首页 > 最新文献

Physical review letters最新文献

英文 中文
Continuum Excitations in a Spin Supersolid on a Triangular Lattice 三角形晶格上自旋超固体的连续激发
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1103/physrevlett.133.186704
M. Zhu, V. Romerio, N. Steiger, S. D. Nabi, N. Murai, S. Ohira-Kawamura, K. Yu. Povarov, Y. Skourski, R. Sibille, L. Keller, Z. Yan, S. Gvasaliya, A. Zheludev
Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis <mjx-container ctxtmenu_counter="29" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 0 3 1 4 2)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,1,2" data-semantic-content="3,4" data-semantic- data-semantic-owns="0 3 1 4 2" data-semantic-role="implicit" data-semantic-speech="upper X upper X upper Z" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> triangular lattice magnet <mjx-container ctxtmenu_counter="30" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(14 (2 0 1) 12 3 13 (10 (11 4 (7 5 6) 8) 9))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,3,10" data-semantic-content="12,13" data-semantic- data-semantic-owns="2 12 3 13 10" data-semantic-role="implicit" data-semantic-speech="normal upper K 2 upper C o left parenthesis upper S e upper O 3 right parenthesis Subscript 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="14" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-m
利用磁学、热力学、中子衍射和非弹性中子散射研究了易轴𝑋𝑋𝑍三角晶格磁体 K2Co(SeO3)2中的自旋相关性。尽管存在准二维 "超固 "磁序,但低能激发光谱并不包含尖锐的模式,而是一个宽泛而结构化的多粒子连续体。施加弱磁场会使系统进入 𝑚=1/3 分数磁化高原阶段,并恢复尖锐的自旋波模式。在某种程度上,零磁场时的行为可以用自旋波衰减来理解。然而,在布里渊区的𝑀点存在明显的激发最小值,这表明自旋子语言可能提供了更充分的描述,并预示着可能接近狄拉克自旋液态。
{"title":"Continuum Excitations in a Spin Supersolid on a Triangular Lattice","authors":"M. Zhu, V. Romerio, N. Steiger, S. D. Nabi, N. Murai, S. Ohira-Kawamura, K. Yu. Povarov, Y. Skourski, R. Sibille, L. Keller, Z. Yan, S. Gvasaliya, A. Zheludev","doi":"10.1103/physrevlett.133.186704","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186704","url":null,"abstract":"Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis &lt;mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 0 3 1 4 2)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2\" data-semantic-content=\"3,4\" data-semantic- data-semantic-owns=\"0 3 1 4 2\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper X upper X upper Z\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑋&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑋&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑍&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; triangular lattice magnet &lt;mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(14 (2 0 1) 12 3 13 (10 (11 4 (7 5 6) 8) 9))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3,10\" data-semantic-content=\"12,13\" data-semantic- data-semantic-owns=\"2 12 3 13 10\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper K 2 upper C o left parenthesis upper S e upper O 3 right parenthesis Subscript 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;K&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-m","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"130 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autodetachment of Diatomic Carbon Anions from Long-Lived High-Rotation Quartet States 二原子碳阴离子从长寿命高otation四元态的自分离
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1103/physrevlett.133.183001
Viviane C. Schmidt, Roman Čurík, Milan Ončák, Klaus Blaum, Sebastian George, Jürgen Göck, Manfred Grieser, Florian Grussie, Robert von Hahn, Claude Krantz, Holger Kreckel, Oldřich Novotný, Kaija Spruck, Andreas Wolf
We show that strong molecular rotation drastically modifies the autodetachment of <mjx-container ctxtmenu_counter="37" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(4 (3 0 1) 2)"><mjx-msubsup data-semantic-children="0,1,2" data-semantic-collapsed="(4 (3 0 1) 2)" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="latinletter" data-semantic-speech="normal upper C 2 Superscript minus" data-semantic-type="subsup"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>C</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.276em; margin-left: 0px;"><mjx-mo data-semantic- data-semantic-parent="4" data-semantic-role="subtraction" data-semantic-type="operator" size="s"><mjx-c>−</mjx-c></mjx-mo><mjx-spacer style="margin-top: 0.204em;"></mjx-spacer><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-math></mjx-container> ions in the lowest quartet electronic state <mjx-container ctxtmenu_counter="38" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(12 0 11 (10 (5 (4 1 2) 3) 6 7 8 9))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,10" data-semantic-content="11" data-semantic- data-semantic-owns="0 11 10" data-semantic-role="implicit" data-semantic-speech="a Superscript 4 Baseline normal upper Sigma Subscript u Superscript plus" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="12" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑎</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="12" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mmultiscripts data-semantic-children="5,6,7,8,9" data-semantic-collapsed="(10 5 6 7 8 9)" data-semantic- data-semantic-owns="5 6 7 8 9" data-semantic-parent="12" data-semantic-role="greekletter" data-semantic-type="tensor"><mjx-prescripts style="vertical-align: 0.485em;"><mjx-row><mjx-cell><mjx-mrow size="s"><mjx-mn data-semantic-font="normal" data-semantic- data-semantic-parent="10" data-semantic-role="leftsuper" data-semantic-type="number"><mjx-c>4</mjx-c></mjx-mn></mjx-mrow></mjx-cell></mjx-row><mjx-row style="height: 0.789em;"></mjx-row><mjx-row><mjx-cell><mjx-none data-semantic- data-semantic-parent="10" data-semantic-role="leftsub" data-semantic-type="empty" size="s"></mjx-none></mjx-cell></mjx-row>
我们的研究表明,强分子旋转极大地改变了 C-2 离子在最低四元电子态 𝑎4Σ+𝑢 中的自分离现象。在强旋转体系中,这种状态的电平只能通过一种被称为 "旋转辅助 "自脱的过程衰变,其理论描述是基于非局部共振模型。对于与六个旋转量子交换有关的自脱,结果再现了一个突出的、迄今为止无法解释的电子发射信号,其平均衰减时间接近 3 毫秒。
{"title":"Autodetachment of Diatomic Carbon Anions from Long-Lived High-Rotation Quartet States","authors":"Viviane C. Schmidt, Roman Čurík, Milan Ončák, Klaus Blaum, Sebastian George, Jürgen Göck, Manfred Grieser, Florian Grussie, Robert von Hahn, Claude Krantz, Holger Kreckel, Oldřich Novotný, Kaija Spruck, Andreas Wolf","doi":"10.1103/physrevlett.133.183001","DOIUrl":"https://doi.org/10.1103/physrevlett.133.183001","url":null,"abstract":"We show that strong molecular rotation drastically modifies the autodetachment of &lt;mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(4 (3 0 1) 2)\"&gt;&lt;mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper C 2 Superscript minus\" data-semantic-type=\"subsup\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;C&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.276em; margin-left: 0px;\"&gt;&lt;mjx-mo data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" size=\"s\"&gt;&lt;mjx-c&gt;−&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-spacer style=\"margin-top: 0.204em;\"&gt;&lt;/mjx-spacer&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msubsup&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; ions in the lowest quartet electronic state &lt;mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(12 0 11 (10 (5 (4 1 2) 3) 6 7 8 9))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,10\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"0 11 10\" data-semantic-role=\"implicit\" data-semantic-speech=\"a Superscript 4 Baseline normal upper Sigma Subscript u Superscript plus\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑎&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mmultiscripts data-semantic-children=\"5,6,7,8,9\" data-semantic-collapsed=\"(10 5 6 7 8 9)\" data-semantic- data-semantic-owns=\"5 6 7 8 9\" data-semantic-parent=\"12\" data-semantic-role=\"greekletter\" data-semantic-type=\"tensor\"&gt;&lt;mjx-prescripts style=\"vertical-align: 0.485em;\"&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-mrow size=\"s\"&gt;&lt;mjx-mn data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"leftsuper\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;&lt;mjx-row style=\"height: 0.789em;\"&gt;&lt;/mjx-row&gt;&lt;mjx-row&gt;&lt;mjx-cell&gt;&lt;mjx-none data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"leftsub\" data-semantic-type=\"empty\" size=\"s\"&gt;&lt;/mjx-none&gt;&lt;/mjx-cell&gt;&lt;/mjx-row&gt;","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Taylor-Proudman Constraint Explains Flows into the Tangent Cylinder 磁性泰勒-普鲁德曼约束条件解释了流入切向圆柱体的气流
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1103/physrevlett.133.184101
Alban Pothérat, Kélig Aujogue, François Debray
Tangent cylinders (TCs) have shaped our understanding of planetary dynamos and liquid cores. The Taylor-Proudman constraint creates these imaginary surfaces because of planetary rotation, separating polar and equatorial regions, but cannot explain the flows meandering through them. Here, we establish and verify experimentally that magnetic fields aligned with rotation drive flows into TCs, linked to the flows along TCs by a magnetic Taylor-Proudman constraint. This constraint explains and quantifies how magnetic fields reshape rotating flows in planetary interiors and magnetorotating flows in general.
切向圆柱体(TC)塑造了我们对行星动力和液态内核的理解。泰勒-普鲁德曼约束因行星自转而产生了这些假想表面,将极地和赤道区域分隔开来,但却无法解释在其中蜿蜒流动的现象。在这里,我们建立并通过实验验证了与自转对齐的磁场会驱动气流进入涡旋区,并通过磁泰勒-普鲁德曼约束与涡旋区沿线的气流相联系。这一约束解释并量化了磁场如何重塑行星内部的旋转流和一般的磁旋转流。
{"title":"Magnetic Taylor-Proudman Constraint Explains Flows into the Tangent Cylinder","authors":"Alban Pothérat, Kélig Aujogue, François Debray","doi":"10.1103/physrevlett.133.184101","DOIUrl":"https://doi.org/10.1103/physrevlett.133.184101","url":null,"abstract":"Tangent cylinders (TCs) have shaped our understanding of planetary dynamos and liquid cores. The Taylor-Proudman constraint creates these imaginary surfaces because of planetary rotation, separating polar and equatorial regions, but cannot explain the flows meandering through them. Here, we establish and verify experimentally that magnetic fields aligned with rotation drive flows <i>into</i> TCs, linked to the flows <i>along</i> TCs by a <i>magnetic</i> Taylor-Proudman constraint. This constraint explains and quantifies how magnetic fields reshape rotating flows in planetary interiors and magnetorotating flows in general.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"7 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltage-Controlled Synthesis of Higher Harmonics in Hybrid Josephson Junction Circuits 电压控制合成混合约瑟夫森结电路中的高次谐波
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1103/physrevlett.133.186303
L. Banszerus, W. Marshall, C. W. Andersson, T. Lindemann, M. J. Manfra, C. M. Marcus, S. Vaitiekėnas
We report measurements of the current-phase relation of two voltage-controlled semiconductor-superconductor hybrid Josephson junctions (JJs) in series. The two hybrid junctions behave similar to a single-mode JJ with effective transparency determined by the ratio of Josephson coupling strengths of the two junctions. Gate-voltage control of Josephson coupling (measured from switching currents) allows tuning of the harmonic content from sinusoidal, for asymmetric tuning, to highly nonsinusoidal, for symmetric tuning. The experimentally observed tunable harmonic content agrees with a model based on two conventional (sinusoidal) JJs in series.
我们报告了两个串联的电压控制半导体-超导体混合约瑟夫森结(JJ)的电流相位关系测量结果。这两个混合结的行为类似于单模 JJ,其有效透明度由两个结的约瑟夫森耦合强度比决定。约瑟夫森耦合的栅极电压控制(通过开关电流测量)允许对谐波内容进行调谐,从正弦(用于非对称调谐)到高度非正弦(用于对称调谐)。实验观察到的可调谐波含量与基于两个串联的传统(正弦)JJ 的模型一致。
{"title":"Voltage-Controlled Synthesis of Higher Harmonics in Hybrid Josephson Junction Circuits","authors":"L. Banszerus, W. Marshall, C. W. Andersson, T. Lindemann, M. J. Manfra, C. M. Marcus, S. Vaitiekėnas","doi":"10.1103/physrevlett.133.186303","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186303","url":null,"abstract":"We report measurements of the current-phase relation of two voltage-controlled semiconductor-superconductor hybrid Josephson junctions (JJs) in series. The two hybrid junctions behave similar to a single-mode JJ with effective transparency determined by the ratio of Josephson coupling strengths of the two junctions. Gate-voltage control of Josephson coupling (measured from switching currents) allows tuning of the harmonic content from sinusoidal, for asymmetric tuning, to highly nonsinusoidal, for symmetric tuning. The experimentally observed tunable harmonic content agrees with a model based on two conventional (sinusoidal) JJs in series.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"195 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piecewise Omnigenous Stellarators 片状全土恒星器
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1103/physrevlett.133.185101
J. L. Velasco, I. Calvo, F. J. Escoto, E. Sánchez, H. Thienpondt, F. I. Parra
In omnigenous magnetic fields, charged particles are perfectly confined in the absence of collisions and turbulence. For this reason, the magnetic configuration is optimized to be close to omnigenity in any candidate for a stellarator fusion reactor. However, approaching omnigenity imposes severe constraints on the spatial variation of the magnetic field. In particular, the topology of the contours of constant magnetic field strength on each magnetic surface must be such that there are no particles transitioning between different types of wells. This, in turn, usually leads to complicated plasma shapes and coils. This Letter presents a new family of optimized fields that display tokamak-like collisional energy transport while having transitioning particles. This result radically broadens the space of accessible reactor-relevant configurations.
在全原磁场中,带电粒子在没有碰撞和湍流的情况下被完全限制。因此,在任何候选恒星器聚变反应堆中,磁场配置都要优化到接近全原性。然而,接近全原性会对磁场的空间变化造成严重限制。特别是,每个磁表面上恒定磁场强度轮廓的拓扑结构必须确保没有粒子在不同类型的井之间过渡。这通常会导致复杂的等离子体形状和线圈。这封信介绍了一系列新的优化磁场,它们在显示类似托卡马克的碰撞能量传输的同时,还具有过渡粒子。这一结果从根本上拓宽了可获得的反应堆相关配置的空间。
{"title":"Piecewise Omnigenous Stellarators","authors":"J. L. Velasco, I. Calvo, F. J. Escoto, E. Sánchez, H. Thienpondt, F. I. Parra","doi":"10.1103/physrevlett.133.185101","DOIUrl":"https://doi.org/10.1103/physrevlett.133.185101","url":null,"abstract":"In omnigenous magnetic fields, charged particles are perfectly confined in the absence of collisions and turbulence. For this reason, the magnetic configuration is optimized to be close to omnigenity in any candidate for a stellarator fusion reactor. However, approaching omnigenity imposes severe constraints on the spatial variation of the magnetic field. In particular, the topology of the contours of constant magnetic field strength on each magnetic surface must be such that there are no particles transitioning between different types of wells. This, in turn, usually leads to complicated plasma shapes and coils. This Letter presents a new family of optimized fields that display tokamak-like collisional energy transport while having transitioning particles. This result radically broadens the space of accessible reactor-relevant configurations.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ringing Out General Relativity: Quasinormal Mode Frequencies for Black Holes of Any Spin in Modified Gravity 响彻广义相对论:修正引力中任何自旋黑洞的准正常模式频率
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1103/physrevlett.133.181401
Adrian Ka-Wai Chung, Nicolás Yunes
After black holes collide, the remnant settles to a stationary state by emitting gravitational waves. Once nonlinearities subside, these ringdown waves are dominated by exponentially damped sinusoids, or quasinormal modes. We develop a general method using perturbative spectral expansions to calculate the quasinormal-mode frequencies and damping times in a wide class of modified gravity theories for black holes with any subextremal spin. We apply this method to scalar-Gauss-Bonnet gravity to show its accuracy, thus enabling robust ringdown tests with gravitational wave data.
黑洞碰撞后,残留物会通过发射引力波沉降到静止状态。一旦非线性消退,这些环落波就会被指数阻尼正弦波(或称准正模)所主导。我们开发了一种使用扰动谱展开的通用方法,用于计算具有任何次极端自旋的黑洞的各类修正引力理论中的准正态模式频率和阻尼时间。我们将这一方法应用于标量-高斯-波奈引力,以显示其精确性,从而能够利用引力波数据进行稳健的环落测试。
{"title":"Ringing Out General Relativity: Quasinormal Mode Frequencies for Black Holes of Any Spin in Modified Gravity","authors":"Adrian Ka-Wai Chung, Nicolás Yunes","doi":"10.1103/physrevlett.133.181401","DOIUrl":"https://doi.org/10.1103/physrevlett.133.181401","url":null,"abstract":"After black holes collide, the remnant settles to a stationary state by emitting gravitational waves. Once nonlinearities subside, these ringdown waves are dominated by exponentially damped sinusoids, or quasinormal modes. We develop a general method using perturbative spectral expansions to calculate the quasinormal-mode frequencies and damping times in a wide class of modified gravity theories for black holes with any subextremal spin. We apply this method to scalar-Gauss-Bonnet gravity to show its accuracy, thus enabling robust ringdown tests with gravitational wave data.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"240 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic Magnetocrystalline Anisotropy Induced3⁢𝑚-Symmetry Dependent Field-Free Switching in Epitaxial Garnet Films 外延石榴石薄膜的本征磁晶各向异性诱导3𝑚-对称性依赖的无场切换
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1103/physrevlett.133.186703
Jintao Ke, Dalin Zhang, L. Z. Bi, Zhuolin Li, Sai Zhou, Pengju Wang, Zhaozhao Zhu, He Bai, G. S. Li, Mo Zhu, Chaoqun Hu, Ying Zhang, Yaowen Liu, J. W. Cai
The electrical control of perpendicular magnetization without the need for external magnetic fields holds significant potential for next-generation spintronic devices. In this Letter, we have identified a <mjx-container ctxtmenu_counter="41" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 2 1)"><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-owns="0 2 1" data-semantic-role="implicit" data-semantic-speech="3 m" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑚</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>-symmetry dependent field-free switching phenomenon in (111)-oriented <mjx-container ctxtmenu_counter="42" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5,8" data-semantic-content="9,10" data-semantic- data-semantic-owns="2 9 5 10 8" data-semantic-role="implicit" data-semantic-speech="upper T m 3 upper F e 5 normal upper O 12" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">T</mjx-c><mjx-c style="padding-top: 0.657em;">m</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="s
无需外部磁场即可对垂直磁化进行电控制,这为下一代自旋电子器件带来了巨大潜力。在这封信中,我们发现了一种依赖于 3𝑚 对称性的无磁场开关现象,这种现象存在于铂 (Pt) 层覆盖的 (111) 取向 Tm3Fe5O12 单晶薄膜中。我们证明,对于具有立方结构的(111)取向磁性薄膜,这一独特性质是由于磁晶各向异性(MCA)的镜像对称性被自发打破而产生的,当磁化位于(111)平面时,这将导致局部面外 MCA 有效场与方位角呈 3𝑚 对称关系。基于宏观自旋模型和微磁理论的数值模拟验证了在这种 MCA 有效场作用下观察到的无磁场切换。我们的发现不仅强调了固有 MCA 在实现无磁场磁化切换中的作用,还丰富了对基本切换动力学的基本理解。
{"title":"Intrinsic Magnetocrystalline Anisotropy Induced3⁢𝑚-Symmetry Dependent Field-Free Switching in Epitaxial Garnet Films","authors":"Jintao Ke, Dalin Zhang, L. Z. Bi, Zhuolin Li, Sai Zhou, Pengju Wang, Zhaozhao Zhu, He Bai, G. S. Li, Mo Zhu, Chaoqun Hu, Ying Zhang, Yaowen Liu, J. W. Cai","doi":"10.1103/physrevlett.133.186703","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186703","url":null,"abstract":"The electrical control of perpendicular magnetization without the need for external magnetic fields holds significant potential for next-generation spintronic devices. In this Letter, we have identified a &lt;mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 2 1)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"3 m\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑚&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-symmetry dependent field-free switching phenomenon in (111)-oriented &lt;mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5,8\" data-semantic-content=\"9,10\" data-semantic- data-semantic-owns=\"2 9 5 10 8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper T m 3 upper F e 5 normal upper O 12\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;T&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;m&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"s","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"87 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strange Metal and Superconductor in the Two-Dimensional Yukawa-Sachdev-Ye-Kitaev Model 二维汤川-萨克德夫-叶-基塔耶夫模型中的奇异金属和超导体
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1103/physrevlett.133.186502
Chenyuan Li, Davide Valentinis, Aavishkar A. Patel, Haoyu Guo, Jörg Schmalian, Subir Sachdev, Ilya Esterlis
The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2D-YSYK) model provides a universal theory of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent disorder averaged analysis of the 2D-YSYK model in both the normal and superconducting states, obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness. Our results reproduce key aspects of observations in the cuprates as analyzed by Michon et al. [Nat. Commun. 14, 3033 (2023)]. We also find a regime of increasing zero temperature superfluid stiffness with decreasing superconducting critical temperature, as is observed in bulk cuprates.
二维汤川-萨克德夫-叶-基塔耶夫(2D-YSYK)模型提供了在量子临界点局部位置存在淬火随机空间波动的情况下金属量子相变的通用理论。它的费米面通过空间随机尤卡瓦相互作用与标量场耦合。我们提出了对正常态和超导态的二维 YSYK 模型进行自洽无序平均分析的完整数值解,获得了电子频谱函数、频率相关电导率和超流体刚度。我们的结果再现了 Michon 等人在铜氧化物中观察到的关键方面[Nat.我们还发现零温超流体刚度随着超导临界温度的降低而增加,就像在块状铜氧化物中观察到的那样。
{"title":"Strange Metal and Superconductor in the Two-Dimensional Yukawa-Sachdev-Ye-Kitaev Model","authors":"Chenyuan Li, Davide Valentinis, Aavishkar A. Patel, Haoyu Guo, Jörg Schmalian, Subir Sachdev, Ilya Esterlis","doi":"10.1103/physrevlett.133.186502","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186502","url":null,"abstract":"The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2D-YSYK) model provides a universal theory of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent disorder averaged analysis of the 2D-YSYK model in both the normal and superconducting states, obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness. Our results reproduce key aspects of observations in the cuprates as analyzed by Michon <i>et al.</i> [<span>Nat. Commun.</span> <b>14</b>, 3033 (2023)]. We also find a regime of increasing zero temperature superfluid stiffness with decreasing superconducting critical temperature, as is observed in bulk cuprates.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"87 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Disorder in the Intrinsic Orbital Hall Effect 紊乱在本征轨道霍尔效应中的作用
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1103/physrevlett.133.186302
Ping Tang, Gerrit E. W. Bauer
The orbital Hall effect (OHE) has garnered much attention as a promising approach to realize highly efficient “orbitronic” devices with a wide range of materials. However, the existing theories that attempt to explain the experimental evidence focus on the intrinsic effect, neglecting the omnipresent disorder. Here, we formulate the impact of random defect scattering on the orbital Hall effect by a quantum Boltzmann equation and solve it for a generic two-band model including the in-scattering collision integral (vertex correction). In contrast to the common belief that the intrinsic OHE is robust against the disorder, we find that diffuse scattering by an arbitrarily weak disorder affects and can even fully suppress the intrinsic orbital Hall current, depending on the character of orbital states and the disorder.
轨道霍尔效应(OHE)作为利用各种材料实现高效 "轨道电子 "器件的一种有前途的方法,已经引起了广泛关注。然而,试图解释实验证据的现有理论只关注内在效应,而忽视了无处不在的无序性。在这里,我们用量子玻尔兹曼方程来阐述随机缺陷散射对轨道霍尔效应的影响,并对包括散射内碰撞积分(顶点修正)在内的通用双波段模型进行求解。与一般认为本征轨道霍尔效应不受无序影响的观点不同,我们发现任意弱无序的弥散散射会影响甚至完全抑制本征轨道霍尔电流,这取决于轨道态的特性和无序程度。
{"title":"Role of Disorder in the Intrinsic Orbital Hall Effect","authors":"Ping Tang, Gerrit E. W. Bauer","doi":"10.1103/physrevlett.133.186302","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186302","url":null,"abstract":"The orbital Hall effect (OHE) has garnered much attention as a promising approach to realize highly efficient “orbitronic” devices with a wide range of materials. However, the existing theories that attempt to explain the experimental evidence focus on the intrinsic effect, neglecting the omnipresent disorder. Here, we formulate the impact of random defect scattering on the orbital Hall effect by a quantum Boltzmann equation and solve it for a generic two-band model including the in-scattering collision integral (vertex correction). In contrast to the common belief that the intrinsic OHE is robust against the disorder, we find that diffuse scattering by an <i>arbitrarily</i> weak disorder affects and can even fully suppress the intrinsic orbital Hall current, depending on the character of orbital states and the disorder.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect Dipole Asymmetry Response Induces Electrobending Deformation in Thin Piezoceramics 缺陷偶极不对称响应诱发薄压电陶瓷的电弯曲变形
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1103/physrevlett.133.186802
Shuo Tian, Bin Li, Yejing Dai
Ultrahigh electrostrains (<mjx-container ctxtmenu_counter="7" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 (4 3 0 1) 2)"><mjx-mrow data-semantic-children="4,2" data-semantic-content="2" data-semantic- data-semantic-owns="4 2" data-semantic-role="endpunct" data-semantic-speech="greater than 1 percent sign" data-semantic-type="punctuated"><mjx-mrow data-semantic-added="true" data-semantic-children="3,1" data-semantic-content="0" data-semantic- data-semantic-owns="3 0 1" data-semantic-parent="5" data-semantic-role="inequality" data-semantic-type="relseq"><mjx-mrow data-semantic-added="true" data-semantic- data-semantic-parent="4" data-semantic-role="unknown" data-semantic-type="empty"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="relseq,>" data-semantic-parent="4" data-semantic-role="inequality" data-semantic-type="relation"><mjx-c>></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" space="4"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow><mjx-mi data-semantic- data-semantic-operator="punctuated" data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="punctuation"><mjx-c>%</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>) in several piezoceramic systems have been reported since 2022, which attracts more and more interest in the field of piezoelectricity; however, the mechanism is still unclear. Here, in nonstoichiometric <mjx-container ctxtmenu_counter="8" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(17 (12 (10 0 (9 (3 1 2) 8 (6 4 5)) 7) 11) 16 (15 13 14))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="12,15" data-semantic-content="16" data-semantic- data-semantic-owns="12 16 15" data-semantic-role="implicit" data-semantic-speech="left parenthesis normal upper K 0.48 upper N a 0.52 right parenthesis Subscript 0.99 Baseline upper N b upper O 2.995" data-semantic-type="infixop"><mjx-msub data-semantic-children="10,11" data-semantic- data-semantic-owns="10 11" data-semantic-parent="17" data-semantic-role="leftright" data-semantic-type="subscript"><mjx-mrow data-semantic-children="9" data-semantic-content="0,7" data-semantic- data-semantic-owns="0 9 7" data-semantic-parent="12" data-semantic-role="leftright" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="10" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:unit" data-semantic-children="3,6" data-semantic-content="8" data-semantic- data-semantic-owns="3 8 6" data-semantic-parent="10"
自 2022 年以来,一些压电陶瓷体系中的超高电应变(>1%)已被报道,这引起了压电领域越来越多的兴趣;然而,其机理仍不清楚。在这里,我们在非全度(K0.48Na0.52)0.99NbO2.995 陶瓷中直接观察到了一种新的电场诱导弯曲(电弯曲)现象,在 ±50 kV cm-1 的电场下,该现象直观地表现出凹凸交替的形变,从而导致测量到的超高电应变。研究表明,电弯曲变形源于陶瓷上下表层的取向缺陷偶极子在电场作用下拉伸或压缩所产生的不同应力。因此,在室温下获得了 31.8% 的巨大表观电应变。我们的发现是对凝聚态物理学领域的重要补充和完善,同时也为未来高性能致动器和智能设备的设计提供了新的策略和启示。
{"title":"Defect Dipole Asymmetry Response Induces Electrobending Deformation in Thin Piezoceramics","authors":"Shuo Tian, Bin Li, Yejing Dai","doi":"10.1103/physrevlett.133.186802","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186802","url":null,"abstract":"Ultrahigh electrostrains (&lt;mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 (4 3 0 1) 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"4 2\" data-semantic-role=\"endpunct\" data-semantic-speech=\"greater than 1 percent sign\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"3 0 1\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,&gt;\" data-semantic-parent=\"4\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"&gt;&lt;mjx-c&gt;&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mi data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;%&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) in several piezoceramic systems have been reported since 2022, which attracts more and more interest in the field of piezoelectricity; however, the mechanism is still unclear. Here, in nonstoichiometric &lt;mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(17 (12 (10 0 (9 (3 1 2) 8 (6 4 5)) 7) 11) 16 (15 13 14))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"12,15\" data-semantic-content=\"16\" data-semantic- data-semantic-owns=\"12 16 15\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis normal upper K 0.48 upper N a 0.52 right parenthesis Subscript 0.99 Baseline upper N b upper O 2.995\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"10,11\" data-semantic- data-semantic-owns=\"10 11\" data-semantic-parent=\"17\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"0,7\" data-semantic- data-semantic-owns=\"0 9 7\" data-semantic-parent=\"12\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;(&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,6\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"3 8 6\" data-semantic-parent=\"10\" ","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical review letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1