magnetic quadrupole in altermagnets. We reveal a hidden gauge field from the magnetic quadrupole, which induces the skyrmion Hall effect when driven by spin transfer torque. Interestingly, we identify a sign change of the Hall angle when one swaps the anisotropic exchange couplings in altermagnets. Furthermore, we demonstrate that both the velocity and Hall angle of altermagnetic skyrmions sensitively depend on the current direction. Our findings real the critical role of magnetic quadrupole in driving the skyrmion Hall effect with vanishing charge, and pave the way to discovering new Hall effect of neutral quasiparticles beyond magnetic skyrmions.
人们普遍认为,由于拓扑电荷的消失,反铁磁体中不存在天电荷霍尔效应。然而,Aharonov-Casher 理论表明,中性粒子可能存在拓扑效应。在这封信中,我们预测了净磁化为零和天磁电荷为零的新兴反铁磁体中的天磁霍尔效应。我们首先证明了中性天电荷在改变磁体中表现为磁四极。我们揭示了来自磁四极的隐藏规场,它在自旋传递力矩的驱动下诱发了天电荷霍尔效应。有趣的是,我们发现当交换各向异性交换耦合时,霍尔角的符号会发生变化。此外,我们还证明了改磁天体的速度和霍尔角都敏感地取决于电流方向。我们的发现真正揭示了磁四极在驱动电荷消失的天幕霍尔效应中的关键作用,并为发现磁天幕之外的中性准粒子的新霍尔效应铺平了道路。
{"title":"Skyrmion Hall Effect in Altermagnets","authors":"Zhejunyu Jin, Zhaozhuo Zeng, Yunshan Cao, Peng Yan","doi":"10.1103/physrevlett.133.196701","DOIUrl":"https://doi.org/10.1103/physrevlett.133.196701","url":null,"abstract":"It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this Letter, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge. We first show that the neutral skyrmion manifests as a magnetic quadrupole in altermagnets. We reveal a hidden gauge field from the magnetic quadrupole, which induces the skyrmion Hall effect when driven by spin transfer torque. Interestingly, we identify a sign change of the Hall angle when one swaps the anisotropic exchange couplings in altermagnets. Furthermore, we demonstrate that both the velocity and Hall angle of altermagnetic skyrmions sensitively depend on the current direction. Our findings real the critical role of magnetic quadrupole in driving the skyrmion Hall effect with vanishing charge, and pave the way to discovering new Hall effect of neutral quasiparticles beyond magnetic skyrmions.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"241 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shedding Light on Hadronization by Quarkonium Energy Correlator 用夸克鎓能量相关器揭示强子化现象
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.191901
An-Ping Chen, Xiaohui Liu, Yan-Qing Ma
We propose to measure the energy correlator in quarkonium production, which tracks the energy deposited in the calorimeter at the <mjx-container ctxtmenu_counter="16" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="greekletter" data-semantic-speech="chi" data-semantic-type="identifier"><mjx-c>𝜒</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>-angular distance away from the identified quarkonium. The observable eliminates the need for jets while sustaining the perturbative predictive power. Analyzing the power correction to the energy correlator, we demonstrate that the novel observable supplies a unique gateway to probing the hadronization, especially when <mjx-container ctxtmenu_counter="17" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 (5 0 4 1) 2 3)"><mjx-mrow data-semantic-children="5,3" data-semantic-content="2" data-semantic- data-semantic-owns="5 2 3" data-semantic-role="inequality" data-semantic-speech="cosine chi greater than or equivalent to 0" data-semantic-type="relseq"><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:simple" data-semantic-children="0,1" data-semantic-content="4,0" data-semantic- data-semantic-owns="0 4 1" data-semantic-parent="6" data-semantic-role="prefix function" data-semantic-type="appl"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-operator="appl" data-semantic-parent="5" data-semantic-role="prefix function" data-semantic-type="function"><mjx-c noic="true" style="padding-top: 0.485em;">c</mjx-c><mjx-c noic="true" style="padding-top: 0.485em;">o</mjx-c><mjx-c style="padding-top: 0.485em;">s</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="appl" data-semantic-parent="5" data-semantic-role="application" data-semantic-type="punctuation"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="5" data-semantic-role="greekletter" data-semantic-type="identifier" space="2"><mjx-c>𝜒</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="relseq,≳" data-semantic-parent="6" data-semantic-role="inequality" data-semantic-type="relation" space="4"><mjx-c>≳</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number" space="4"><mjx-c>0</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> in the quarkonium rest frame, where the perturbative emissions are depleted due to the dead-cone effects. We expect the quarkonium energy correlator to add a new dimen
我们建议测量夸克子产生过程中的能量相关器,它可以跟踪在距离所识别的夸克子的𝜒角距离处沉积在量热计中的能量。该观测指标在保持微扰预测能力的同时,消除了对射流的需求。通过分析能量相关器的功率修正,我们证明这个新观测指标为探测强子化提供了一个独特的途径,特别是当夸克静止框中的cos𝜒≳0由于死锥效应而导致扰动发射耗尽时。我们期待夸克鎓能量相关器为夸克鎓研究增添新的维度。
{"title":"Shedding Light on Hadronization by Quarkonium Energy Correlator","authors":"An-Ping Chen, Xiaohui Liu, Yan-Qing Ma","doi":"10.1103/physrevlett.133.191901","DOIUrl":"https://doi.org/10.1103/physrevlett.133.191901","url":null,"abstract":"We propose to measure the energy correlator in quarkonium production, which tracks the energy deposited in the calorimeter at the &lt;mjx-container ctxtmenu_counter=\"16\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"chi\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝜒&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-angular distance away from the identified quarkonium. The observable eliminates the need for jets while sustaining the perturbative predictive power. Analyzing the power correction to the energy correlator, we demonstrate that the novel observable supplies a unique gateway to probing the hadronization, especially when &lt;mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 (5 0 4 1) 2 3)\"&gt;&lt;mjx-mrow data-semantic-children=\"5,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"5 2 3\" data-semantic-role=\"inequality\" data-semantic-speech=\"cosine chi greater than or equivalent to 0\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,1\" data-semantic-content=\"4,0\" data-semantic- data-semantic-owns=\"0 4 1\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"5\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.485em;\"&gt;c&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.485em;\"&gt;o&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.485em;\"&gt;s&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"5\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;⁡&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" space=\"2\"&gt;&lt;mjx-c&gt;𝜒&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,≳\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;≳&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"&gt;&lt;mjx-c&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; in the quarkonium rest frame, where the perturbative emissions are depleted due to the dead-cone effects. We expect the quarkonium energy correlator to add a new dimen","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"7 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic Diffusion inCO2Adsorption byLi4⁢SiO4: Inert-Marker Experiment and DFT Calculations Li4SiO4 吸附二氧化碳过程中的离子扩散:惰性标记实验和 DFT 计算
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.198001
Tao Deng, Shuzhen Chen, Zongze Lv, Yujie Zheng, Shaojun Xu, Changlei Qin
<mjx-container ctxtmenu_counter="25" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-mrow><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper C upper O 2" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c style="padding-top: 0.669em;">O</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> adsorption by <mjx-container ctxtmenu_counter="26" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper L i 4 upper S i upper O 4" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">L</mjx-c><mjx-c style="padding-top: 0.673em;">i</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>4</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c style="padding-top: 0.673em;">O</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-sema
Li4SiO4 对二氧化碳的吸附因其在有效捕获二氧化碳方面的潜力而备受关注。产物层内缓慢的扩散控制反应是影响二氧化碳吸附的关键因素。然而,目前还没有对扩散机制进行研究。在此,我们通过惰性标记实验和第一原理计算系统地了解了离子扩散。电子探针测试清楚地捕捉到了惰性标记铂向产物层的移动,因此认为 O2- 和 Li+ 离子向外转移是主要的扩散模式。密度泛函理论计算也证实了 O2- 和 Li+ 的扩散,前者是速度控制步骤。
{"title":"Ionic Diffusion inCO2Adsorption byLi4⁢SiO4: Inert-Marker Experiment and DFT Calculations","authors":"Tao Deng, Shuzhen Chen, Zongze Lv, Yujie Zheng, Shaojun Xu, Changlei Qin","doi":"10.1103/physrevlett.133.198001","DOIUrl":"https://doi.org/10.1103/physrevlett.133.198001","url":null,"abstract":"&lt;mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-mrow&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; adsorption by &lt;mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper L i 4 upper S i upper O 4\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;L&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-sema","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Energy Optical Sum Rule in Moiré Graphene 莫伊里石墨烯中的低能光学和规则
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.196501
J. F. Mendez-Valderrama, Dan Mao, Debanjan Chowdhury
Few layers of graphene at small twist angles have emerged as a fascinating platform for studying the problem of strong interactions in regimes with a nearly quenched single-particle kinetic energy and nontrivial band topology. Starting from the strong-coupling limit of twisted bilayer graphene with a vanishing single-electron bandwidth and interlayer tunneling between the same sublattice sites, we present an exact analytical theory of the Coulomb interaction-induced low-energy optical spectral weight at all integer fillings. In this limit, while the interaction-induced single-particle dispersion is finite, the optical spectral weight vanishes identically at integer fillings. We study corrections to the optical spectral weight by systematically including the effects of experimentally relevant strain-induced renormalization of the single-electron bandwidth and interlayer tunnelings between the same sublattice sites. Given the relationship between the optical spectral weight and the diamagnetic response that controls superconducting 𝑇𝑐, our results highlight the relative importance of specific parent insulating phases in enhancing the tendency towards superconductivity when doped away from integer fillings.
小扭曲角的少层石墨烯已成为研究单粒子动能接近熄灭和非难带拓扑状态下强相互作用问题的迷人平台。我们从扭曲双层石墨烯的强耦合极限出发,利用消失的单电子带宽和相同亚晶格位点之间的层间隧道,提出了所有整数填充下库仑相互作用诱导的低能光学光谱权重的精确分析理论。在此极限下,虽然相互作用诱导的单粒子色散是有限的,但光学光谱权重在整数填充时完全消失。我们通过系统地将实验相关的应变诱导的单电子带宽重正化和相同亚晶格位点之间的层间隧道效应纳入其中,研究了对光学光谱权的修正。鉴于光学光谱权重与控制超导𝑇𝑐的二磁响应之间的关系,我们的结果突出了特定母体绝缘相在掺杂远离整数填充时增强超导倾向的相对重要性。
{"title":"Low-Energy Optical Sum Rule in Moiré Graphene","authors":"J. F. Mendez-Valderrama, Dan Mao, Debanjan Chowdhury","doi":"10.1103/physrevlett.133.196501","DOIUrl":"https://doi.org/10.1103/physrevlett.133.196501","url":null,"abstract":"Few layers of graphene at small twist angles have emerged as a fascinating platform for studying the problem of strong interactions in regimes with a nearly quenched single-particle kinetic energy and nontrivial band topology. Starting from the strong-coupling limit of twisted bilayer graphene with a vanishing single-electron bandwidth and interlayer tunneling between the same sublattice sites, we present an <i>exact</i> analytical theory of the Coulomb interaction-induced low-energy optical spectral weight at all <i>integer</i> fillings. In this limit, while the interaction-induced single-particle dispersion is finite, the optical spectral weight vanishes identically at integer fillings. We study corrections to the optical spectral weight by systematically including the effects of experimentally relevant strain-induced renormalization of the single-electron bandwidth and interlayer tunnelings between the same sublattice sites. Given the relationship between the optical spectral weight and the diamagnetic response that controls superconducting <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T Subscript c\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>, our results highlight the relative importance of specific parent insulating phases in enhancing the tendency towards superconductivity when doped away from integer fillings.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"26 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Nuclear-Shape Phase Transition in Ultrarelativistic129Xe+129XeCollisions at the LHC 在大型强子对撞机上探索超相对论129Xe+129Xe对撞中的核形状相变
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.192301
Shujun Zhao, Hao-jie Xu, You Zhou, Yu-Xin Liu, Huichao Song
The shape phase transition for certain isotope or isotone chains, associated with the quantum phase transition of finite nuclei, is an intriguing phenomenon in nuclear physics. A notable case is the Xe isotope chain, where the structure transits from a <mjx-container ctxtmenu_counter="35" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="greekletter" data-semantic-speech="gamma" data-semantic-type="identifier"><mjx-c>𝛾</mjx-c></mjx-mi></mjx-math></mjx-container>-soft rotor to a spherical vibrator, with the second-order shape phase transition occurring in the vicinity of <mjx-container ctxtmenu_counter="36" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(8 0 1 (5 2 3 4) 6 7)"><mjx-mrow><mjx-mmultiscripts data-semantic-children="0,1,5,6,7" data-semantic-collapsed="(8 0 1 5 6 7)" data-semantic- data-semantic-owns="0 1 5 6 7" data-semantic-role="unknown" data-semantic-speech="Superscript 128 130 Baseline upper X e" data-semantic-type="tensor"><mjx-prescripts style="vertical-align: 0.384em;"><mjx-row><mjx-cell><mjx-mrow data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="8" data-semantic-role="leftsuper" data-semantic-type="infixop" size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.647em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">2</mjx-c><mjx-c style="padding-top: 0.647em;">8</mjx-c></mjx-mn><mjx-mi data-semantic- data-semantic-operator="infixop,–" data-semantic-parent="5" data-semantic-role="dash" data-semantic-type="operator"><mjx-c>–</mjx-c></mjx-mi><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.644em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.644em;">3</mjx-c><mjx-c style="padding-top: 0.644em;">0</mjx-c></mjx-mn></mjx-mrow></mjx-cell></mjx-row><mjx-row style="height: 0.622em;"></mjx-row><mjx-row><mjx-cell><mjx-none data-semantic- data-semantic-parent="8" data-semantic-role="leftsub" data-semantic-type="empty" size="s"></mjx-none></mjx-cell></mjx-row></mjx-prescripts><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">X</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi></mjx-mrow><mjx-scripts style="vertical-align: 0.384em;"
某些同位素或同位素链的形状相变与有限原子核的量子相变有关,是核物理中一个有趣的现象。一个显著的例子是 Xe 同位素链,其结构从𝛾软转子过渡到球形振动器,二阶形状相变发生在 128-130Xe 附近。在这封信中,我们通过构建超相对论 129Xe+129Xe 碰撞的新型相关器,重点研究了与二阶形状相变相关的 129Xe 的𝛾-软形变。特别是,我们的 iEBE-VISHNU 模型计算表明,椭圆流𝑣2 和平均横动量[𝑝𝑇]之间的相关性,表示为𝜌2、以及[𝑝𝑇]波动Γ𝑝𝑇,这些以前用来证明129Xe刚性三轴形变的证据,也可以用129Xe的𝛾-软形变很好地解释。我们进一步提出了两个新的相关子𝜌4,2 和 𝜌2,4,它们携带了非难的高阶相关性,并显示出独特的能力来区分大型强子对撞机上 129Xe+129Xe 对撞中 129Xe 的𝛾-软形变和刚性三轴形变。本研究为利用超相对论重离子对撞探索有限原子核的二阶形状相变提供了一种新方法。
{"title":"Exploring the Nuclear-Shape Phase Transition in Ultrarelativistic129Xe+129XeCollisions at the LHC","authors":"Shujun Zhao, Hao-jie Xu, You Zhou, Yu-Xin Liu, Huichao Song","doi":"10.1103/physrevlett.133.192301","DOIUrl":"https://doi.org/10.1103/physrevlett.133.192301","url":null,"abstract":"The shape phase transition for certain isotope or isotone chains, associated with the quantum phase transition of finite nuclei, is an intriguing phenomenon in nuclear physics. A notable case is the Xe isotope chain, where the structure transits from a &lt;mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"gamma\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝛾&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-soft rotor to a spherical vibrator, with the second-order shape phase transition occurring in the vicinity of &lt;mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(8 0 1 (5 2 3 4) 6 7)\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mmultiscripts data-semantic-children=\"0,1,5,6,7\" data-semantic-collapsed=\"(8 0 1 5 6 7)\" data-semantic- data-semantic-owns=\"0 1 5 6 7\" data-semantic-role=\"unknown\" data-semantic-speech=\"Superscript 128 130 Baseline upper X e\" data-semantic-type=\"tensor\"&gt;&lt;mjx-prescripts style=\"vertical-align: 0.384em;\"&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"8\" data-semantic-role=\"leftsuper\" data-semantic-type=\"infixop\" size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;2&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mi data-semantic- data-semantic-operator=\"infixop,–\" data-semantic-parent=\"5\" data-semantic-role=\"dash\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;–&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.644em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.644em;\"&gt;3&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.644em;\"&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;&lt;mjx-row style=\"height: 0.622em;\"&gt;&lt;/mjx-row&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-none data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"leftsub\" data-semantic-type=\"empty\" size=\"s\"&gt;&lt;/mjx-none&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;&lt;/mjx-prescripts&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;X&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-scripts style=\"vertical-align: 0.384em;\"","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Constraints on Axion-Mediated Spin Interactions Using Magnetic Amplification 利用磁放大对轴心介导的自旋相互作用的新约束
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1103/physrevlett.133.191801
Haowen Su, Min Jiang, Yuanhong Wang, Ying Huang, Xiang Kang, Wei Ji, Xinhua Peng, Dmitry Budker
Axions are highly motivated hypothetical particles beyond the standard model that can be dark matter candidates and address the strong <mjx-container ctxtmenu_counter="22" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 2 1)"><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-owns="0 2 1" data-semantic-role="implicit" data-semantic-speech="upper C upper P" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> problem. Here we search for axion-mediated interactions generated between two separated <mjx-container ctxtmenu_counter="23" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 0 1 2 3 4)"><mjx-mrow><mjx-mmultiscripts data-semantic-children="0,1,2,3,4" data-semantic-collapsed="(5 0 1 2 3 4)" data-semantic- data-semantic-owns="0 1 2 3 4" data-semantic-role="unknown" data-semantic-speech="Superscript 129 Baseline upper X e" data-semantic-type="tensor"><mjx-prescripts style="vertical-align: 0.384em;"><mjx-row><mjx-cell><mjx-mrow size="s"><mjx-mn data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="leftsuper" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.646em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">2</mjx-c><mjx-c style="padding-top: 0.646em;">9</mjx-c></mjx-mn></mjx-mrow></mjx-cell></mjx-row><mjx-row style="height: 0.622em;"></mjx-row><mjx-row><mjx-cell><mjx-none data-semantic- data-semantic-parent="5" data-semantic-role="leftsub" data-semantic-type="empty" size="s"></mjx-none></mjx-cell></mjx-row></mjx-prescripts><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">X</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi></mjx-mrow><mjx-scripts style="vertical-align: 0.384em;"><mjx-row><mjx-cell><mjx-none data-semantic-added="true" data-semantic- data-semantic-parent="5" data-semantic-role="rightsuper" data-semantic-type="empty" size="s"></mjx-none></mjx-cell></mjx-row
轴子是超越标准模型的高动机假想粒子,可以成为暗物质候选者,并解决强𝐶𝑃问题。在这里,我们通过与 Rb 蒸汽的自旋交换相互作用来监测和极化 129Xe 核自旋,从而寻找两个分离的 129Xe 气体集合之间产生的轴子介导的相互作用。我们的方法利用了掺镱氙对撞产生的有效磁场的磁放大作用,与传统方法相比,轴子介导相互作用的灵敏度提高了 145 倍。此外,我们还采用了模板过滤技术,以最大信噪比提取奇异的相互作用。通过两种技术的结合,轴子介导的相互作用在 60 毫米的长度尺度上被约束为小于正常磁相互作用的 10-5。我们为中子-中子伪谱耦合的质量范围建立了新的约束,该范围扩展到了动机良好的 "轴子窗口"(10 μeV-1 meV),在该范围内将以前的约束提高了 50 倍,在该范围外提高了 118 倍。我们进一步讨论了在搜索其他轴子-核子相互作用方面的应用前景,包括轴子暗物质和黑洞轴子爆发,其灵敏度远远超出天体物理极限几个数量级。
{"title":"New Constraints on Axion-Mediated Spin Interactions Using Magnetic Amplification","authors":"Haowen Su, Min Jiang, Yuanhong Wang, Ying Huang, Xiang Kang, Wei Ji, Xinhua Peng, Dmitry Budker","doi":"10.1103/physrevlett.133.191801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.191801","url":null,"abstract":"Axions are highly motivated hypothetical particles beyond the standard model that can be dark matter candidates and address the strong &lt;mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 2 1)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C upper P\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐶&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑃&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; problem. Here we search for axion-mediated interactions generated between two separated &lt;mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 0 1 2 3 4)\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mmultiscripts data-semantic-children=\"0,1,2,3,4\" data-semantic-collapsed=\"(5 0 1 2 3 4)\" data-semantic- data-semantic-owns=\"0 1 2 3 4\" data-semantic-role=\"unknown\" data-semantic-speech=\"Superscript 129 Baseline upper X e\" data-semantic-type=\"tensor\"&gt;&lt;mjx-prescripts style=\"vertical-align: 0.384em;\"&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-mrow size=\"s\"&gt;&lt;mjx-mn data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftsuper\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;2&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.646em;\"&gt;9&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;&lt;mjx-row style=\"height: 0.622em;\"&gt;&lt;/mjx-row&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-none data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"leftsub\" data-semantic-type=\"empty\" size=\"s\"&gt;&lt;/mjx-none&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;&lt;/mjx-prescripts&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;X&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-scripts style=\"vertical-align: 0.384em;\"&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-none data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"rightsuper\" data-semantic-type=\"empty\" size=\"s\"&gt;&lt;/mjx-none&gt;&lt;/mjx-cell&gt;&lt;/mjx-row","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"24 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of onabotulinumtoxin A in patients concurrently diagnosed with chronic migraine encephalalgia and temporomandibular disorders: A retrospective case series. 对同时被诊断患有慢性偏头痛和颞下颌关节紊乱症的患者使用A型肉毒毒素的效果:回顾性病例系列。
IF 2 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 Epub Date: 2022-03-14 DOI: 10.1080/08869634.2022.2045114
Andrew J Gross, John W Hudson, Catalina Matias, Brady J Jones

Objective: Chronic migraine encephalalgia (CME) with concomitant temporomandibular disorder (TMD) is a serious illness with limited effective treatment options. This study explores the effectiveness of onabotulinumtoxinA (BtxA) as an adjunct therapeutic to TMJ arthroscopy in the relief of CME.

Methods: A retrospective cohort study of patients receiving TMJ arthroscopy, with or without BtxA injections for CME, was conducted. Variables assessed include pain using a visual analog scale (VAS), maximal incisal opening (MIO), muscle soreness, and headache frequency and duration.

Results: Sixty patients (44 BtxA, 16 Control), consisting of 56 (93.3%) females, met inclusion criteria. A significant reduction in pain is reported with patients receiving BtxA (p < 0.0001) on VAS as compared to Control group. BtxA treatment also significantly reduced headache frequency and duration (p < 0.05).

Conclusion: These results support the use of adjunctive BtxA treatment with arthroscopy for the treatment of CME in the context of TMD.

目的:伴有颞下颌关节紊乱(TMD)的慢性偏头痛(CME)是一种严重的疾病,但有效的治疗方法有限。本研究探讨了在颞下颌关节镜手术的基础上使用鬼臼毒素 A(BtxA)作为辅助疗法对缓解 CME 的有效性:方法:对接受颞下颌关节镜检查并注射或不注射 BtxA 治疗 CME 的患者进行回顾性队列研究。评估变量包括疼痛(使用视觉模拟量表(VAS))、最大切口开度(MIO)、肌肉酸痛、头痛频率和持续时间:符合纳入标准的 60 名患者(44 名 BtxA 患者,16 名对照组患者)中有 56 名女性(93.3%)。据报告,接受 BtxA 治疗的患者疼痛明显减轻(p p 结论:这些结果支持使用 BtxA 作为辅助治疗:这些结果支持将 BtxA 治疗与关节镜手术相结合,用于治疗 TMD 下的 CME。
{"title":"Effects of onabotulinumtoxin A in patients concurrently diagnosed with chronic migraine encephalalgia and temporomandibular disorders: A retrospective case series.","authors":"Andrew J Gross, John W Hudson, Catalina Matias, Brady J Jones","doi":"10.1080/08869634.2022.2045114","DOIUrl":"10.1080/08869634.2022.2045114","url":null,"abstract":"<p><strong>Objective: </strong>Chronic migraine encephalalgia (CME) with concomitant temporomandibular disorder (TMD) is a serious illness with limited effective treatment options. This study explores the effectiveness of onabotulinumtoxinA (BtxA) as an adjunct therapeutic to TMJ arthroscopy in the relief of CME.</p><p><strong>Methods: </strong>A retrospective cohort study of patients receiving TMJ arthroscopy, with or without BtxA injections for CME, was conducted. Variables assessed include pain using a visual analog scale (VAS), maximal incisal opening (MIO), muscle soreness, and headache frequency and duration.</p><p><strong>Results: </strong>Sixty patients (44 BtxA, 16 Control), consisting of 56 (93.3%) females, met inclusion criteria. A significant reduction in pain is reported with patients receiving BtxA (<i>p</i> < 0.0001) on VAS as compared to Control group. BtxA treatment also significantly reduced headache frequency and duration (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>These results support the use of adjunctive BtxA treatment with arthroscopy for the treatment of CME in the context of TMD.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"35 1","pages":"688-698"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84331983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass Inflation without Cauchy Horizons 没有考奇地平线的质量膨胀
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1103/physrevlett.133.181402
Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Matt Visser
Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.
质量膨胀是一种公认的不稳定性,通常与静止几何的考奇地平线(也是内捕获地平线)有关,会导致能量的发散指数积累。我们在此证明,即使没有考奇地平线,在描述具有缓慢演化的内困地平线的吸积黑洞的动力学几何中,也存在有限的(但通常很大的)指数能量积累。对这些指数积累背后的绝热条件的明确评估表明,这种现象普遍存在于物理上合理的增殖条件中。这种非永恒质量膨胀不需要引入全局时空概念。我们还证明,在内部捕获视界渐近接近考奇视界的极限中,文献中的各种已知结果都得到了恢复。我们的结果意味着,具有非极端内视界的黑洞几何,包括广义相对论中的克尔几何和超越广义相对论的非极端规则黑洞,可以描述动力学瞬态,但不能描述引力坍缩的长寿命终点。
{"title":"Mass Inflation without Cauchy Horizons","authors":"Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati, Matt Visser","doi":"10.1103/physrevlett.133.181402","DOIUrl":"https://doi.org/10.1103/physrevlett.133.181402","url":null,"abstract":"Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy. We show here that finite (but often large) exponential buildups of energy are present for dynamical geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential buildups shows that this phenomenon is universally present for physically reasonable accreting conditions. This noneternal mass inflation does not require the introduction of global spacetime concepts. We also show that various known results in the literature are recovered in the limit in which the inner trapping horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived end point of gravitational collapse.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailor-Designed Models for the Turbulent Velocity Gradient through Normalizing Flow 通过归一化流动为湍流速度梯度量身定制模型
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1103/physrevlett.133.184001
M. Carbone, V. J. Peterhans, A. S. Ecker, M. Wilczek
Small-scale turbulence can be comprehensively described in terms of velocity gradients, which makes them an appealing starting point for low-dimensional modeling. Typical models consist of stochastic equations based on closures for nonlocal pressure and viscous contributions. The fidelity of the resulting models depends on the accuracy of the underlying modeling assumptions. Here, we discuss an alternative data-driven approach leveraging machine learning to derive a velocity gradient model which captures its statistics by construction. We use a normalizing flow to learn the velocity gradient probability density function (PDF) from direct numerical simulation (DNS) of incompressible turbulence. Then, by using the equation for the single-time PDF of the velocity gradient, we construct a deterministic, yet chaotic, dynamical system featuring the learned steady-state PDF by design. Finally, utilizing gauge terms for the velocity gradient single-time statistics, we optimize the time correlations as obtained from our model against the DNS data. As a result, the model time realizations resemble the time series from DNS statistically closely.
小尺度湍流可以用速度梯度进行全面描述,这使其成为低维建模的一个有吸引力的起点。典型模型包括基于非局部压力和粘性贡献闭合的随机方程。所得模型的保真度取决于基本建模假设的准确性。在此,我们将讨论另一种数据驱动方法,即利用机器学习来推导速度梯度模型,通过构建模型来捕捉其统计数据。我们使用归一化流量,从不可压缩湍流的直接数值模拟(DNS)中学习速度梯度概率密度函数(PDF)。然后,通过使用速度梯度单次概率密度函数方程,我们构建了一个确定但混乱的动态系统,其特点是通过设计学习到稳态概率密度函数。最后,我们利用速度梯度单次统计的规整项,根据 DNS 数据优化了从我们的模型中获得的时间相关性。结果,模型的时间变现与 DNS 的时间序列在统计上非常相似。
{"title":"Tailor-Designed Models for the Turbulent Velocity Gradient through Normalizing Flow","authors":"M. Carbone, V. J. Peterhans, A. S. Ecker, M. Wilczek","doi":"10.1103/physrevlett.133.184001","DOIUrl":"https://doi.org/10.1103/physrevlett.133.184001","url":null,"abstract":"Small-scale turbulence can be comprehensively described in terms of velocity gradients, which makes them an appealing starting point for low-dimensional modeling. Typical models consist of stochastic equations based on closures for nonlocal pressure and viscous contributions. The fidelity of the resulting models depends on the accuracy of the underlying modeling assumptions. Here, we discuss an alternative data-driven approach leveraging machine learning to derive a velocity gradient model which captures its statistics by construction. We use a normalizing flow to learn the velocity gradient probability density function (PDF) from direct numerical simulation (DNS) of incompressible turbulence. Then, by using the equation for the single-time PDF of the velocity gradient, we construct a deterministic, yet chaotic, dynamical system featuring the learned steady-state PDF by design. Finally, utilizing gauge terms for the velocity gradient single-time statistics, we optimize the time correlations as obtained from our model against the DNS data. As a result, the model time realizations resemble the time series from DNS statistically closely.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the Coulomb Potential in Compton Scattering 库仑势在康普顿散射中的作用
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1103/physrevlett.133.183002
N. Melzer, M. Kircher, A. Pier, L. Kaiser, J. Kruse, N. Anders, J. Stindl, L. Sommerlad, D. McGinnis, M. Schmidt, L. Nowak, A. Kügler, I. Dwojak, J. Drnec, F. Trinter, M. S. Schöffler, L. Ph. H. Schmidt, N. M. Novikovskiy, Ph. V. Demekhin, T. Jahnke, R. Dörner
We report a fully differential study of ionization of the Ne L shell by Compton scattering of 20 keV photons. We find two physical mechanisms that modify the Compton-electron emission. Firstly, we observe scattering of the Compton electrons at their parent nucleus. Secondly, we find a distinct maximum in the electron momentum distribution close-to-zero momentum that we attribute to a focusing of the electrons by the Coulomb potential.
我们报告了通过 20 keV 光子的康普顿散射对 Ne L 壳电离的全差分研究。我们发现了两种改变康普顿电子发射的物理机制。首先,我们观察到康普顿电子在其母核处的散射。其次,我们发现在接近零动量的电子动量分布中有一个明显的最大值,我们将其归因于库仑势对电子的聚焦。
{"title":"Role of the Coulomb Potential in Compton Scattering","authors":"N. Melzer, M. Kircher, A. Pier, L. Kaiser, J. Kruse, N. Anders, J. Stindl, L. Sommerlad, D. McGinnis, M. Schmidt, L. Nowak, A. Kügler, I. Dwojak, J. Drnec, F. Trinter, M. S. Schöffler, L. Ph. H. Schmidt, N. M. Novikovskiy, Ph. V. Demekhin, T. Jahnke, R. Dörner","doi":"10.1103/physrevlett.133.183002","DOIUrl":"https://doi.org/10.1103/physrevlett.133.183002","url":null,"abstract":"We report a fully differential study of ionization of the Ne L shell by Compton scattering of 20 keV photons. We find two physical mechanisms that modify the Compton-electron emission. Firstly, we observe scattering of the Compton electrons at their parent nucleus. Secondly, we find a distinct maximum in the electron momentum distribution close-to-zero momentum that we attribute to a focusing of the electrons by the Coulomb potential.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"22 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical review letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1