Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.188301
Chul-Ung Woo, Jae Dong Noh
We report a motility-induced pinning transition in the active Ising model for a self-propelled particle system with discrete symmetry. This model was known to exhibit a liquid-gas type flocking phase transition, but a recent study reveals that the polar order is metastable due to droplet excitation. Using extensive Monte Carlo simulations, we demonstrate that, for an intermediate alignment interaction strength, the steady state is characterized by traveling local domains, which renders the polar order short-ranged in both space and time. We further demonstrate that interfaces between colliding domains become pinned as the alignment interaction strength increases. A resonating back-and-forth motion of individual self-propelled particles across interfaces is identified as a mechanism for the pinning. We present a numerical phase diagram for the motility-induced pinning transition, and an approximate analytic theory for the growth and shrink dynamics of pinned interfaces. Our results show that pinned interfaces grow to a macroscopic size preventing the polar order in the regime where the particle diffusion rate is sufficiently smaller than the self-propulsion rate. The growth behavior in the opposite regime and its implications on the polar order remain unresolved and require further investigation.
{"title":"Motility-Induced Pinning in Flocking System with Discrete Symmetry","authors":"Chul-Ung Woo, Jae Dong Noh","doi":"10.1103/physrevlett.133.188301","DOIUrl":"https://doi.org/10.1103/physrevlett.133.188301","url":null,"abstract":"We report a motility-induced pinning transition in the active Ising model for a self-propelled particle system with discrete symmetry. This model was known to exhibit a liquid-gas type flocking phase transition, but a recent study reveals that the polar order is metastable due to droplet excitation. Using extensive Monte Carlo simulations, we demonstrate that, for an intermediate alignment interaction strength, the steady state is characterized by traveling local domains, which renders the polar order short-ranged in both space and time. We further demonstrate that interfaces between colliding domains become pinned as the alignment interaction strength increases. A resonating back-and-forth motion of individual self-propelled particles across interfaces is identified as a mechanism for the pinning. We present a numerical phase diagram for the motility-induced pinning transition, and an approximate analytic theory for the growth and shrink dynamics of pinned interfaces. Our results show that pinned interfaces grow to a macroscopic size preventing the polar order in the regime where the particle diffusion rate is sufficiently smaller than the self-propulsion rate. The growth behavior in the opposite regime and its implications on the polar order remain unresolved and require further investigation.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"111 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.186602
Tianhong Lu, Luiz H. Santos
The discovery of fractional Chern insulators (FCIs) in twisted bilayer <mjx-container ctxtmenu_counter="59" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-mrow><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper M o upper T e 2" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">M</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">o</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">T</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> has sparked significant interest in fractional topological matter without external magnetic fields. Unlike the flat dispersion of Landau levels, moiré electronic states are influenced by lattice effects within a nanometer-scale superlattice. This Letter examines the impact of these lattice effects on the topological phases in twisted bilayer <mjx-container ctxtmenu_counter="60" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-mrow><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper M o upper T e 2" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">M</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">o</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">T</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, uncovering a family of FCIs with Abelian anyonic quasiparticles. Using a composite fermion approach, we identify a sequence of FCIs with fractional Hall conductivities <mjx-container ctxtmenu_counter="61" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><
{"title":"Fractional Chern Insulators in Twisted BilayerMoTe2: A Composite Fermion Perspective","authors":"Tianhong Lu, Luiz H. Santos","doi":"10.1103/physrevlett.133.186602","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186602","url":null,"abstract":"The discovery of fractional Chern insulators (FCIs) in twisted bilayer <mjx-container ctxtmenu_counter=\"59\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper T e 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">o</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">T</mjx-c><mjx-c style=\"padding-top: 0.657em;\">e</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> has sparked significant interest in fractional topological matter without external magnetic fields. Unlike the flat dispersion of Landau levels, moiré electronic states are influenced by lattice effects within a nanometer-scale superlattice. This Letter examines the impact of these lattice effects on the topological phases in twisted bilayer <mjx-container ctxtmenu_counter=\"60\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper T e 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">o</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">T</mjx-c><mjx-c style=\"padding-top: 0.657em;\">e</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, uncovering a family of FCIs with Abelian anyonic quasiparticles. Using a composite fermion approach, we identify a sequence of FCIs with fractional Hall conductivities <mjx-container ctxtmenu_counter=\"61\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.186701
Patrick Härtl, Matthias Vogt, Markus Leisegang, Gustav Bihlmayer, Stefan Blügel, Matthias Bode
Centrosymmetric bulk magnets made of layered Gd intermetallics had been discovered recently to exhibit helical spin spirals with a wavelength of <mjx-container ctxtmenu_counter="21" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math breakable="true" data-semantic-children="6,2,3,4" data-semantic-collapsed="(10 (c 7 8 9) 6 2 3 4)" data-semantic- data-semantic-owns="6 2 3 4" data-semantic-role="text" data-semantic-speech="almost equals 2 n m" data-semantic-structure="(10 (6 5 0 1) 2 3 4)" data-semantic-type="punctuated"><mjx-mrow data-semantic-added="true" data-semantic-children="5,1" data-semantic-content="0" data-semantic- data-semantic-owns="5 0 1" data-semantic-parent="10" data-semantic-role="equality" data-semantic-type="relseq" inline-breaks="true"><mjx-mrow data-semantic-added="true" data-semantic- data-semantic-parent="6" data-semantic-role="unknown" data-semantic-type="empty"></mjx-mrow><mjx-break size="0"></mjx-break><mjx-mo data-semantic- data-semantic-operator="relseq,≈" data-semantic-parent="6" data-semantic-role="equality" data-semantic-type="relation"><mjx-c>≈</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number" space="4"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic- data-semantic-parent="10" data-semantic-role="space" data-semantic-type="text" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;" variant="-explicitFont"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic- data-semantic-parent="10" data-semantic-role="space" data-semantic-type="text" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;" variant="-explicitFont"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="10" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.485em;">n</mjx-c><mjx-c style="padding-top: 0.485em;">m</mjx-c></mjx-mi></mjx-math></mjx-container> that transform into skyrmion lattices at certain magnetic fields. Here we report on the observation of a spin spiral state at the Gd(0001) surface. Spin-polarized scanning tunneling microscopy images show striped regions with a periodicity of about 2 nm. These stripes rearrange upon application of an external magnetic field, thereby unambiguously confirming their magnetic origin. Density functional theory calculations explain that competing exchange interactions in the surface layer of Gd(0001) together with a magnetovolume fine-tuning of the exchange intera
{"title":"Spin Spiral State at a Ferromagnetic Gd Vacuum Interface","authors":"Patrick Härtl, Matthias Vogt, Markus Leisegang, Gustav Bihlmayer, Stefan Blügel, Matthias Bode","doi":"10.1103/physrevlett.133.186701","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186701","url":null,"abstract":"Centrosymmetric bulk magnets made of layered Gd intermetallics had been discovered recently to exhibit helical spin spirals with a wavelength of <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"6,2,3,4\" data-semantic-collapsed=\"(10 (c 7 8 9) 6 2 3 4)\" data-semantic- data-semantic-owns=\"6 2 3 4\" data-semantic-role=\"text\" data-semantic-speech=\"almost equals 2 n m\" data-semantic-structure=\"(10 (6 5 0 1) 2 3 4)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"5,1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"5 0 1\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-break size=\"0\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>≈</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.485em;\">n</mjx-c><mjx-c style=\"padding-top: 0.485em;\">m</mjx-c></mjx-mi></mjx-math></mjx-container> that transform into skyrmion lattices at certain magnetic fields. Here we report on the observation of a spin spiral state at the Gd(0001) surface. Spin-polarized scanning tunneling microscopy images show striped regions with a periodicity of about 2 nm. These stripes rearrange upon application of an external magnetic field, thereby unambiguously confirming their magnetic origin. Density functional theory calculations explain that competing exchange interactions in the surface layer of Gd(0001) together with a magnetovolume fine-tuning of the exchange intera","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"36 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.185001
Alimohammed Kachwala, Mansoure Moeini Rizi, Christopher M. Pierce, Daniele Filippetto, Jared Maxson, Siddharth Karkare
In this Letter we demonstrate the use of plasmonic focusing in conjunction with nonlinear photoemission to develop geometrically flat nanoscale electron sources with less than 40 pm-rad root mean squared (rms) normalized transverse emittance. Circularly polarized light is incident on a gold Archimedean spiral structure to generate surface-plasmon polaritons that interfere coherently at the center resulting in a 50 nm rms emission area. Such a nanostructured flat surface enables simultaneous spatiotemporal confinement of emitted electrons at the nanometer and femtosecond level and can be used as an advanced electron source for high-repetition-rate ultrafast electron diffraction and microscopy experiments as well as the next generation of miniaturized particle accelerators.
{"title":"Harnessing Plasmonic Interference for Nanoscale Ultrafast Electron Sources","authors":"Alimohammed Kachwala, Mansoure Moeini Rizi, Christopher M. Pierce, Daniele Filippetto, Jared Maxson, Siddharth Karkare","doi":"10.1103/physrevlett.133.185001","DOIUrl":"https://doi.org/10.1103/physrevlett.133.185001","url":null,"abstract":"In this Letter we demonstrate the use of plasmonic focusing in conjunction with nonlinear photoemission to develop geometrically flat nanoscale electron sources with less than 40 pm-rad root mean squared (rms) normalized transverse emittance. Circularly polarized light is incident on a gold Archimedean spiral structure to generate surface-plasmon polaritons that interfere coherently at the center resulting in a 50 nm rms emission area. Such a nanostructured flat surface enables simultaneous spatiotemporal confinement of emitted electrons at the nanometer and femtosecond level and can be used as an advanced electron source for high-repetition-rate ultrafast electron diffraction and microscopy experiments as well as the next generation of miniaturized particle accelerators.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"21 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.183802
Gianlorenzo Massaro, Francesco V. Pepe, Milena D’Angelo
Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution. However, state-of-the-art protocols are characterized by an intrinsic trade-off imposing to sacrifice either resolution or image acquisition speed. We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques, both scanning and snapshot. The proposed approach also opens possibilities that are not otherwise achievable, such as sharper imaging and natural filtering of broadband spectral components that would otherwise hide the spectrum of interest. The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices and open up new application scenarios.
{"title":"Correlation Hyperspectral Imaging","authors":"Gianlorenzo Massaro, Francesco V. Pepe, Milena D’Angelo","doi":"10.1103/physrevlett.133.183802","DOIUrl":"https://doi.org/10.1103/physrevlett.133.183802","url":null,"abstract":"Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution. However, state-of-the-art protocols are characterized by an intrinsic trade-off imposing to sacrifice either resolution or image acquisition speed. We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques, both scanning and snapshot. The proposed approach also opens possibilities that are not otherwise achievable, such as sharper imaging and natural filtering of broadband spectral components that would otherwise hide the spectrum of interest. The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices and open up new application scenarios.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.182501
Y. Alhassid, M. Bonett-Matiz, C. N. Gilbreth, S. Vartak
Nuclear energy levels are usually calculated using conventional diagonalization methods in the framework of the configuration-interaction (CI) shell model but these methods are prohibited in very large model spaces. The shell model Monte Carlo (SMMC) method is a powerful technique for calculating thermal and ground-state observables of nuclei in very large model spaces, but it is challenging to extract nuclear spectra in this approach. We present a novel method to extract within SMMC low-lying energy levels for given values of a set of good quantum numbers such as spin and parity. The method is based on imaginary-time correlation matrices (ITCMs) of one-body densities that satisfy asymptotically a generalized eigenvalue problem. We validate the method in a light nucleus that allows comparison with exact diagonalization results of the CI shell-model Hamiltonian. The method is broadly applicable to quantum many-body systems in other disciplines.
核能级通常是在构型-相互作用(CI)壳模型框架内使用传统的对角化方法计算的,但这些方法在非常大的模型空间中是被禁止的。壳模型蒙特卡洛(SMMC)方法是在超大模型空间中计算核的热态和基态观测值的强大技术,但在这种方法中提取核光谱具有挑战性。我们提出了一种在 SMMC 中提取自旋和奇偶性等一组良好量子数给定值的低洼能级的新方法。该方法基于单体密度的虚时相关矩阵(ITCM),该矩阵近似满足广义特征值问题。我们在轻核中验证了该方法,并将其与 CI 壳模型哈密顿的精确对角化结果进行了比较。该方法广泛适用于其他学科的量子多体系统。
{"title":"Extraction of Spectra in the Shell Model Monte Carlo Method Using Imaginary-Time Correlation Matrices","authors":"Y. Alhassid, M. Bonett-Matiz, C. N. Gilbreth, S. Vartak","doi":"10.1103/physrevlett.133.182501","DOIUrl":"https://doi.org/10.1103/physrevlett.133.182501","url":null,"abstract":"Nuclear energy levels are usually calculated using conventional diagonalization methods in the framework of the configuration-interaction (CI) shell model but these methods are prohibited in very large model spaces. The shell model Monte Carlo (SMMC) method is a powerful technique for calculating thermal and ground-state observables of nuclei in very large model spaces, but it is challenging to extract nuclear spectra in this approach. We present a novel method to extract within SMMC low-lying energy levels for given values of a set of good quantum numbers such as spin and parity. The method is based on imaginary-time correlation matrices (ITCMs) of one-body densities that satisfy asymptotically a generalized eigenvalue problem. We validate the method in a light nucleus that allows comparison with exact diagonalization results of the CI shell-model Hamiltonian. The method is broadly applicable to quantum many-body systems in other disciplines.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"316 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.185301
Armin Mengel, Franz X. Bronold, Franko Greiner
In any physical system where a surface is hit by electrons, the sticking probability <mjx-container ctxtmenu_counter="26" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="s" data-semantic-type="identifier"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container> of the electrons is a central parameter governing, for example, the charging of the surface. For dielectrics, it could previously only be measured for high energies (<mjx-container ctxtmenu_counter="27" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 (6 5 0 1) 2 3 4)"><mjx-mrow data-semantic-children="6,2,3,4" data-semantic-collapsed="(10 (c 7 8 9) 6 2 3 4)" data-semantic- data-semantic-owns="6 2 3 4" data-semantic-role="text" data-semantic-speech="greater than 100 e upper V" data-semantic-type="punctuated"><mjx-mrow data-semantic-added="true" data-semantic-children="5,1" data-semantic-content="0" data-semantic- data-semantic-owns="5 0 1" data-semantic-parent="10" data-semantic-role="inequality" data-semantic-type="relseq"><mjx-mrow data-semantic-added="true" data-semantic- data-semantic-parent="6" data-semantic-role="unknown" data-semantic-type="empty"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="relseq,>" data-semantic-parent="6" data-semantic-role="inequality" data-semantic-type="relation"><mjx-c>></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number" space="4"><mjx-c noic="true" style="padding-top: 0.642em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.642em;">0</mjx-c><mjx-c style="padding-top: 0.642em;">0</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic- data-semantic-parent="10" data-semantic-role="space" data-semantic-type="text" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;" variant="-explicitFont"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic- data-semantic-parent="10" data-semantic-role="space" data-semantic-type="text" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;" variant="-explicitFont"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="10" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.657em;">e</mjx-c
在任何表面受到电子撞击的物理系统中,电子的粘滞概率𝑠都是控制表面充电等的核心参数。对于电介质来说,以前只能测量高能量(100 eV),而对于金属来说,即使只有几 eV 的能量,𝑠 也是众所周知的。通过对低压等离子体鞘中的微粒子进行精确的电荷测量,发现二氧化硅和镀金粒子之间存在电荷差异,首次挑战了尘埃等离子体物理学中长期存在的电介质粒子和金属粒子以相同方式充电的假设。根据测量到的电荷差异,得到了二氧化硅的低能粘滞系数,从而验证了理论预测,并为电介质材料的低能电子粘滞提供了一种新的诊断方法。
{"title":"Evidence of Different Charging Behavior of Conductive and Dielectric Materials in Low-Temperature Plasmas and a New Diagnostic for Low-Energy Electron Absorption","authors":"Armin Mengel, Franz X. Bronold, Franko Greiner","doi":"10.1103/physrevlett.133.185301","DOIUrl":"https://doi.org/10.1103/physrevlett.133.185301","url":null,"abstract":"In any physical system where a surface is hit by electrons, the sticking probability <mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"s\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container> of the electrons is a central parameter governing, for example, the charging of the surface. For dielectrics, it could previously only be measured for high energies (<mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(10 (6 5 0 1) 2 3 4)\"><mjx-mrow data-semantic-children=\"6,2,3,4\" data-semantic-collapsed=\"(10 (c 7 8 9) 6 2 3 4)\" data-semantic- data-semantic-owns=\"6 2 3 4\" data-semantic-role=\"text\" data-semantic-speech=\"greater than 100 e upper V\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"5,1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"5 0 1\" data-semantic-parent=\"10\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,>\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">e</mjx-c","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"240 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.186702
Bin Shen, Franziska Breitner, Philipp Gegenwart, Anton Jesche
The performance of permanent magnets is intricately tied to their magnetic hysteresis loop. In this study, we investigate the heavy-fermion ferromagnet CeAgSb2 through magnetization measurements under uniaxial stress. We observe a 2400% increase in magnetic coercivity with just a modest stress of approximately 1 kbar. This effect persists even after pressure release, attributable to stress-induced defects that efficiently pin domain walls. Other magnetic properties such as ordering temperature and saturation moment exhibit only weak pressure dependencies and display full reversibility. Our findings offer a promising route for increasing coercive field strength and enhancing the energy product in ferromagnetic materials and are potentially applicable to a broad spectrum of commercial or emerging magnetic applications.
{"title":"Strong Enhancement of Magnetic Coercivity Induced by Uniaxial Stress","authors":"Bin Shen, Franziska Breitner, Philipp Gegenwart, Anton Jesche","doi":"10.1103/physrevlett.133.186702","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186702","url":null,"abstract":"The performance of permanent magnets is intricately tied to their magnetic hysteresis loop. In this study, we investigate the heavy-fermion ferromagnet <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C e upper A g upper S b 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">e</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">A</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">g</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">S</mjx-c><mjx-c style=\"padding-top: 0.706em;\">b</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.27em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> through magnetization measurements under uniaxial stress. We observe a 2400% increase in magnetic coercivity with just a modest stress of approximately 1 kbar. This effect persists even after pressure release, attributable to stress-induced defects that efficiently pin domain walls. Other magnetic properties such as ordering temperature and saturation moment exhibit only weak pressure dependencies and display full reversibility. Our findings offer a promising route for increasing coercive field strength and enhancing the energy product in ferromagnetic materials and are potentially applicable to a broad spectrum of commercial or emerging magnetic applications.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"20 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1103/physrevlett.133.186801
Liu Yang, Lei Li, Zhi-Ming Yu, Menghao Wu, Yugui Yao
The pursuit for “ferroelectric metal,” which combines seemingly incompatible spontaneous electric polarization and metallicity, has been assiduously ongoing but remains elusive. Unlike traditional ferroelectrics with a wide band gap, ferroelectric (FE) metals can naturally incorporate nontrivial band topology near the Fermi level, endowing them with additional exotic properties. Here, we show first-principles evidence that the metallic <mjx-container ctxtmenu_counter="22" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-mrow><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper P t upper B i 2" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">P</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">t</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">B</mjx-c><mjx-c style="padding-top: 0.673em;">i</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> monolayer is an intrinsic two-dimensional (2D) topological FE metal, characterized by out-of-plane polarization and a moderate switching barrier. Moreover, it exhibits a topologically nontrivial electronic structure with <mjx-container ctxtmenu_counter="23" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="numbersetletter" data-semantic-speech="double struck upper Z 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="double-struck" data-semantic- data-semantic-parent="2" data-semantic-role="numbersetletter" data-semantic-type="identifier"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> invariant equal to 1, leading to a significant FE bulk photovoltaic effect. A slight strain can further enhance this effect to a remarkable level, which far surpasses that of previously reported 2D and 3D FE materials. Our Letter provides an important step toward realizing intrinsic monolayer topological FE metals and paves a
"铁电金属 "结合了看似不相容的自发电极化和金属性,人们一直在孜孜不倦地追求这种金属,但始终未能如愿。与具有宽带隙的传统铁电体不同,铁电(FE)金属可以在费米级附近自然地结合非奇异的带拓扑结构,从而赋予它们额外的奇异特性。在此,我们展示了第一原理证据,证明金属铂硼单层是一种本征二维拓扑铁电金属,具有平面外极化和适度开关势垒的特征。此外,它还表现出一种ℤ2 不变量等于 1 的拓扑非三维电子结构,从而产生了显著的 FE 体光伏效应。轻微的应变可进一步增强这种效应,使其达到一个显著的水平,远远超过之前报道的二维和三维 FE 材料。我们的研究为实现本征单层拓扑 FE 金属迈出了重要一步,并为未来的非线性光学器件铺平了道路。
{"title":"Two-Dimensional Topological Ferroelectric Metal with Giant Shift Current","authors":"Liu Yang, Lei Li, Zhi-Ming Yu, Menghao Wu, Yugui Yao","doi":"10.1103/physrevlett.133.186801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186801","url":null,"abstract":"The pursuit for “ferroelectric metal,” which combines seemingly incompatible spontaneous electric polarization and metallicity, has been assiduously ongoing but remains elusive. Unlike traditional ferroelectrics with a wide band gap, ferroelectric (FE) metals can naturally incorporate nontrivial band topology near the Fermi level, endowing them with additional exotic properties. Here, we show first-principles evidence that the metallic <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper P t upper B i 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">P</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">t</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">B</mjx-c><mjx-c style=\"padding-top: 0.673em;\">i</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> monolayer is an intrinsic two-dimensional (2D) topological FE metal, characterized by out-of-plane polarization and a moderate switching barrier. Moreover, it exhibits a topologically nontrivial electronic structure with <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> invariant equal to 1, leading to a significant FE bulk photovoltaic effect. A slight strain can further enhance this effect to a remarkable level, which far surpasses that of previously reported 2D and 3D FE materials. Our Letter provides an important step toward realizing intrinsic monolayer topological FE metals and paves a","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"42 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}