The primary challenge in advancing practical quantum technology is the presence of noise, which can lead to decoherence and undermine the advantages of quantum systems. However, it is worth noting that noise can also contain information that can be harnessed to improve performance in certain quantum information tasks. This has been explored for specific types of noise, but the full potential of informative noise within general dynamics remains largely unknown. Here we demonstrate that informative noise can be transformed into a valuable resource for enhancing precision limits in quantum metrology. We provide necessary and sufficient conditions under which the precision achieved in the presence of informative noise can attain Heisenberg scaling. Our research offers a fresh perspective on the role of noise in quantum metrology and opens up avenues for achieving higher precision beyond the previously anticipated ultimate limit.
{"title":"Quantum Metrology Enhanced by Leveraging Informative Noise with Error Correction","authors":"Hongzhen Chen, Yu Chen, Jing Liu, Zibo Miao, Haidong Yuan","doi":"10.1103/physrevlett.133.190801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.190801","url":null,"abstract":"The primary challenge in advancing practical quantum technology is the presence of noise, which can lead to decoherence and undermine the advantages of quantum systems. However, it is worth noting that noise can also contain information that can be harnessed to improve performance in certain quantum information tasks. This has been explored for specific types of noise, but the full potential of informative noise within general dynamics remains largely unknown. Here we demonstrate that informative noise can be transformed into a valuable resource for enhancing precision limits in quantum metrology. We provide necessary and sufficient conditions under which the precision achieved in the presence of informative noise can attain Heisenberg scaling. Our research offers a fresh perspective on the role of noise in quantum metrology and opens up avenues for achieving higher precision beyond the previously anticipated ultimate limit.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"18 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the performance of a one-dimensional dimerized 𝑋𝑌 chain as a spin quantum battery. Such integrable model shows a rich quantum phase diagram that emerges through a mapping of the spins onto auxiliary fermionic degrees of freedom. We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization, and address the energy stored in the systems. We observe three distinct regimes, depending on the timescale characterizing the duration of the charging: a short-time regime related to the dynamics of the single dimers, a long-time regime related to the recurrence time of the system at finite size, and a thermodynamic limit time regime. In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition. Finally, we analytically prove that the three-timescale behavior and the strong dependence of the energy stored on the quantum phase diagram also hold in the quantum Ising chain in a transverse field. Our results can play a relevant role in the design of stable solid-state quantum batteries.
{"title":"Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery","authors":"Riccardo Grazi, Daniel Sacco Shaikh, Maura Sassetti, Niccoló Traverso Ziani, Dario Ferraro","doi":"10.1103/physrevlett.133.197001","DOIUrl":"https://doi.org/10.1103/physrevlett.133.197001","url":null,"abstract":"We investigate the performance of a one-dimensional dimerized <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 2 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper X upper Y\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑌</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> chain as a spin quantum battery. Such integrable model shows a rich quantum phase diagram that emerges through a mapping of the spins onto auxiliary fermionic degrees of freedom. We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization, and address the energy stored in the systems. We observe three distinct regimes, depending on the timescale characterizing the duration of the charging: a short-time regime related to the dynamics of the single dimers, a long-time regime related to the recurrence time of the system at finite size, and a thermodynamic limit time regime. In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition. Finally, we analytically prove that the three-timescale behavior and the strong dependence of the energy stored on the quantum phase diagram also hold in the quantum Ising chain in a transverse field. Our results can play a relevant role in the design of stable solid-state quantum batteries.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.198401
Francesco Puccioni, Johannes Pausch, Paul Piho, Philipp Thomas
Fractional killing in response to drugs is a hallmark of nongenetic cellular heterogeneity. Yet how individual lineages evade drug treatment, as observed in bacteria and cancer cells, is not quantitatively understood. We study a stochastic population model with age-dependent division and death rates, allowing for persistence. In periodic drug environments, we discover peaks in the survival probabilities at division or death times that are multiples of the environment duration. The survival resonances are unseen in unstructured populations and are amplified by persistence.
{"title":"Survival Resonances during Fractional Killing of Cell Populations","authors":"Francesco Puccioni, Johannes Pausch, Paul Piho, Philipp Thomas","doi":"10.1103/physrevlett.133.198401","DOIUrl":"https://doi.org/10.1103/physrevlett.133.198401","url":null,"abstract":"Fractional killing in response to drugs is a hallmark of nongenetic cellular heterogeneity. Yet how individual lineages evade drug treatment, as observed in bacteria and cancer cells, is not quantitatively understood. We study a stochastic population model with age-dependent division and death rates, allowing for persistence. In periodic drug environments, we discover peaks in the survival probabilities at division or death times that are multiples of the environment duration. The survival resonances are unseen in unstructured populations and are amplified by persistence.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"127 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum: All-Loop Result for the Strong Magnetic Field Limit of the Heisenberg-Euler Effective Lagrangian [Phys. Rev. Lett.122, 211602 (2019)]","authors":"Felix Karbstein","doi":"10.1103/physrevlett.133.199902","DOIUrl":"https://doi.org/10.1103/physrevlett.133.199902","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevLett.133.199902</span>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.198402
Jong Il Park (박종일), Deok-Sun Lee (이덕선), Sang Hoon Lee (이상훈), Hye Jin Park (박혜진)
Understanding the behaviors of ecological systems is challenging given their multifaceted complexity. To proceed, theoretical models such as Lotka-Volterra dynamics with random interactions have been investigated by the dynamical mean-field theory to provide insights into underlying principles such as how biodiversity and stability depend on the randomness in interaction strength. Yet the fully connected structures assumed in these previous studies are not realistic, as revealed by a vast amount of empirical data. We derive a generic formula for the abundance distribution under an arbitrary distribution of degree, the number of interacting neighbors, which leads to degree-dependent abundance patterns of species. Notably, in contrast to the fully interacting systems, the number of surviving species can be reduced as the community becomes cooperative in heterogeneous interaction structures. Our study, therefore, demonstrates that properly taking into account heterogeneity in the interspecific interaction structure is indispensable to understanding the diversity in large ecosystems, and our general theoretical framework can apply to a much wider range of interacting many-body systems.
{"title":"Incorporating Heterogeneous Interactions for Ecological Biodiversity","authors":"Jong Il Park (박종일), Deok-Sun Lee (이덕선), Sang Hoon Lee (이상훈), Hye Jin Park (박혜진)","doi":"10.1103/physrevlett.133.198402","DOIUrl":"https://doi.org/10.1103/physrevlett.133.198402","url":null,"abstract":"Understanding the behaviors of ecological systems is challenging given their multifaceted complexity. To proceed, theoretical models such as Lotka-Volterra dynamics with random interactions have been investigated by the dynamical mean-field theory to provide insights into underlying principles such as how biodiversity and stability depend on the randomness in interaction strength. Yet the fully connected structures assumed in these previous studies are not realistic, as revealed by a vast amount of empirical data. We derive a generic formula for the abundance distribution under an arbitrary distribution of degree, the number of interacting neighbors, which leads to degree-dependent abundance patterns of species. Notably, in contrast to the fully interacting systems, the number of surviving species can be reduced as the community becomes cooperative in heterogeneous interaction structures. Our study, therefore, demonstrates that properly taking into account heterogeneity in the interspecific interaction structure is indispensable to understanding the diversity in large ecosystems, and our general theoretical framework can apply to a much wider range of interacting many-body systems.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.190403
Patrik Penc, Cătălin Paşcu Moca, Örs Legeza, Tomaž Prosen, Gergely Zaránd, Miklós Antal Werner
Information propagation in the one-dimensional infinite temperature Hubbard model with a dissipative particle sink at the end of a semi-infinite chain is studied. In the strongly interacting limit, the two-site mutual information and the operator entanglement entropy exhibit a rich structure with two propagating information fronts and superimposed interference fringes. A classical reversible cellular automaton model quantitatively captures the transport and the slow, classical part of the correlations but fails to describe the rapidly propagating information jet. The fast quantum jet resembles coherent free particle propagation, with the accompanying long-ranged interference fringes that are exponentially damped by short-ranged spin correlations in the many-body background.
{"title":"Loss-Induced Quantum Information Jet in an Infinite Temperature Hubbard Chain","authors":"Patrik Penc, Cătălin Paşcu Moca, Örs Legeza, Tomaž Prosen, Gergely Zaránd, Miklós Antal Werner","doi":"10.1103/physrevlett.133.190403","DOIUrl":"https://doi.org/10.1103/physrevlett.133.190403","url":null,"abstract":"Information propagation in the one-dimensional infinite temperature Hubbard model with a dissipative particle sink at the end of a semi-infinite chain is studied. In the strongly interacting limit, the two-site mutual information and the operator entanglement entropy exhibit a rich structure with two propagating information fronts and superimposed interference fringes. A classical reversible cellular automaton model quantitatively captures the transport and the slow, classical part of the correlations but fails to describe the rapidly propagating information jet. The fast quantum jet resembles coherent free particle propagation, with the accompanying long-ranged interference fringes that are exponentially damped by short-ranged spin correlations in the many-body background.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"3 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.196702
Hao Zhang, Shi-Zeng Lin
We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compasslike anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field. In a unit cell, the skyrmion fractionalizes into meron composites subject to the conservation of total topological charge. Diverse multipolar phases in the phase diagram give rise to novel spontaneous Hall response of conduction electrons.
{"title":"Multipolar Skyrmion Crystals in Non-Kramers Doublet Systems","authors":"Hao Zhang, Shi-Zeng Lin","doi":"10.1103/physrevlett.133.196702","DOIUrl":"https://doi.org/10.1103/physrevlett.133.196702","url":null,"abstract":"We study the Kondo lattice model of multipolar magnetic moments interacting with conduction electrons on a triangular lattice. Bond-dependent electron hoppings induce a compasslike anisotropy in the effective Ruderman-Kittel-Kasuya-Yosida interaction between multipolar moments. This unique anisotropy stabilizes multipolar skyrmion crystals at zero magnetic field. In a unit cell, the skyrmion fractionalizes into meron composites subject to the conservation of total topological charge. Diverse multipolar phases in the phase diagram give rise to novel spontaneous Hall response of conduction electrons.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"39 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.196801
Lingyuan Gao, Laurent Bellaiche
Stacking nonpolar, monolayer materials has emerged as an effective strategy to harvest ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials. At a particular stacking sequence, interlayer charge transfer allows for the generation of out-of-plane dipole components, and the polarization magnitude and direction can be altered by an interlayer sliding. In this work, we use ab initio calculations and demonstrate that in prototype sliding ferroelectrics rhombohedrally-stacked bilayer transition metal dichalcogenides MoS2, the out-of-plane electric polarization can be robustly tuned by photoexcitation in a large range for a given sliding. Such tuning is associated with both a structural origin—i.e., photoinduced structural distortion—and a charge origin, namely, the distribution of photoexcited carriers. We elucidate different roles that photoexcitation plays in modulating sliding ferroelectricity under different light intensities, and we highlight the pivotal role of light in manipulating polarization of 2D vdW materials.
堆叠非极性单层材料已成为获取二维范德华(vdW)材料铁电性的有效策略。在特定的堆叠顺序下,层间电荷转移可产生平面外偶极子分量,极化幅度和方向可通过层间滑动来改变。在这项研究中,我们利用 ab initio 计算证明,在原型滑动铁电体斜方体堆叠双层过渡金属二掺杂物 MoS2 中,平面外电极化可以通过光激发在给定滑动的很大范围内进行稳健的调整。这种调谐既与结构有关,即光诱导的结构畸变,也与电荷有关,即光激发载流子的分布。我们阐明了光激发在不同光强度下调节滑动铁电性的不同作用,并强调了光在操纵二维 vdW 材料极化中的关键作用。
{"title":"Large Photoinduced Tuning of Ferroelectricity in Sliding Ferroelectrics","authors":"Lingyuan Gao, Laurent Bellaiche","doi":"10.1103/physrevlett.133.196801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.196801","url":null,"abstract":"Stacking nonpolar, monolayer materials has emerged as an effective strategy to harvest ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials. At a particular stacking sequence, interlayer charge transfer allows for the generation of out-of-plane dipole components, and the polarization magnitude and direction can be altered by an interlayer sliding. In this work, we use <i>ab initio</i> calculations and demonstrate that in prototype sliding ferroelectrics rhombohedrally-stacked bilayer transition metal dichalcogenides <mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper M o upper S 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">M</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">o</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, the out-of-plane electric polarization can be robustly tuned by photoexcitation in a large range for a given sliding. Such tuning is associated with both a structural origin—i.e., photoinduced structural distortion—and a charge origin, namely, the distribution of photoexcited carriers. We elucidate different roles that photoexcitation plays in modulating sliding ferroelectricity under different light intensities, and we highlight the pivotal role of light in manipulating polarization of 2D vdW materials.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"8 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevlett.133.196603
Rasoul Ghadimi, Chiranjit Mondal, Sunje Kim, Bohm-Jung Yang
The quantum valley Hall effect (QVHE) is characterized by the valley Chern number (VCN) in a way that one-dimensional (1D) chiral metallic states are guaranteed to appear at the domain walls (DW) between two domains with opposite VCN for a given valley. Although in the case of QVHE, the total Berry curvature (BC) of the system is zero, the BC distributed locally around each valley makes the VCN well defined as long as intervalley scattering is negligible. Here, we propose a new type of valley-dependent topological phenomenon that occurs when the BC is strictly zero at each momentum. Such zero Berry curvature (ZBC) QVHE is characterized by the valley Euler number (VEN) which is computed by integrating the Euler curvature around a given valley in two-dimensional (2D) systems with space-time inversion symmetry. 1D helical metallic states can be topologically protected at the DW between two domains with the opposite VENs when the DW configuration preserves either the mirror symmetry with respect to the DW or the combination of the DW space-time inversion and chiral symmetries. We establish the fundamental origin of ZBC QVHE. Also, by combining tight-binding model study and first-principles calculations, we propose stacked hexagonal bilayer lattices including ℎ-BX (𝑋=As, P) and large-angle twisted bilayer graphenes as candidate systems with robust helical DW states protected by VEN.
量子谷霍尔效应(QVHE)以谷切尔恩数(VCN)为特征,其方式是保证在给定谷切尔恩数相反的两个畴之间的畴壁(DW)上出现一维(1D)手性金属态。虽然在 QVHE 的情况下,系统的总贝里曲率(BC)为零,但只要间隔散射可以忽略不计,分布在每个谷周围的局部贝里曲率就能很好地定义 VCN。在这里,我们提出了一种新的依赖于山谷的拓扑现象,当 BC 在每个动量上严格为零时,这种现象就会出现。这种零贝里曲率(ZBC)QVHE 的特征是山谷欧拉数(VEN),它是通过对具有时空反转对称性的二维(2D)系统中给定山谷周围的欧拉曲率进行积分而计算得出的。当 DW 配置保留了相对于 DW 的镜像对称性或 DW 时空反转对称性和手性对称性的组合时,一维螺旋金属态可以在两个具有相反 VEN 的域之间的 DW 上得到拓扑保护。我们建立了 ZBC QVHE 的基本起源。同时,通过结合紧密结合模型研究和第一原理计算,我们提出了堆叠六边形双层晶格(包括 氛围-BX(𝑋=As, P)和大角度扭曲双层石墨烯)作为具有受 VEN 保护的稳健螺旋 DW 态的候选体系。
{"title":"Quantum Valley Hall Effect without Berry Curvature","authors":"Rasoul Ghadimi, Chiranjit Mondal, Sunje Kim, Bohm-Jung Yang","doi":"10.1103/physrevlett.133.196603","DOIUrl":"https://doi.org/10.1103/physrevlett.133.196603","url":null,"abstract":"The quantum valley Hall effect (QVHE) is characterized by the valley Chern number (VCN) in a way that one-dimensional (1D) chiral metallic states are guaranteed to appear at the domain walls (DW) between two domains with opposite VCN for a given valley. Although in the case of QVHE, the total Berry curvature (BC) of the system is zero, the BC distributed locally around each valley makes the VCN well defined as long as intervalley scattering is negligible. Here, we propose a new type of valley-dependent topological phenomenon that occurs when the BC is strictly zero at each momentum. Such zero Berry curvature (ZBC) QVHE is characterized by the valley Euler number (VEN) which is computed by integrating the Euler curvature around a given valley in two-dimensional (2D) systems with space-time inversion symmetry. 1D helical metallic states can be topologically protected at the DW between two domains with the opposite VENs when the DW configuration preserves either the mirror symmetry with respect to the DW or the combination of the DW space-time inversion and chiral symmetries. We establish the fundamental origin of ZBC QVHE. Also, by combining tight-binding model study and first-principles calculations, we propose stacked hexagonal bilayer lattices including <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\"><mjx-c>ℎ</mjx-c></mjx-mi></mjx-math></mjx-container>-BX (<mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper X equals upper A s\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.662em;\">A</mjx-c><mjx-c style=\"padding-top: 0.662em;\">s</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>, P) and large-angle twisted bilayer graphenes as candidate systems with robust helical DW states protected by VEN.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"14 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}