首页 > 最新文献

Physical Review B最新文献

英文 中文
Hyperbolic fractional Chern insulators 双曲分数切尔绝缘体
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.195113
Ai-Lei He, Lu Qi, Yongjun Liu, Yi-Fei Wang
Fractional Chern insulators (FCIs) have attracted intensive attention for the realization of fractional quantum Hall states in the absence of an external magnetic field. Most FCIs have been proposed on two-dimensional (2D) Euclidean lattice models with various boundary conditions. In this work, we investigate hyperbolic FCIs which are constructed in hyperbolic geometry with constant negative curvature. Through the studies on hyperbolic analogs of kagome lattices with hard-core bosons loaded into topological flat bands, we find convincing numerical evidences of two types of <mjx-container ctxtmenu_counter="70" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 3 4))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="equality" data-semantic-speech="nu equals 1 divided by 2" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,=" data-semantic-parent="6" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="5" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> FCI states, i.e., conventional and unconventional FCIs. Multiple branches of edge excitations and geometry-dependent wave functions for both conventional and unconventional <mjx-container ctxtmenu_counter="71" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 3 4))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="equality" data-semantic-speech="nu equals 1 divided by 2" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greeklett
分数切尔诺绝缘体(FCIs)在无外磁场条件下实现分数量子霍尔态的研究引起了广泛关注。大多数 FCIs 都是在具有各种边界条件的二维欧几里得晶格模型上提出的。在这项工作中,我们研究了双曲 FCI,它是在负曲率恒定的双曲几何中构建的。通过对装入拓扑平带的硬核玻色子的双曲类似卡戈米晶格的研究,我们发现了两种类型的𝜈=1/2 FCI 状态,即常规和非常规 FCI 的令人信服的数值证据。传统和非常规的𝜈=1/2 FCI 状态都有多个边缘激发分支和与几何相关的波函数。有趣的是,几何自由度在这两种 FCI 中扮演着不同的角色。此外,中心定位轨道在非常规 FCI 状态中起着至关重要的作用。
{"title":"Hyperbolic fractional Chern insulators","authors":"Ai-Lei He, Lu Qi, Yongjun Liu, Yi-Fei Wang","doi":"10.1103/physrevb.110.195113","DOIUrl":"https://doi.org/10.1103/physrevb.110.195113","url":null,"abstract":"Fractional Chern insulators (FCIs) have attracted intensive attention for the realization of fractional quantum Hall states in the absence of an external magnetic field. Most FCIs have been proposed on two-dimensional (2D) Euclidean lattice models with various boundary conditions. In this work, we investigate hyperbolic FCIs which are constructed in hyperbolic geometry with constant negative curvature. Through the studies on hyperbolic analogs of kagome lattices with hard-core bosons loaded into topological flat bands, we find convincing numerical evidences of two types of &lt;mjx-container ctxtmenu_counter=\"70\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝜈&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;=&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;/&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; FCI states, i.e., conventional and unconventional FCIs. Multiple branches of edge excitations and geometry-dependent wave functions for both conventional and unconventional &lt;mjx-container ctxtmenu_counter=\"71\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals 1 divided by 2\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greeklett","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, elastic, and electronic properties of cubic zinc-blendeIn𝑥⁢Ga1−𝑥⁢Nalloys 立方锌-蓝晶𝑥Ga1-𝑥合金的结构、弹性和电子特性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.195201
Jan M. Waack, Nils A. Schäfer, Michael Czerner, Christian Heiliger
The cubic phase of the ternary <mjx-container ctxtmenu_counter="26" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(12 (2 0 1) 10 (8 3 (7 4 5 6)) 11 9)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,8,9" data-semantic-content="10,11" data-semantic- data-semantic-owns="2 10 8 11 9" data-semantic-role="implicit" data-semantic-speech="upper I n Subscript x Baseline upper G a Subscript 1 minus x Baseline normal upper N" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="12" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">I</mjx-c><mjx-c style="padding-top: 0.657em;">n</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="12" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,7" data-semantic- data-semantic-owns="3 7" data-semantic-parent="12" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">G</mjx-c><mjx-c style="padding-top: 0.669em;">a</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mrow data-semantic-children="4,6" data-semantic-content="5" data-semantic- data-semantic-owns="4 5 6" data-semantic-parent="8" data-semantic-role="subtraction" data-semantic-type="infixop" size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="7" data-semantic-role="subtraction" data-semantic-type="operator"><mjx-c>−</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="12" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mj
三元 In𝑥Ga1-𝑥N 合金的立方相作为下一代高性能电子和光电应用的材料引起了人们的极大兴趣。最近的研究表明,外延生长技术可以克服这种合金体系中的混溶间隙,从而揭示出在𝑥≈0.5 附近存在 CuPt 型有序[ACS Appl.我们对锌蓝晶结构的 (In, Ga)N 合金的结构和电子特性进行了全面的理论分析。这项研究涵盖了 InN 和 GaN 的纯相以及 In𝑥Ga1-𝑥N 的无规合金。此外,它还研究了具有铜铂型有序相和黄铜矿型有序相的 In0.5Ga0.5N 成分。我们确定所研究的结构是可转移的。研究结果包括晶格参数、弹性常数、声波和电子能带结构。我们将随机相与有序结构进行了比较,并报告了结构对性质的影响。这些结果有助于在实验环境中区分不同的相。
{"title":"Structural, elastic, and electronic properties of cubic zinc-blendeIn𝑥⁢Ga1−𝑥⁢Nalloys","authors":"Jan M. Waack, Nils A. Schäfer, Michael Czerner, Christian Heiliger","doi":"10.1103/physrevb.110.195201","DOIUrl":"https://doi.org/10.1103/physrevb.110.195201","url":null,"abstract":"The cubic phase of the ternary &lt;mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(12 (2 0 1) 10 (8 3 (7 4 5 6)) 11 9)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,8,9\" data-semantic-content=\"10,11\" data-semantic- data-semantic-owns=\"2 10 8 11 9\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper I n Subscript x Baseline upper G a Subscript 1 minus x Baseline normal upper N\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"12\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;I&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;n&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c&gt;𝑥&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,7\" data-semantic- data-semantic-owns=\"3 7\" data-semantic-parent=\"12\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;G&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;a&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 6\" data-semantic-parent=\"8\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;−&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑥&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mj","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gapless deconfined phase in aℤ𝑁-symmetric Hamiltonian created in a cold-atom setup 在冷原子装置中创建的ℤ𝑁对称哈密顿中的无间隙去约束相
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.195114
Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda
We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [<span>Phys. Rev. A</span> <b>95</b>, 053608 (2017)]. In the low-energy regime, this system is governed by a unique <mjx-container ctxtmenu_counter="70" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="numbersetletter" data-semantic-speech="double struck upper Z Subscript upper N" data-semantic-type="subscript"><mjx-mi data-semantic-font="double-struck" data-semantic- data-semantic-parent="2" data-semantic-role="numbersetletter" data-semantic-type="identifier"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝑁</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for <mjx-container ctxtmenu_counter="71" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 1 2)"><mjx-mrow data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="inequality" data-semantic-speech="upper N greater than or equals 7" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,≥" data-semantic-parent="3" data-semantic-role="inequality" data-semantic-type="relation" space="4"><mjx-c>≥</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" space="4"><mjx-c>7</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of ladder and cylinder geometries and <mjx-container ctxtmenu_counter="72" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-ex
我们研究了一个由两种碱原子组成的准二维系统,它被限制在一个特定的光学晶格势中[Phys. Rev. A 95, 053608 (2017)]。在低能体系中,该体系受一个独特的ℤ𝑁规理论支配,场论论证表明它可能表现出两个奇异的无间隙去致密相,即双极液相和玻色液相,以及两个间隙(致密和去致密)相。我们利用大尺度密度矩阵重正化群模拟对这些预测进行了数值处理。我们的发现为𝑁≥7 存在无间隙玻色液相提供了确凿的证据。我们证明了这种无间隙相具有与一维临界相相同的临界性质,类似于弱耦合的鲁丁格液体链。在所考虑的梯形和圆柱体几何形状及𝑁 的范围内,理论上预测的无间隙偶极相仍然难以捉摸,其特征可能需要全面的二维处理。
{"title":"Gapless deconfined phase in aℤ𝑁-symmetric Hamiltonian created in a cold-atom setup","authors":"Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda","doi":"10.1103/physrevb.110.195114","DOIUrl":"https://doi.org/10.1103/physrevb.110.195114","url":null,"abstract":"We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [&lt;span&gt;Phys. Rev. A&lt;/span&gt; &lt;b&gt;95&lt;/b&gt;, 053608 (2017)]. In the low-energy regime, this system is governed by a unique &lt;mjx-container ctxtmenu_counter=\"70\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z Subscript upper N\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;ℤ&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c&gt;𝑁&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for &lt;mjx-container ctxtmenu_counter=\"71\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 1 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper N greater than or equals 7\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑁&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,≥\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;≥&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"&gt;&lt;mjx-c&gt;7&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of ladder and cylinder geometries and &lt;mjx-container ctxtmenu_counter=\"72\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-ex","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-field NMR study on the topologically nontrivial 1/3 magnetization plateau state in dopedNa2⁢Cu3⁢Ge4−𝑥⁢Si𝑥⁢O12 对掺杂 Na2Cu3Ge4-𝑥Si𝑥O12 中拓扑非难 1/3 磁化高原态的高场核磁共振研究
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.l201102
Yuyan Han, Bocheng Yu, Zan Du, Langsheng Ling, Lei Zhang, Wei Tong, Chuanying Xi, Jinglei Zhang, Tian Shang, Li Pi, Long Ma
The spin-1/2 trimer system <mjx-container ctxtmenu_counter="35" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(15 (2 0 1) 12 (5 3 4) 13 (8 6 7) 14 (11 9 10))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5,8,11" data-semantic-content="12,13,14" data-semantic- data-semantic-owns="2 12 5 13 8 14 11" data-semantic-role="implicit" data-semantic-speech="upper N a 2 upper C u 3 upper G e 4 normal upper O 12" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="15" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">N</mjx-c><mjx-c style="padding-top: 0.657em;">a</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="15" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="15" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c style="padding-top: 0.669em;">u</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="15" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="6,7" data-semantic- data-semantic-owns="6 7" data-semantic-parent="15" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">G</mjx-c><mjx-c style="padding-top: 0.669em;">e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="i
有人提出自旋-1/2 三聚体系统 Na2Cu3Ge4O12 中存在拓扑学上非难的 1/3 磁化(𝑀)高原态。本文报告了对 Na2Cu3Ge4O12 和掺硅样品中 1/3-𝑀 高原态的低能自旋激发的高场核磁共振(NMR)研究。首先,1/3-𝑀高原态自旋晶格弛豫率的热激活行为表明了支持高场霍尔丹相的自旋激发间隙。其次,用 Si4+ 替代 Ge4+,1/3-𝑀高原的临界场显著降低,例如,在 𝑥=1.0 样品中,临界场为 𝐻𝑐=17 T,这是三元间耦合𝐽2 被抑制的结果。这些观察结果支持了 1/3-𝑀 高原态的拓扑非难特性。
{"title":"High-field NMR study on the topologically nontrivial 1/3 magnetization plateau state in dopedNa2⁢Cu3⁢Ge4−𝑥⁢Si𝑥⁢O12","authors":"Yuyan Han, Bocheng Yu, Zan Du, Langsheng Ling, Lei Zhang, Wei Tong, Chuanying Xi, Jinglei Zhang, Tian Shang, Li Pi, Long Ma","doi":"10.1103/physrevb.110.l201102","DOIUrl":"https://doi.org/10.1103/physrevb.110.l201102","url":null,"abstract":"The spin-1/2 trimer system &lt;mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(15 (2 0 1) 12 (5 3 4) 13 (8 6 7) 14 (11 9 10))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5,8,11\" data-semantic-content=\"12,13,14\" data-semantic- data-semantic-owns=\"2 12 5 13 8 14 11\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper N a 2 upper C u 3 upper G e 4 normal upper O 12\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;a&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;u&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;G&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"i","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting fluctuations and paraconductivity in ultrathin amorphous Pb films near superconductor-insulator transitions 超导体-绝缘体转变附近超薄无定形铅薄膜中的超导波动和副导性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.174502
Haoyang Liu, Ashwani Kumar, Liuqi Yu, Richard P. Barber, Jr., Peng Xiong
Superconductivity in two dimensions has attracted renewed interest in the context of two-dimensional (2D) van der Waals materials. Key questions remain regarding the nature and manifestations of the superconductivity in these materials. One open question is whether superconducting fluctuations in such 2D systems can be described by the classic Aslamazov-Larkin (A-L) equation. While the A-L model has long been found to accurately describe the paraconductivity of some conventional 2D superconductors, its applicability in ultrathin limit near the superconductor-insulator transition (SIT) has not been established. Here, we report a systematic study of superconducting fluctuation and paraconductivity in ultrathin 2D amorphous Pb films near the SIT. Pb films were incrementally deposited, and the electrical measurements were performed <i>in situ</i> at each thickness in a dilution refrigerator, resulting in a series of sheet resistance curves <mjx-container ctxtmenu_counter="57" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(11 0 (10 (3 1 2) 9 (7 4 5 6)) 8)"><mjx-mrow data-semantic-children="10" data-semantic-content="0,8" data-semantic- data-semantic-owns="0 10 8" data-semantic-role="leftright" data-semantic-speech="left bracket upper R Subscript white square Baseline left parenthesis upper T right parenthesis right bracket" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="11" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>[</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:simple" data-semantic-children="3,7" data-semantic-content="9,1" data-semantic- data-semantic-owns="3 9 7" data-semantic-parent="11" data-semantic-role="simple function" data-semantic-type="appl"><mjx-msub data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="10" data-semantic-role="simple function" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-operator="appl" data-semantic-parent="3" data-semantic-role="simple function" data-semantic-type="identifier"><mjx-c>𝑅</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mo data-semantic- data-semantic-parent="3" data-semantic-role="geometry" data-semantic-type="relation" size="s"><mjx-c>□</mjx-c></mjx-mo></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="appl" data-semantic-parent="10" data-semantic-role="application" data-semantic-type="punctuation"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-children="5" data-semantic-content="4,6" data-semantic- data-semantic-owns="4 5 6" data-semantic-parent="10" data-semantic-role="leftright" data-semantic-type="fenced" space="2"><mjx-mo data-semantic- data
二维范德华材料的超导性再次引起了人们的兴趣。有关这些材料中超导性的性质和表现形式的关键问题依然存在。一个悬而未决的问题是,这种二维系统中的超导波动是否可以用经典的阿斯拉马佐夫-拉金(A-L)方程来描述。虽然人们早已发现 A-L 模型能准确描述一些传统二维超导体的副导性,但它在超导体-绝缘体转变(SIT)附近的超薄极限中的适用性尚未确定。在此,我们报告了对 SIT 附近超薄二维非晶铅薄膜中超导波动和副导性的系统研究。铅薄膜以递增的方式沉积,在稀释冰箱中对每个厚度进行原位电学测量,从而得到一系列横跨 SIT 的片电阻曲线[𝑅□(𝑇)]。然后,顺磁杂质(Cr)被沉积在同一超导薄膜上,使其回到绝缘状态,并产生了另一组𝑅□(𝑇)。这两种类型的𝑅□(𝑇) 曲线都用 A-L 方程进行了分析。在所有薄膜厚度(和 𝑇𝐶's)下,我们都观察到本底副电导率明显大于 A-L 值。随着薄膜厚度的减小和 SIT 的接近,副电导率急剧上升,在 SIT 附近比 A-L 值高出一个数量级以上。伴随着过剩副电导率的存在及其随厚度减小而增加,副电导率随𝑇高于𝑇𝐶呈指数缩放,其温度范围和斜率随薄膜厚度减小而相应变化。与此相反,磁性杂质对𝑇𝐶的抑制导致过剩副电导率的增加要弱得多,而指数𝑇缩放的温度范围和斜率变化不大。这些观察结果与强烈无序、形态上名义上均匀的非晶态薄膜中出现的高于𝑇𝐶的局部超导配对相一致。空间局域化超导可能会导致超出 A-L 理论的超导和渗流超导跃迁。这种电子不均匀性会随着薄膜厚度的减小而增大,尤其是在 SIT 附近。
{"title":"Superconducting fluctuations and paraconductivity in ultrathin amorphous Pb films near superconductor-insulator transitions","authors":"Haoyang Liu, Ashwani Kumar, Liuqi Yu, Richard P. Barber, Jr., Peng Xiong","doi":"10.1103/physrevb.110.174502","DOIUrl":"https://doi.org/10.1103/physrevb.110.174502","url":null,"abstract":"Superconductivity in two dimensions has attracted renewed interest in the context of two-dimensional (2D) van der Waals materials. Key questions remain regarding the nature and manifestations of the superconductivity in these materials. One open question is whether superconducting fluctuations in such 2D systems can be described by the classic Aslamazov-Larkin (A-L) equation. While the A-L model has long been found to accurately describe the paraconductivity of some conventional 2D superconductors, its applicability in ultrathin limit near the superconductor-insulator transition (SIT) has not been established. Here, we report a systematic study of superconducting fluctuation and paraconductivity in ultrathin 2D amorphous Pb films near the SIT. Pb films were incrementally deposited, and the electrical measurements were performed &lt;i&gt;in situ&lt;/i&gt; at each thickness in a dilution refrigerator, resulting in a series of sheet resistance curves &lt;mjx-container ctxtmenu_counter=\"57\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(11 0 (10 (3 1 2) 9 (7 4 5 6)) 8)\"&gt;&lt;mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"0,8\" data-semantic- data-semantic-owns=\"0 10 8\" data-semantic-role=\"leftright\" data-semantic-speech=\"left bracket upper R Subscript white square Baseline left parenthesis upper T right parenthesis right bracket\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;[&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,7\" data-semantic-content=\"9,1\" data-semantic- data-semantic-owns=\"3 9 7\" data-semantic-parent=\"11\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"&gt;&lt;mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"10\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"3\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑅&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"geometry\" data-semantic-type=\"relation\" size=\"s\"&gt;&lt;mjx-c&gt;□&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"10\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;⁡&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"4 5 6\" data-semantic-parent=\"10\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" space=\"2\"&gt;&lt;mjx-mo data-semantic- data","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational method for angle-resolved photoemission spectra from repeated-slab band structure calculations 通过重复板带结构计算获得角度分辨光发射光谱的计算方法
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.195406
Misa Nozaki, Peter Krüger
A versatile method for angle-resolved photoemission spectra (ARPES) calculations is reported within the one-step model of photoemission. The initial states are obtained from a repeated-slab calculation using the projector-augmented wave (PAW) method. ARPES final states are constructed by matching the repeated-slab eigenstates of positive energy with free electron states that satisfy the time-reversed low-energy electron diffraction boundary conditions. Nonphysical solutions of the matching equations, which do not respect the flux conservation, are discarded. The method is applied to surface-normal photoemission from graphene as a function of photon energy from threshold up to 100 eV. The results are compared with independently performed multiple scattering calculations and very good agreement is obtained, provided that the photoemission matrix elements are computed with all-electron waves reconstructed from the PAW pseudowaves. However, if the pseudowaves are used directly, the relative intensity between 𝜎- and 𝜋-band emission is wrong by an order of magnitude. The graphene ARPES intensity has a strong photon energy dependence including resonances. The normal emission spectrum from the 𝜋 band shows a hitherto unreported sharp resonance at a photon energy of 31 eV. The resonance is due to a two-dimensional interband transition and highlights the importance of matrix element effects beyond the final-state plane-wave approximation.
在一步光发射模型中,报告了一种用于角度分辨光发射光谱(ARPES)计算的多功能方法。初始态是利用投影增强波(PAW)方法通过重复板计算获得的。ARPES 最终状态是通过将正能量的重复板特征状态与满足时间逆转低能量电子衍射边界条件的自由电子状态相匹配而构建的。匹配方程中不遵守通量守恒的非物理解将被舍弃。该方法被应用于石墨烯的表面正常光发射,作为从阈值到 100 eV 的光子能量的函数。将计算结果与独立进行的多重散射计算结果进行了比较,如果光发射矩阵元素是用从 PAW 伪波重建的全电子波计算的,则结果非常吻合。但是,如果直接使用伪波,𝜎 波段和𝜋 波段发射的相对强度就会出现数量级的误差。石墨烯 ARPES 强度与包括共振在内的光子能量有很大关系。𝜋波段的正常发射光谱在 31 eV 的光子能量处显示出迄今未报道的尖锐共振。该共振是由二维带间转变引起的,突出了矩阵元素效应在终态平面波近似之外的重要性。
{"title":"Computational method for angle-resolved photoemission spectra from repeated-slab band structure calculations","authors":"Misa Nozaki, Peter Krüger","doi":"10.1103/physrevb.110.195406","DOIUrl":"https://doi.org/10.1103/physrevb.110.195406","url":null,"abstract":"A versatile method for angle-resolved photoemission spectra (ARPES) calculations is reported within the one-step model of photoemission. The initial states are obtained from a repeated-slab calculation using the projector-augmented wave (PAW) method. ARPES final states are constructed by matching the repeated-slab eigenstates of positive energy with free electron states that satisfy the time-reversed low-energy electron diffraction boundary conditions. Nonphysical solutions of the matching equations, which do not respect the flux conservation, are discarded. The method is applied to surface-normal photoemission from graphene as a function of photon energy from threshold up to 100 eV. The results are compared with independently performed multiple scattering calculations and very good agreement is obtained, provided that the photoemission matrix elements are computed with all-electron waves reconstructed from the PAW pseudowaves. However, if the pseudowaves are used directly, the relative intensity between <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"sigma\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-math></mjx-container>- and <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-math></mjx-container>-band emission is wrong by an order of magnitude. The graphene ARPES intensity has a strong photon energy dependence including resonances. The normal emission spectrum from the <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c>𝜋</mjx-c></mjx-mi></mjx-math></mjx-container> band shows a hitherto unreported sharp resonance at a photon energy of 31 eV. The resonance is due to a two-dimensional interband transition and highlights the importance of matrix element effects beyond the final-state plane-wave approximation.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"68 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferromagnetic interlayer coupling inFeSe1−𝑥⁢S𝑥superconductors revealed by inelastic neutron scattering 非弹性中子散射揭示铁Se1𝑥S𝑥超导体中的铁磁层间耦合
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.174503
Mingwei Ma, Philippe Bourges, Yvan Sidis, Jinzhao Sun, Guoqing Wang, Kazuki Iida, Kazuya Kamazawa, Jitae T. Park, Frederic Bourdarot, Zhian Ren, Yuan Li
<mjx-container ctxtmenu_counter="69" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 (5 0 (4 1 2 3)) 9 (8 6 7))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="5,8" data-semantic-content="9" data-semantic- data-semantic-owns="5 9 8" data-semantic-role="implicit" data-semantic-speech="upper F e upper S e Subscript 1 minus x Baseline normal upper S Subscript x" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,4" data-semantic- data-semantic-owns="0 4" data-semantic-parent="10" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">F</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">e</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">S</mjx-c><mjx-c style="padding-top: 0.669em;">e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mrow data-semantic-children="1,3" data-semantic-content="2" data-semantic- data-semantic-owns="1 2 3" data-semantic-parent="5" data-semantic-role="subtraction" data-semantic-type="infixop" size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="4" data-semantic-role="subtraction" data-semantic-type="operator"><mjx-c>−</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="4" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="10" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="6,7" data-semantic- data-semantic-owns="6 7" data-semantic-parent="10" data-semantic-role="latinletter" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>S</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="8" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> superconductors are commonly considered layered van der Waals materials with negligible interlayer coupling. Here, using inelastic neutron scat
FeSe1-𝑥S𝑥超导体通常被认为是层状范德华材料,层间耦合可忽略不计。在这里,我们利用非弹性中子散射来研究单晶样品中的自旋激发,发现相邻铁层之间的磁耦合本质上是铁磁性的,这使得该系统有别于包括铁锑化物在内的大多数非常规超导体。据估计,弱层间耦合为𝐽𝑐∼0.2 meV,与沿𝑐轴的短自旋-自旋相关长度𝜉𝑐∼0.2𝑐一致。这些结果为建立描述 FeSe1-𝑥S𝑥 中无磁性秩序的微观理论模型提供了实验依据。
{"title":"Ferromagnetic interlayer coupling inFeSe1−𝑥⁢S𝑥superconductors revealed by inelastic neutron scattering","authors":"Mingwei Ma, Philippe Bourges, Yvan Sidis, Jinzhao Sun, Guoqing Wang, Kazuki Iida, Kazuya Kamazawa, Jitae T. Park, Frederic Bourdarot, Zhian Ren, Yuan Li","doi":"10.1103/physrevb.110.174503","DOIUrl":"https://doi.org/10.1103/physrevb.110.174503","url":null,"abstract":"&lt;mjx-container ctxtmenu_counter=\"69\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 (5 0 (4 1 2 3)) 9 (8 6 7))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,8\" data-semantic-content=\"9\" data-semantic- data-semantic-owns=\"5 9 8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper F e upper S e Subscript 1 minus x Baseline normal upper S Subscript x\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;F&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;e&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;−&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑥&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;S&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c&gt;𝑥&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; superconductors are commonly considered layered van der Waals materials with negligible interlayer coupling. Here, using inelastic neutron scat","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"155 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry 具有表面量子几何特性的 Eu 基 Zintl 化合物非常规磁体中的混合阶拓扑结构
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.205111
Yufei Zhao, Yiyang Jiang, Hyeonhu Bae, Kamal Das, Yongkang Li, Chao-Xing Liu, Binghai Yan
The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds <mjx-container ctxtmenu_counter="46" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(13 (8 0 (7 (6 1 5 2) 3 4)) 12 (11 9 10))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="8,11" data-semantic-content="12" data-semantic- data-semantic-owns="8 12 11" data-semantic-role="implicit" data-semantic-speech="upper E u Subscript 2 n plus 1 Baseline upper I n 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,7" data-semantic- data-semantic-owns="0 7" data-semantic-parent="13" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">E</mjx-c><mjx-c style="padding-top: 0.657em;">u</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mrow data-semantic-children="6,4" data-semantic-content="3" data-semantic- data-semantic-owns="6 3 4" data-semantic-parent="8" data-semantic-role="addition" data-semantic-type="infixop" size="s"><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="1,2" data-semantic-content="5" data-semantic- data-semantic-owns="1 5 2" data-semantic-parent="7" data-semantic-role="implicit" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="6" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="7" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="13" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="9,10" data-semantic- data-semant
探索磁性拓扑绝缘体有助于探索轴心电动力学和有趣的输运现象,如量子反常霍尔效应。在这里,我们报告了一系列磁性化合物 Eu2𝑛+1In2(As,Sb)2𝑛+2 (𝑛=0,1,2)同时表现出无间隙的狄拉克表面态和手性铰链模式。这种混合阶拓扑结构孵化出依赖于表面的量子几何。通过将响应映射到实数空间,我们证明了沿𝑐方向存在手性铰链模式,它源于两个有间隙的𝑎𝑐/𝑏𝑐面上由于贝里曲率而产生的半量化反常霍尔效应,而无间隙的𝑎𝑏面上的无钉迪拉克表面态则由于量子度量而产生内在的非线性反常霍尔效应。当 Eu3In2As4 被外磁场极化为铁磁相时,它就变成了理想的韦尔半金属,具有一对 I 型韦尔点,没有额外的费米口袋。我们的工作预测了丰富的拓扑态,这些拓扑态对磁性结构、量子几何诱导的输运以及与超导体近似的拓扑超导性非常敏感。
{"title":"Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry","authors":"Yufei Zhao, Yiyang Jiang, Hyeonhu Bae, Kamal Das, Yongkang Li, Chao-Xing Liu, Binghai Yan","doi":"10.1103/physrevb.110.205111","DOIUrl":"https://doi.org/10.1103/physrevb.110.205111","url":null,"abstract":"The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds &lt;mjx-container ctxtmenu_counter=\"46\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(13 (8 0 (7 (6 1 5 2) 3 4)) 12 (11 9 10))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"8,11\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"8 12 11\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper E u Subscript 2 n plus 1 Baseline upper I n 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,7\" data-semantic- data-semantic-owns=\"0 7\" data-semantic-parent=\"13\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;E&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;u&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow data-semantic-children=\"6,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"6 3 4\" data-semantic-parent=\"8\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 2\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑛&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"7\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semant","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"28 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic phase transition modeling of potassium niobate under shock compression 冲击压缩下铌酸钾的动态相变模型
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.174102
Qiu Feng, Zhengwei Xiong, Zhangyang Zhou, Jun Yang, Gang Yao, Sen Chen, Zeming Tang, Zhipeng Gao
The phase transitions of ferroelectric ceramics under dynamic compressions are of importance for materials and applications design. However, there are very few effective methods for describing the shock-induced phase transition process in ferroelectric ceramics, due to the tiny structural volume change during compression. Here the phase transition behaviors of KNbO3 ceramics under compression are studied by measuring electrical responses. A model describing the phase variation in ferroelectric ceramics under uniaxial compressions with respect to pressures has been established, which may provide a reference for studying dynamic phase transitions in ferroelectrics under shock waves. Unlike hydrostatic high-pressure processes, the shock-induced phase transition initiates at relatively low pressures and increases progressively as the pressure rises. Random orientations of the grains in ceramics lead to different pressure conditions of each grain, which is responsible for the gradual phase transition processes. The proportion of phase transitions in three-dimensional space can be visualized using ab initio density functional theory. These findings have significant implications for material design and optimization.
动态压缩下铁电陶瓷的相变对材料和应用设计非常重要。然而,由于压缩过程中结构体积变化极小,因此很少有有效的方法来描述冲击诱导的铁电陶瓷相变过程。本文通过测量电响应来研究 KNbO3 陶瓷在压缩过程中的相变行为。建立了一个描述铁电陶瓷在单轴压缩下相变与压力关系的模型,该模型可为研究冲击波作用下铁电陶瓷的动态相变提供参考。与静水高压过程不同,冲击波诱导的相变始于相对较低的压力,并随着压力的升高而逐渐增加。陶瓷中晶粒的随机取向导致每个晶粒的压力条件不同,这就是渐进相变过程的原因。利用原子序数密度泛函理论可以直观地看到相变在三维空间中的比例。这些发现对材料设计和优化具有重要意义。
{"title":"Dynamic phase transition modeling of potassium niobate under shock compression","authors":"Qiu Feng, Zhengwei Xiong, Zhangyang Zhou, Jun Yang, Gang Yao, Sen Chen, Zeming Tang, Zhipeng Gao","doi":"10.1103/physrevb.110.174102","DOIUrl":"https://doi.org/10.1103/physrevb.110.174102","url":null,"abstract":"The phase transitions of ferroelectric ceramics under dynamic compressions are of importance for materials and applications design. However, there are very few effective methods for describing the shock-induced phase transition process in ferroelectric ceramics, due to the tiny structural volume change during compression. Here the phase transition behaviors of <mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper K upper N b normal upper O 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">K</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c style=\"padding-top: 0.706em;\">b</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> ceramics under compression are studied by measuring electrical responses. A model describing the phase variation in ferroelectric ceramics under uniaxial compressions with respect to pressures has been established, which may provide a reference for studying dynamic phase transitions in ferroelectrics under shock waves. Unlike hydrostatic high-pressure processes, the shock-induced phase transition initiates at relatively low pressures and increases progressively as the pressure rises. Random orientations of the grains in ceramics lead to different pressure conditions of each grain, which is responsible for the gradual phase transition processes. The proportion of phase transitions in three-dimensional space can be visualized using <i>ab initio</i> density functional theory. These findings have significant implications for material design and optimization.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"7 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding solid nitrogen through molecular dynamics simulations with a machine-learning potential 通过具有机器学习潜力的分子动力学模拟了解固态氮
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-05 DOI: 10.1103/physrevb.110.184107
Marcin Kirsz, Ciprian G. Pruteanu, Peter I. C. Cooke, Graeme J. Ackland
We construct a fast, transferable, general purpose, machine-learning interatomic potential suitable for large-scale simulations of <mjx-container ctxtmenu_counter="60" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="latinletter" data-semantic-speech="normal upper N 2" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>N</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. The potential is trained only on high quality quantum chemical molecule-molecule interactions; no condensed phase information is used. Although there are no explicit or implicit many-molecule interaction terms, the potential reproduces the experimental phase diagram including the melt curve and the molecular solid phases of nitrogen up to <mjx-container ctxtmenu_counter="61" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(4 0 3 2)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,2" data-semantic-content="3" data-semantic- data-semantic-owns="0 3 2" data-semantic-role="implicit" data-semantic-speech="10 upper G upper P a" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.642em;">1</mjx-c><mjx-c style="padding-top: 0.642em;">0</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="4" data-semantic-role="space" data-semantic-type="operator" style="width: 0.4em;"></mjx-mspace><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.669em;">G</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">P</mjx-c><mjx-c style="padding-top: 0.669em;">a</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>. This demonstrates that many-molecule interactions are unnecessary to explain the condensed phases of <mjx-container ctxtmenu_counter="62" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-c
我们构建了一种适合大规模模拟 N2 的快速、可转移、通用的机器学习原子间势。该势垒仅根据高质量的量子化学分子-分子相互作用进行训练;未使用凝聚相信息。虽然没有显式或隐式多分子相互作用项,但该势能重现了实验相图,包括熔融曲线和高达 10GPa 的氮分子固相。这表明多分子相互作用在解释 N2 凝聚相时是不必要的。随着压力的增加,可以观察到从立方体(𝛼)到四方体(𝛾)的转变,立方体能优化四极-四极相互作用,四方体能更有效地堆积,而单斜体(𝜆)则能更有效地堆积。加热时,我们得到了 hcp 三维转子相(绊脚石),在压力作用下,得到了同时包含三维和二维转子的立方体𝛿 相、包含二维转子的四方体𝛿* 相以及斜方体𝜀 相。分子动力学证明了这些相确实是转子,而不是受挫阶。该模型支持复杂的𝜄相的可转移性,但不支持报告中存在的宽键长范围。热力学转变涉及分子中心的移动和分子的旋转:旋转的开始是快速的,而分子中心的运动则受到抑制,我们认为这是实验观察到的转变迟缓的原因。常规密度泛函理论计算也给出了与电位类似的结果。
{"title":"Understanding solid nitrogen through molecular dynamics simulations with a machine-learning potential","authors":"Marcin Kirsz, Ciprian G. Pruteanu, Peter I. C. Cooke, Graeme J. Ackland","doi":"10.1103/physrevb.110.184107","DOIUrl":"https://doi.org/10.1103/physrevb.110.184107","url":null,"abstract":"We construct a fast, transferable, general purpose, machine-learning interatomic potential suitable for large-scale simulations of &lt;mjx-container ctxtmenu_counter=\"60\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper N 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;N&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;. The potential is trained only on high quality quantum chemical molecule-molecule interactions; no condensed phase information is used. Although there are no explicit or implicit many-molecule interaction terms, the potential reproduces the experimental phase diagram including the melt curve and the molecular solid phases of nitrogen up to &lt;mjx-container ctxtmenu_counter=\"61\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(4 0 3 2)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,2\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"0 3 2\" data-semantic-role=\"implicit\" data-semantic-speech=\"10 upper G upper P a\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.642em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.642em;\"&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"4\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.4em;\"&gt;&lt;/mjx-mspace&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;G&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;P&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;a&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;. This demonstrates that many-molecule interactions are unnecessary to explain the condensed phases of &lt;mjx-container ctxtmenu_counter=\"62\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-c","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"44 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1