首页 > 最新文献

Physical Review B最新文献

英文 中文
Plaquette-type valence bond solid state in the𝐽1−𝐽2square-lattice Heisenberg model 𝐽1-𝐽2方格海森堡模型中的普拉克特型价键固态
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.195111
Jiale Huang, Xiangjian Qian, Mingpu Qin
We utilize density matrix renormalization group and fully augmented matrix product states (FAMPS) methods to investigate the valence bond solid (VBS) phase in the <mjx-container ctxtmenu_counter="53" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 3 (6 4 5))"><mjx-mrow data-semantic-children="2,6" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 6" data-semantic-role="subtraction" data-semantic-speech="upper J 1 minus upper J 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em; margin-left: -0.063em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>1</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mtext data-semantic-annotation="general:text" data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="7" data-semantic-role="subtraction" data-semantic-type="operator" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;" variant="-explicitFont">−</mjx-utext></mjx-mtext><mjx-msub data-semantic-children="4,5" data-semantic- data-semantic-owns="4 5" data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em; margin-left: -0.063em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> square lattice Heisenberg model. To differentiate between the columnar valence bond solid and plaquette valence bond solid (PVBS) phases, we introduce an anisotropy <mjx-container ctxtmenu_counter="54" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="greekletter" data-semantic-speech="normal upper Delta Subscript y" data-semantic-type="subscript"><mjx-mi data-seman
我们利用密度矩阵重正化群和全增强矩阵积态(FAMPS)方法研究了𝐽1-𝐽2 方晶格海森堡模型中的价键固体(VBS)相。为了区分柱状价键固相和板状价键固相(PVBS),我们在𝑦方向的近邻耦合中引入了各向异性Δ𝑦,目的是探测 VBS 相中可能存在的自发旋转对称性破缺。在计算中,我们将 FAMPS 中的键维度推至𝐷=25000,模拟了最大尺寸为 14×14 的系统。通过对截断误差的仔细推断和适当的有限尺寸缩放,以及对 VBS 二聚体阶次参数的有限 Δ𝑦 缩放分析,我们确定 VBS 相为 PVBS 类型,这意味着在 VBS 相中不存在自发的旋转对称性破缺。本文不仅证明了𝐽1-𝐽2 方晶格海森堡模型中存在 PVBS 有序,而且凸显了 FAMPS 在二维量子多体系统研究中的能力。
{"title":"Plaquette-type valence bond solid state in the𝐽1−𝐽2square-lattice Heisenberg model","authors":"Jiale Huang, Xiangjian Qian, Mingpu Qin","doi":"10.1103/physrevb.110.195111","DOIUrl":"https://doi.org/10.1103/physrevb.110.195111","url":null,"abstract":"We utilize density matrix renormalization group and fully augmented matrix product states (FAMPS) methods to investigate the valence bond solid (VBS) phase in the &lt;mjx-container ctxtmenu_counter=\"53\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\"&gt;&lt;mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"subtraction\" data-semantic-speech=\"upper J 1 minus upper J 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐽&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\"&gt;−&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐽&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; square lattice Heisenberg model. To differentiate between the columnar valence bond solid and plaquette valence bond solid (PVBS) phases, we introduce an anisotropy &lt;mjx-container ctxtmenu_counter=\"54\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Delta Subscript y\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-seman","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skyrmion blinking from the conical phase 从锥形阶段开始闪烁的 Skyrmion
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.174405
Rai M. Menezes, Milorad V. Milošević
While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.
自旋电子器件中,天电离态和非拓扑态之间的转变作为信息传输和存储的比特运算已被广泛探索,但这种转变的超快动力学仍难以观察和理解。在这里,我们利用自旋动力学模拟和谐波转变态理论(HTST)深入分析了氦磁体中天电离态的成核过程。我们揭示了这些拓扑态在天磁态和锥形态相界附近特定条件下的持续闪烁(创造-不熄灭)现象。通过最小能量路径分析,我们阐明了这种闪烁行为得益于手性晃子(CB)表面态的形成,而且由于它们的振荡模式不同,CB 的坍缩与薄膜中的天幕态不同。我们进一步利用 HTST 来估算作为外加磁场和温度函数的典型闪烁时间。最后,我们以基于天幕的随机数发生器为例,说明了天幕闪烁在受控概率计算中的实际应用。
{"title":"Skyrmion blinking from the conical phase","authors":"Rai M. Menezes, Milorad V. Milošević","doi":"10.1103/physrevb.110.174405","DOIUrl":"https://doi.org/10.1103/physrevb.110.174405","url":null,"abstract":"While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"34 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunneling current and current correlations for anyonic quasiparticles of a𝜈=12chiral Luttinger liquid in multiedge geometries 多边几何中𝜈=12 手性鲁丁格液体的任意子准粒子的隧穿电流和电流相关性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.195102
Gu Zhang, Domenico Giuliano, Igor V. Gornyi, Gabriele Campagnano
We consider anyonic quasiparticles with charge <mjx-container ctxtmenu_counter="93" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 1 2)"><mjx-mrow data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="division" data-semantic-speech="e divided by 2" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="3" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> described by the <mjx-container ctxtmenu_counter="94" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 3 4))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="equality" data-semantic-speech="nu equals 1 divided by 2" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,=" data-semantic-parent="6" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="5" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> chiral Luttinger liquid, which collide in a Hong–Ou–Mandel-like interferometer. These colliding anyonic channels can be formally viewed as hosting Laughlin-like fractional <mjx-container ctxtmenu_counter="95" ctxtmenu_oldtabindex="1"
我们考虑了由𝜈=1/2 手性鲁丁格液体描述的带电荷𝑒/2 的任意子准粒子,它们在类似虹欧-曼德尔的干涉仪中发生碰撞。这些对撞的任子通道可以被正式看作是承载了类似于 Laughlin 的分数𝜈=1/2 准粒子。更具体地说,我们考虑了两种可能的几何结构:(i) 双边通道设置,其中任子来自平衡储层;(ii) 四边通道设置,其中非平衡任子以稀释束的形式到达对撞机。对于这两种设置,我们都计算了隧穿电流和电流相关性。对于设置(i),我们的结果提供了隧穿电流、隧穿电流噪声和交叉相关噪声的解析精确表达式。电导和噪声之间的精确关系也得到了明确证明。对于设置 (ii),我们证明了对于𝜈=1/2 个任子的稀释流,隧穿电流和广义法诺因子(定义见 B. Rosenow 等人(2016))是有限的。这是由于通过任一源边提供的非平衡任子直接隧穿中心 QPC 的过程造成的。因此,要在这种情况下获得有意义的结果,我们应该超越所谓的时域辫状过程,即非平衡任子不在对撞机上隧穿,而是通过与对撞机上产生的准粒子-准孔对辫状而间接影响隧穿。这表明,虹欧-曼德尔干涉仪中稀释的任子的直接隧穿和碰撞的影响,对于在劳克林填充分数下的物理量子霍尔边的各种观测指标可能非常重要。
{"title":"Tunneling current and current correlations for anyonic quasiparticles of a𝜈=12chiral Luttinger liquid in multiedge geometries","authors":"Gu Zhang, Domenico Giuliano, Igor V. Gornyi, Gabriele Campagnano","doi":"10.1103/physrevb.110.195102","DOIUrl":"https://doi.org/10.1103/physrevb.110.195102","url":null,"abstract":"We consider anyonic quasiparticles with charge &lt;mjx-container ctxtmenu_counter=\"93\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 1 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"division\" data-semantic-speech=\"e divided by 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑒&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;/&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; described by the &lt;mjx-container ctxtmenu_counter=\"94\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝜈&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;=&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;/&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; chiral Luttinger liquid, which collide in a Hong–Ou–Mandel-like interferometer. These colliding anyonic channels can be formally viewed as hosting Laughlin-like fractional &lt;mjx-container ctxtmenu_counter=\"95\" ctxtmenu_oldtabindex=\"1\" ","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"7 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34 𝜈=14+34时量子霍尔双层膜中的连续电子涡旋结合
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.195106
Glenn Wagner, Dung X. Nguyen
Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling <mjx-container ctxtmenu_counter="26" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 0 1 (9 (4 2 3) 5 (8 6 7)))"><mjx-mrow data-semantic-children="0,9" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 9" data-semantic-role="equality" data-semantic-speech="nu equals one fourth plus three fourths" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="10" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,=" data-semantic-parent="10" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="4,8" data-semantic-content="5" data-semantic- data-semantic-owns="4 5 8" data-semantic-parent="10" data-semantic-role="addition" data-semantic-type="infixop" space="4"><mjx-mfrac data-semantic-annotation="clearspeak:simple" data-semantic-children="2,3" data-semantic- data-semantic-owns="2 3" data-semantic-parent="9" data-semantic-role="vulgar" data-semantic-type="fraction"><mjx-frac style="vertical-align: 0.148em;"><mjx-num><mjx-nstrut style="height: 0.042em; vertical-align: -0.042em;"></mjx-nstrut><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>1</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style="height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;"></mjx-line><mjx-row><mjx-den><mjx-dstrut style="height: 0.493em;"></mjx-dstrut><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="9" data-semantic-role="addition" data-semantic-type="operator" space="3"><mjx-c>+</mjx-c></mjx-mo><mjx-mfrac data-semantic-annotation="clearspeak:simple" data-semantic-children="6,7" data-semantic- data-semantic-owns="6 7" data-semantic-parent="9" data-semantic-role="vulgar" data-semantic-type="fraction" space="3"><mjx-frac style="vertical-align: 0.148em;"><mjx-num><mjx-nstrut style="height: 0.042em; vertical-align: -0.042em;"></mjx-nstrut><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx
量子霍尔流体中的电子可以与整数个漩涡结合,形成复合费米子和复合玻色子。我们的研究表明,填充𝜈=14+34、层间距为𝑑 的量子霍尔双层流体可以用这些复合粒子很好地描述。在小𝑑 条件下,该系统可以理解为层间成对的电子和空穴,而在大𝑑 条件下,该系统最好理解为每个电子上都有四个旋涡的复合费米子。通过精确对角计算试验波函数与基态的重叠,我们发现随着 𝑑 的增加,每个电子上附着的涡旋数量也在增加。我们还构建了两种激发的试验态,即金石模式和梅龙激发。这两种试验态与精确对角谱中的最低激发态(分别为小θ和中θ)有很好的重叠。
{"title":"Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34","authors":"Glenn Wagner, Dung X. Nguyen","doi":"10.1103/physrevb.110.195106","DOIUrl":"https://doi.org/10.1103/physrevb.110.195106","url":null,"abstract":"Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling &lt;mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 0 1 (9 (4 2 3) 5 (8 6 7)))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,9\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 9\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals one fourth plus three fourths\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝜈&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;=&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4,8\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 8\" data-semantic-parent=\"10\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\"&gt;&lt;mjx-frac style=\"vertical-align: 0.148em;\"&gt;&lt;mjx-num&gt;&lt;mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"&gt;&lt;/mjx-nstrut&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-num&gt;&lt;mjx-dbox&gt;&lt;mjx-dtable&gt;&lt;mjx-line style=\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\"&gt;&lt;/mjx-line&gt;&lt;mjx-row&gt;&lt;mjx-den&gt;&lt;mjx-dstrut style=\"height: 0.493em;\"&gt;&lt;/mjx-dstrut&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-den&gt;&lt;/mjx-row&gt;&lt;/mjx-dtable&gt;&lt;/mjx-dbox&gt;&lt;/mjx-frac&gt;&lt;/mjx-mfrac&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"9\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\" space=\"3\"&gt;&lt;mjx-frac style=\"vertical-align: 0.148em;\"&gt;&lt;mjx-num&gt;&lt;mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"&gt;&lt;/mjx-nstrut&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ExploringNH𝑥−Xecompounds with high hydrogen storage capacity and stability at high pressure 探索高压下具有高储氢能力和稳定性的 NH𝑥-X 化合物
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.184105
Min Zou, Wenwen Cui, Jian Hao, Jingming Shi, Yinwei Li
Recent studies have demonstrated that the chemical reactivity of noble gas elements, such as Xe and He, increases significantly under high pressure, leading to the discovery of many unconventional compounds that are unstable under ambient conditions. In this paper, we propose three different and energetically stable compounds—<mjx-container ctxtmenu_counter="24" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-children="5,6,15" data-semantic-content="6" data-semantic- data-semantic-owns="5 6 15" data-semantic-role="sequence" data-semantic-speech="upper N upper H 5 upper X e comma upper N upper H 11 upper X e" data-semantic-structure="(16 (5 (2 0 1) 4 3) 6 (15 7 (13 (10 8 9) 12 11)))" data-semantic-type="punctuated"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,3" data-semantic-content="4" data-semantic- data-semantic-owns="2 4 3" data-semantic-parent="16" data-semantic-role="implicit" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">N</mjx-c><mjx-c style="padding-top: 0.657em;">H</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>5</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.657em;">X</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="16" data-semantic-role="comma" data-semantic-type="punctuation"><mjx-c>,</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="7,13" data-semantic-collapsed="(15 (c 14) 7 13)" data-semantic- data-semantic-owns="7 13" data-semantic-parent="16" data-semantic-role="text" data-semantic-type="punctuated" space="2"><mjx-mo data-semantic-annotation="clearspeak:unit" data-semantic- data-semantic-parent="15" data-semantic-role="space" data-semantic-type="text"><mjx-c> </mjx-c></mjx-mo><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="10,11" data-semantic-content="12" data-semantic- data-semantic-owns="10 12 11" data-semantic-parent="15" data-se
最近的研究表明,在高压条件下,Xe 和 He 等惰性气体元素的化学反应活性显著增加,从而发现了许多在环境条件下不稳定的非常规化合物。在本文中,我们结合结构预测方法和第一原理计算,提出了三种不同且能量稳定的化合物--NH5Xe、NH11Xe 和 NH13Xe。我们的研究结果表明,这些化合物具有动态稳定性,并拥有超过 4 eV 的宽带隙,因此被归类为绝缘体。值得注意的是,氙的加入提高了化合物中的氢含量,其中 NH11Xe 和 NH13Xe 的储氢能力在所提出的化合物中最高,分别达到 44% 和 48%。这使得它们有望成为先进的储氢材料。此外,ab initio 分子动力学模拟显示,随着温度的升高,这些化合物会发生从固态到超离子态再到液态的相变。超离子相和液态相的稳定压力-温度区域与地球和冰行星(天王星和海王星)内部的极端条件一致,这表明这些 NH𝑥-Xe 化合物可能是其外壳的潜在成分。这些结果不仅提供了 NH𝑥-Xe 化合物在储氢方面的潜力,而且还为行星内部极端条件下的物质组成和行为提供了独特的见解。
{"title":"ExploringNH𝑥−Xecompounds with high hydrogen storage capacity and stability at high pressure","authors":"Min Zou, Wenwen Cui, Jian Hao, Jingming Shi, Yinwei Li","doi":"10.1103/physrevb.110.184105","DOIUrl":"https://doi.org/10.1103/physrevb.110.184105","url":null,"abstract":"Recent studies have demonstrated that the chemical reactivity of noble gas elements, such as Xe and He, increases significantly under high pressure, leading to the discovery of many unconventional compounds that are unstable under ambient conditions. In this paper, we propose three different and energetically stable compounds—&lt;mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-children=\"5,6,15\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"5 6 15\" data-semantic-role=\"sequence\" data-semantic-speech=\"upper N upper H 5 upper X e comma upper N upper H 11 upper X e\" data-semantic-structure=\"(16 (5 (2 0 1) 4 3) 6 (15 7 (13 (10 8 9) 12 11)))\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;H&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;5&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;X&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"16\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;,&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,13\" data-semantic-collapsed=\"(15 (c 14) 7 13)\" data-semantic- data-semantic-owns=\"7 13\" data-semantic-parent=\"16\" data-semantic-role=\"text\" data-semantic-type=\"punctuated\" space=\"2\"&gt;&lt;mjx-mo data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"space\" data-semantic-type=\"text\"&gt;&lt;mjx-c&gt; &lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"10,11\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"10 12 11\" data-semantic-parent=\"15\" data-se","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"79 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skew scattering and ratchet effect in photonic graphene 光子石墨烯中的偏斜散射和棘轮效应
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.205405
O. M. Bahrova, S. V. Koniakhin
This paper is devoted to a comprehensive theoretical study of asymmetric (skew) scattering in photonic graphene, with the main focus on its realization with semiconductor microcavity exciton-polaritons. As an important consequence of the skew scattering, we prove the appearance of the ratchet effect in this system. Triangular defects in the form of missing micropillars in a regular honeycomb lattice are considered to be ones that break the spatial inversion symmetry, thus providing the possibility of the ratchet effect. By means of the numerical solution of the effective Schrödinger equation, we provide microscopical insight into the process of skew scattering and determine indicatrices, cross sections, and asymmetry parameters. In a system with multiple coherently oriented triangular defects, a macroscopic ratchet effect occurs as a unidirectional flux upon noiselike initial conditions. Our study broadens the concept of ratchet phenomena in the field of photonics and optics of exciton-polaritons.
本文致力于对光子石墨烯中的非对称(偏斜)散射进行全面的理论研究,主要关注其与半导体微腔激子-极化子的实现。作为偏斜散射的一个重要结果,我们证明了该系统中棘轮效应的出现。在规则的蜂巢晶格中,缺失微柱形式的三角形缺陷被认为是打破空间反转对称性的缺陷,从而提供了产生棘轮效应的可能性。通过有效薛定谔方程的数值求解,我们从微观角度洞察了偏斜散射的过程,并确定了指示符、截面和不对称参数。在一个具有多个相干定向三角形缺陷的系统中,在类似噪声的初始条件下,宏观棘轮效应以单向通量的形式出现。我们的研究拓宽了激子-极化子光子学和光学领域中棘轮现象的概念。
{"title":"Skew scattering and ratchet effect in photonic graphene","authors":"O. M. Bahrova, S. V. Koniakhin","doi":"10.1103/physrevb.110.205405","DOIUrl":"https://doi.org/10.1103/physrevb.110.205405","url":null,"abstract":"This paper is devoted to a comprehensive theoretical study of asymmetric (skew) scattering in photonic graphene, with the main focus on its realization with semiconductor microcavity exciton-polaritons. As an important consequence of the skew scattering, we prove the appearance of the ratchet effect in this system. Triangular defects in the form of missing micropillars in a regular honeycomb lattice are considered to be ones that break the spatial inversion symmetry, thus providing the possibility of the ratchet effect. By means of the numerical solution of the effective Schrödinger equation, we provide microscopical insight into the process of skew scattering and determine indicatrices, cross sections, and asymmetry parameters. In a system with multiple coherently oriented triangular defects, a macroscopic ratchet effect occurs as a unidirectional flux upon noiselike initial conditions. Our study broadens the concept of ratchet phenomena in the field of photonics and optics of exciton-polaritons.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"61 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
𝑠±-wave superconductivity in pressurizedLa4⁢Ni3⁢O10 加压 La4Ni3O10 中的𝑠±波超导性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.l180501
Ming Zhang, Hongyi Sun, Yu-Bo Liu, Qihang Liu, Wei-Qiang Chen, Fan Yang
Recently, evidence of superconductivity (SC) has been reported in pressurized <mjx-container ctxtmenu_counter="67" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5,8" data-semantic-content="9,10" data-semantic- data-semantic-owns="2 9 5 10 8" data-semantic-role="implicit" data-semantic-speech="upper L a 4 upper N i 3 normal upper O 10" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">L</mjx-c><mjx-c style="padding-top: 0.657em;">a</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>4</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">N</mjx-c><mjx-c style="padding-top: 0.673em;">i</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="6,7" data-semantic- data-semantic-owns="6 7" data-semantic-parent="11" data-semantic-role="latinletter" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="integer" data-semantic-ty
最近,加压 La4Ni3O10 中出现了超导电性(SC)的证据。在此,我们研究了其可能的配对机制和配对对称性。通过拟合密度泛函理论能带结构,我们提供了一个六轨道紧密结合模型。与 La3Ni2O7 的能带结构相比,这里额外的非键𝑧2 能带对配对机制非常重要。当包括多轨道哈伯德相互作用时,我们基于随机相位逼近的研究得出了𝑠± 波 SC。以矢量𝐐1≈(𝜋,𝜋)为矢量的主要费米面嵌套位于由成键𝑑𝑧2带顶部所贡献的𝛾口袋和由非成键𝑑𝑧2带底部所贡献的𝛼1口袋之间,这导致了两种状态下最强的配对振幅和相反的间隙符号。最主要的实空间配对是层间𝑧𝑑𝑧2-轨道配对。这种𝑠±波配对模式对带细节不敏感。掺入电子后,𝑇𝑐会在系统进入内尔有序自旋密度波阶段之前迅速增加。
{"title":"𝑠±-wave superconductivity in pressurizedLa4⁢Ni3⁢O10","authors":"Ming Zhang, Hongyi Sun, Yu-Bo Liu, Qihang Liu, Wei-Qiang Chen, Fan Yang","doi":"10.1103/physrevb.110.l180501","DOIUrl":"https://doi.org/10.1103/physrevb.110.l180501","url":null,"abstract":"Recently, evidence of superconductivity (SC) has been reported in pressurized &lt;mjx-container ctxtmenu_counter=\"67\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5,8\" data-semantic-content=\"9,10\" data-semantic- data-semantic-owns=\"2 9 5 10 8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper L a 4 upper N i 3 normal upper O 10\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;L&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;a&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-ty","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Heat capacity ofURu2−𝑥⁢Os𝑥⁢Si2at low temperatures [Phys. Rev. B105, L041106 (2022)] 勘误:URu2-𝑥Os𝑥Si2 在低温下的热容量 [Phys. Rev. B105, L041106 (2022)]
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.199901
D. L. Kunwar, S. R. Panday, Y. Deng, S. Ran, R. E. Baumbach, M. B. Maple, Carmen C. Almasan, M. Dzero
DOI:https://doi.org/10.1103/PhysRevB.110.199901
DOI:https://doi.org/10.1103/PhysRevB.110.199901
{"title":"Erratum: Heat capacity ofURu2−𝑥⁢Os𝑥⁢Si2at low temperatures [Phys. Rev. B105, L041106 (2022)]","authors":"D. L. Kunwar, S. R. Panday, Y. Deng, S. Ran, R. E. Baumbach, M. B. Maple, Carmen C. Almasan, M. Dzero","doi":"10.1103/physrevb.110.199901","DOIUrl":"https://doi.org/10.1103/physrevb.110.199901","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevB.110.199901</span>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"75 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Su-Schrieffer-Heeger-Hubbard model at quarter filling: Effects of magnetic field and nonlocal interactions 四分之一填充时的 Su-Schrieffer-Heeger-Hubbard 模型:磁场和非局部相互作用的影响
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.205106
David Mikhail, Stephan Rachel
The interplay and competition of topology and electron–electron interactions have fascinated researchers since the discovery of topological insulators. The Su–Schrieffer–Heeger–Hubbard (SSH-Hubbard) model is a prototypical model which includes both nontrivial topology and interactions. Due to its simplicity, there are several artificial quantum systems which can realize such a model to a good approximation. Here we focus on the quarter-filled case, where interactions and dimerization open a charge gap. In particular, we study the single-particle spectral function for the extended SSH-Hubbard model with magnetic field and explore several parameter limits where effective model descriptions arise. In the strongly dimerized limit, we show that the low-energy excitations of the spectral function resemble a half-filled Hubbard model with effective dimer sites and renormalized couplings. For strong magnetic field and interactions, we find physics akin to the spinless Su–Schrieffer–Heeger model at half filling, featuring a noninteracting topological phase transition. Moreover, in light of the recent realization of this model in quantum dot simulation, we provide evidence for the stability of the topological phase towards moderate nonlocal interactions in the experimentally expected parameter range.
自发现拓扑绝缘体以来,拓扑结构和电子-电子相互作用的相互作用和竞争一直吸引着研究人员。Su-Schrieffer-Heeger-Hubbard(SSH-Hubbard)模型是同时包含非难拓扑和相互作用的典型模型。由于其简单性,有几种人工量子系统可以很好地近似实现这种模型。在这里,我们重点研究四分之一填充的情况,在这种情况下,相互作用和二聚化会打开一个电荷间隙。特别是,我们研究了带磁场的扩展 SSH-Hubbard 模型的单粒子谱函数,并探索了出现有效模型描述的几个参数极限。在强二聚化极限,我们发现谱函数的低能激发类似于具有有效二聚点和重正化耦合的半填充哈伯德模型。对于强磁场和相互作用,我们发现了类似于半填充的无自旋苏-施里弗-希格模型的物理现象,其特点是非相互作用拓扑相变。此外,鉴于该模型最近在量子点模拟中的实现,我们提供了拓扑相位在实验预期参数范围内对适度非局部相互作用稳定性的证据。
{"title":"Su-Schrieffer-Heeger-Hubbard model at quarter filling: Effects of magnetic field and nonlocal interactions","authors":"David Mikhail, Stephan Rachel","doi":"10.1103/physrevb.110.205106","DOIUrl":"https://doi.org/10.1103/physrevb.110.205106","url":null,"abstract":"The interplay and competition of topology and electron–electron interactions have fascinated researchers since the discovery of topological insulators. The Su–Schrieffer–Heeger–Hubbard (SSH-Hubbard) model is a prototypical model which includes both nontrivial topology and interactions. Due to its simplicity, there are several artificial quantum systems which can realize such a model to a good approximation. Here we focus on the quarter-filled case, where interactions and dimerization open a charge gap. In particular, we study the single-particle spectral function for the extended SSH-Hubbard model with magnetic field and explore several parameter limits where effective model descriptions arise. In the strongly dimerized limit, we show that the low-energy excitations of the spectral function resemble a half-filled Hubbard model with effective dimer sites and renormalized couplings. For strong magnetic field and interactions, we find physics akin to the spinless Su–Schrieffer–Heeger model at half filling, featuring a noninteracting topological phase transition. Moreover, in light of the recent realization of this model in quantum dot simulation, we provide evidence for the stability of the topological phase towards moderate nonlocal interactions in the experimentally expected parameter range.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"7 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renormalized density matrix downfolding: A rigorous framework in learning emergent models fromab initiomany-body calculations 重正化密度矩阵折叠:从多体计算中学习新兴模型的严格框架
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-04 DOI: 10.1103/physrevb.110.195103
Yueqing Chang, Sonali Joshi, Lucas K. Wagner
We present a generalized framework, renormalized density matrix downfolding (RDMD), to derive systematically improvable, highly accurate, and nonperturbative effective models from ab initio calculations. This framework moves beyond the common role of ab initio calculations as calculating the parameters of a proposed Hamiltonian. Instead, RDMD provides the capability to decide whether a given effective Hilbert space can be identified from the ab initio data and assess the relative quality of ansatz Hamiltonians. Any method of ab initio solution can be used as a data source, and as the ab initio solutions improve, the resultant model also improves. We demonstrate the framework in an application to the downfolding of a hydrogen chain to a spin model, in which we find the interatomic separations for which a nonperturbative mapping can be made even in the strong coupling regime where standard methods fail, and compute a renormalized spin model Hamiltonian that quantitatively reproduces the ab initio dynamics.
我们提出了一个广义框架--重归一化密度矩阵折叠(RDMD),以从原子序数计算中推导出系统改进的、高度精确的非微扰有效模型。这一框架超越了演算法在计算拟议哈密顿参数中的常见作用。取而代之的是,RDMD 能够决定是否能从原子序数数据中识别出给定的有效希尔伯特空间,并评估拟哈密顿的相对质量。任何从头开始求解的方法都可以用作数据源,随着从头开始求解的改进,结果模型也会随之改进。我们在氢链向自旋模型下折的应用中演示了这一框架,在这一应用中,我们找到了即使在标准方法失效的强耦合机制中也能做出非微扰映射的原子间分离,并计算出了定量再现了 ab initio 动力学的重规范化自旋模型哈密顿。
{"title":"Renormalized density matrix downfolding: A rigorous framework in learning emergent models fromab initiomany-body calculations","authors":"Yueqing Chang, Sonali Joshi, Lucas K. Wagner","doi":"10.1103/physrevb.110.195103","DOIUrl":"https://doi.org/10.1103/physrevb.110.195103","url":null,"abstract":"We present a generalized framework, renormalized density matrix downfolding (RDMD), to derive systematically improvable, highly accurate, and nonperturbative effective models from <i>ab initio</i> calculations. This framework moves beyond the common role of <i>ab initio</i> calculations as calculating the parameters of a proposed Hamiltonian. Instead, RDMD provides the capability to decide whether a given effective Hilbert space can be identified from the <i>ab initio</i> data and assess the relative quality of <i>ansatz</i> Hamiltonians. Any method of <i>ab initio</i> solution can be used as a data source, and as the <i>ab initio</i> solutions improve, the resultant model also improves. We demonstrate the framework in an application to the downfolding of a hydrogen chain to a spin model, in which we find the interatomic separations for which a nonperturbative mapping can be made even in the strong coupling regime where standard methods fail, and compute a renormalized spin model Hamiltonian that quantitatively reproduces the <i>ab initio</i> dynamics.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"242 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1