首页 > 最新文献

Physical Review B最新文献

英文 中文
Impact of the hole gas on optically detected magnetic resonance in (Cd,Mn)Te -based quantum wells
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-28 DOI: 10.1103/physrevb.111.035307
A. Łopion, A. Bogucki, M. Raczyński, Z. Śnioch, K. E. Połczyńska, W. Pacuski, T. Kazimierczuk, A. Golnik, P. Kossacki
Optically detected magnetic resonance (ODMR) is a useful technique for studying interactions between local spins (magnetic ions) and the carrier gas. We present an ODMR study of a single (Cd,Mn)Te/(Cd,Mg)Te quantum wells (QWs) with the hole gas. We observe different characteristics of the ODMR signals obtained simultaneously using the optical signals of the neutral and positively charged exciton. From this, we infer the existence of local fluctuations of carrier gas density resulting in separate populations of Mn2+ ions. At the same time, the shape of the ODMR signal contains information about the temperature of the magnetic ions involved in the absorption of the microwaves. Studying it in detail provides even more information about the interactions with charge carriers. In the QW, two separate ensembles of ions are thermalized differently in the presence of carriers. Published by the American Physical Society 2025
{"title":"Impact of the hole gas on optically detected magnetic resonance in (Cd,Mn)Te -based quantum wells","authors":"A. Łopion, A. Bogucki, M. Raczyński, Z. Śnioch, K. E. Połczyńska, W. Pacuski, T. Kazimierczuk, A. Golnik, P. Kossacki","doi":"10.1103/physrevb.111.035307","DOIUrl":"https://doi.org/10.1103/physrevb.111.035307","url":null,"abstract":"Optically detected magnetic resonance (ODMR) is a useful technique for studying interactions between local spins (magnetic ions) and the carrier gas. We present an ODMR study of a single (</a:mo>Cd</a:mtext>,</a:mtext>Mn</a:mtext>)</a:mo>Te</a:mtext>/</a:mo>(</a:mo>Cd</a:mtext>,</a:mtext>Mg</a:mtext>)</a:mo>Te</a:mtext></a:math> quantum wells (QWs) with the hole gas. We observe different characteristics of the ODMR signals obtained simultaneously using the optical signals of the neutral and positively charged exciton. From this, we infer the existence of local fluctuations of carrier gas density resulting in separate populations of <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msup><b:mrow><b:mi>Mn</b:mi></b:mrow><b:mrow><b:mn>2</b:mn><b:mo>+</b:mo></b:mrow></b:msup></b:math> ions. At the same time, the shape of the ODMR signal contains information about the temperature of the magnetic ions involved in the absorption of the microwaves. Studying it in detail provides even more information about the interactions with charge carriers. In the QW, two separate ensembles of ions are thermalized differently in the presence of carriers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"39 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-27 DOI: 10.1103/physrevb.111.045157
Bin He, Tianye Yu, Yu Pan, Congcong Le, Dong Chen, Yan Sun, Claudia Felser
Weyl semimetals have attracted considerable research interest over the past decade, with a number of intriguing transport phenomena reported. Magnetic Weyl semimetals, which break time reversal symmetry, have been predicted and recently discovered. Co3Sn2S2 is a magnetic Weyl semimetal that exhibit a giant anomalous Hall effect (AHE) when the magnetic moments are aligned along the c axis. In this paper, we report the evolution of the AHE with an external magnetic field applied in the ab plane and current along the c axis, namely, the out-of-plane AHE of Co3Sn2S2. Density functional theory calculations predict a finite out-of-plane AHE when the spins are fully aligned in the ab plane. The evolution of the magnetic structure modifies the nodal line distribution and the Berry curvature, resulting in a weaker AHE with an amplitude of 200Scm1 at the saturation field. To ensure the alignment of the magnetic field in the ab plane, a two-round scanning process was performed experimentally. After this, the out-of-plane AHE was measured at multiple temperatures. The observed AHE signals with applied fields of 1 and 2 T were in good agreement with theoretical predictions. These results suggest that engineering the anomalous Hall effect may be possible by designing the symmetry relation of the local Berry curvature. Published by the American Physical Society 2025
{"title":"Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2","authors":"Bin He, Tianye Yu, Yu Pan, Congcong Le, Dong Chen, Yan Sun, Claudia Felser","doi":"10.1103/physrevb.111.045157","DOIUrl":"https://doi.org/10.1103/physrevb.111.045157","url":null,"abstract":"Weyl semimetals have attracted considerable research interest over the past decade, with a number of intriguing transport phenomena reported. Magnetic Weyl semimetals, which break time reversal symmetry, have been predicted and recently discovered. Co</a:mi>3</a:mn></a:msub>Sn</a:mi>2</a:mn></a:msub>S</a:mi>2</a:mn></a:msub></a:mrow></a:math> is a magnetic Weyl semimetal that exhibit a giant anomalous Hall effect (AHE) when the magnetic moments are aligned along the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mi>c</e:mi></e:math> axis. In this paper, we report the evolution of the AHE with an external magnetic field applied in the <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>a</f:mi><f:mi>b</f:mi></f:mrow></f:math> plane and current along the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mi>c</g:mi></g:math> axis, namely, the out-of-plane AHE of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi mathvariant=\"normal\">Co</h:mi><h:mn>3</h:mn></h:msub><h:msub><h:mi mathvariant=\"normal\">Sn</h:mi><h:mn>2</h:mn></h:msub><h:msub><h:mi mathvariant=\"normal\">S</h:mi><h:mn>2</h:mn></h:msub></h:mrow></h:math>. Density functional theory calculations predict a finite out-of-plane AHE when the spins are fully aligned in the <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mrow><l:mi>a</l:mi><l:mi>b</l:mi></l:mrow></l:math> plane. The evolution of the magnetic structure modifies the nodal line distribution and the Berry curvature, resulting in a weaker AHE with an amplitude of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>200</m:mn><m:mspace width=\"0.16em\"/><m:mi mathvariant=\"normal\">S</m:mi><m:mspace width=\"0.28em\"/><m:mi mathvariant=\"normal\">c</m:mi><m:msup><m:mrow><m:mi mathvariant=\"normal\">m</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>1</m:mn></m:mrow></m:msup></m:mrow></m:math> at the saturation field. To ensure the alignment of the magnetic field in the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:mrow><s:mi>a</s:mi><s:mi>b</s:mi></s:mrow></s:math> plane, a two-round scanning process was performed experimentally. After this, the out-of-plane AHE was measured at multiple temperatures. The observed AHE signals with applied fields of 1 and 2 T were in good agreement with theoretical predictions. These results suggest that engineering the anomalous Hall effect may be possible by designing the symmetry relation of the local Berry curvature. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"59 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation renormalization group analysis of confinement in Z2 lattice gauge theories
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-27 DOI: 10.1103/physrevb.111.024314
Gesa Dünnweber, Simon M. Linsel, Annabelle Bohrdt, Fabian Grusdt
The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z2 LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical Z2 LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at T< in the model we consider. Our RG scheme enables future analytical studies of Z2 LGTs with matter and quantum fluctuations and beyond. Published by the American Physical Society 2025
{"title":"Percolation renormalization group analysis of confinement in Z2 lattice gauge theories","authors":"Gesa Dünnweber, Simon M. Linsel, Annabelle Bohrdt, Fabian Grusdt","doi":"10.1103/physrevb.111.024314","DOIUrl":"https://doi.org/10.1103/physrevb.111.024314","url":null,"abstract":"The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z</a:mi>2</a:mn></a:msub></a:math> LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi mathvariant=\"double-struck\">Z</c:mi><c:mn>2</c:mn></c:msub></c:math> LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>T</e:mi><e:mo>&lt;</e:mo><e:mi>∞</e:mi></e:mrow></e:math> in the model we consider. Our RG scheme enables future analytical studies of <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:msub><f:mi mathvariant=\"double-struck\">Z</f:mi><f:mn>2</f:mn></f:msub></f:math> LGTs with matter and quantum fluctuations and beyond. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical and structural disorder in the kagome spin S=12 systems ZnCu3(OH)6Cl2 and YCu3(OH)6Br2[Brx(OH)1−x]
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-27 DOI: 10.1103/physrevb.111.024424
Reinhard K. Kremer, Sebastian Bette, Jürgen Nuss, Pascal Puphal
By single crystal diffraction we characterize the chemostructural disorder introduced by Zn-Cu site mixing in the kagome spin S</a:mi>=</a:mo>1</a:mn>2</a:mn></a:mfrac></a:mrow></a:math> systems herbertsmithite <b:math xmlns:b="http://www.w3.org/1998/Math/MathML"><b:mrow><b:msub><b:mi>ZnCu</b:mi><b:mn>3</b:mn></b:msub><b:msub><b:mrow><b:mo>(</b:mo><b:mi>OH</b:mi><b:mo>)</b:mo></b:mrow><b:mn>6</b:mn></b:msub><b:msub><b:mi>Cl</b:mi><b:mn>2</b:mn></b:msub></b:mrow></b:math> and <c:math xmlns:c="http://www.w3.org/1998/Math/MathML"><c:mrow><c:msub><c:mi>YCu</c:mi><c:mn>3</c:mn></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:mi>OH</c:mi><c:mo>)</c:mo></c:mrow><c:mn>6</c:mn></c:msub><c:msub><c:mi>Br</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mrow><c:mo>[</c:mo><c:mi>Br</c:mi></c:mrow><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:mi>OH</c:mi><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow><c:mo>]</c:mo></c:math>. For an untwinned single crystal of herbertsmithite of composition <d:math xmlns:d="http://www.w3.org/1998/Math/MathML"><d:mrow><d:msub><d:mi>Zn</d:mi><d:mrow><d:mn>0.95</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi>Cu</d:mi><d:mrow><d:mn>2.99</d:mn><d:mo>(</d:mo><d:mn>3</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi mathvariant="normal">O</d:mi><d:mrow><d:mn>5.9</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi mathvariant="normal">H</d:mi><d:mrow><d:mn>5.8</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi>Cl</d:mi><d:mn>2</d:mn></d:msub></d:mrow></d:math> we find substitution by Cu of the Zn atoms in the layers separating the kagome layers as well as substantial Zn substitution for Cu in the kagome layers. In <g:math xmlns:g="http://www.w3.org/1998/Math/MathML"><g:mrow><g:msub><g:mi>YCu</g:mi><g:mn>3</g:mn></g:msub><g:msub><g:mrow><g:mo>(</g:mo><g:mi>OH</g:mi><g:mo>)</g:mo></g:mrow><g:mn>6</g:mn></g:msub><g:msub><g:mi>Br</g:mi><g:mn>2</g:mn></g:msub><g:msub><g:mrow><g:mo>[</g:mo><g:mi>Br</g:mi></g:mrow><g:mi>x</g:mi></g:msub><g:msub><g:mrow><g:mo>(</g:mo><g:mi>OH</g:mi><g:mo>)</g:mo></g:mrow><g:mrow><g:mn>1</g:mn><g:mo>−</g:mo><g:mi>x</g:mi></g:mrow></g:msub></g:mrow><g:mo>]</g:mo></g:math> site mixing disorder is present for intermediate <h:math xmlns:h="http://www.w3.org/1998/Math/MathML"><h:mi>x</h:mi></h:math>. Analogous to the Cl homologous system in crystals with <i:math xmlns:i="http://www.w3.org/1998/Math/MathML"><i:mrow><i:mi>x</i:mi><i:mo>=</i:mo><i:mn>1</i:mn><i:mo>/</i:mo><i:mn>3</i:mn></i:mrow></i:math> disorder is absent and a low-temperature structural transition emerges driven by strong magnetophonon coupling as a release of frustration. Apart from this structural anomaly we find the physical properties of these crystals unchanged compared to intermediate <j:math xmlns:j="http://www.w3.org/1998/Math/MathML"><j:mi>x</j:mi></j:math> and closely resembling the Cl homologue where lon
{"title":"Chemical and structural disorder in the kagome spin S=12 systems ZnCu3(OH)6Cl2 and YCu3(OH)6Br2[Brx(OH)1−x]","authors":"Reinhard K. Kremer, Sebastian Bette, Jürgen Nuss, Pascal Puphal","doi":"10.1103/physrevb.111.024424","DOIUrl":"https://doi.org/10.1103/physrevb.111.024424","url":null,"abstract":"By single crystal diffraction we characterize the chemostructural disorder introduced by Zn-Cu site mixing in the kagome spin S&lt;/a:mi&gt;=&lt;/a:mo&gt;1&lt;/a:mn&gt;2&lt;/a:mn&gt;&lt;/a:mfrac&gt;&lt;/a:mrow&gt;&lt;/a:math&gt; systems herbertsmithite &lt;b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;b:mrow&gt;&lt;b:msub&gt;&lt;b:mi&gt;ZnCu&lt;/b:mi&gt;&lt;b:mn&gt;3&lt;/b:mn&gt;&lt;/b:msub&gt;&lt;b:msub&gt;&lt;b:mrow&gt;&lt;b:mo&gt;(&lt;/b:mo&gt;&lt;b:mi&gt;OH&lt;/b:mi&gt;&lt;b:mo&gt;)&lt;/b:mo&gt;&lt;/b:mrow&gt;&lt;b:mn&gt;6&lt;/b:mn&gt;&lt;/b:msub&gt;&lt;b:msub&gt;&lt;b:mi&gt;Cl&lt;/b:mi&gt;&lt;b:mn&gt;2&lt;/b:mn&gt;&lt;/b:msub&gt;&lt;/b:mrow&gt;&lt;/b:math&gt; and &lt;c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;c:mrow&gt;&lt;c:msub&gt;&lt;c:mi&gt;YCu&lt;/c:mi&gt;&lt;c:mn&gt;3&lt;/c:mn&gt;&lt;/c:msub&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mo&gt;(&lt;/c:mo&gt;&lt;c:mi&gt;OH&lt;/c:mi&gt;&lt;c:mo&gt;)&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;c:mn&gt;6&lt;/c:mn&gt;&lt;/c:msub&gt;&lt;c:msub&gt;&lt;c:mi&gt;Br&lt;/c:mi&gt;&lt;c:mn&gt;2&lt;/c:mn&gt;&lt;/c:msub&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mo&gt;[&lt;/c:mo&gt;&lt;c:mi&gt;Br&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mi&gt;x&lt;/c:mi&gt;&lt;/c:msub&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mo&gt;(&lt;/c:mo&gt;&lt;c:mi&gt;OH&lt;/c:mi&gt;&lt;c:mo&gt;)&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mn&gt;1&lt;/c:mn&gt;&lt;c:mo&gt;−&lt;/c:mo&gt;&lt;c:mi&gt;x&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;/c:msub&gt;&lt;/c:mrow&gt;&lt;c:mo&gt;]&lt;/c:mo&gt;&lt;/c:math&gt;. For an untwinned single crystal of herbertsmithite of composition &lt;d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;d:mrow&gt;&lt;d:msub&gt;&lt;d:mi&gt;Zn&lt;/d:mi&gt;&lt;d:mrow&gt;&lt;d:mn&gt;0.95&lt;/d:mn&gt;&lt;d:mo&gt;(&lt;/d:mo&gt;&lt;d:mn&gt;1&lt;/d:mn&gt;&lt;d:mo&gt;)&lt;/d:mo&gt;&lt;/d:mrow&gt;&lt;/d:msub&gt;&lt;d:msub&gt;&lt;d:mi&gt;Cu&lt;/d:mi&gt;&lt;d:mrow&gt;&lt;d:mn&gt;2.99&lt;/d:mn&gt;&lt;d:mo&gt;(&lt;/d:mo&gt;&lt;d:mn&gt;3&lt;/d:mn&gt;&lt;d:mo&gt;)&lt;/d:mo&gt;&lt;/d:mrow&gt;&lt;/d:msub&gt;&lt;d:msub&gt;&lt;d:mi mathvariant=\"normal\"&gt;O&lt;/d:mi&gt;&lt;d:mrow&gt;&lt;d:mn&gt;5.9&lt;/d:mn&gt;&lt;d:mo&gt;(&lt;/d:mo&gt;&lt;d:mn&gt;1&lt;/d:mn&gt;&lt;d:mo&gt;)&lt;/d:mo&gt;&lt;/d:mrow&gt;&lt;/d:msub&gt;&lt;d:msub&gt;&lt;d:mi mathvariant=\"normal\"&gt;H&lt;/d:mi&gt;&lt;d:mrow&gt;&lt;d:mn&gt;5.8&lt;/d:mn&gt;&lt;d:mo&gt;(&lt;/d:mo&gt;&lt;d:mn&gt;1&lt;/d:mn&gt;&lt;d:mo&gt;)&lt;/d:mo&gt;&lt;/d:mrow&gt;&lt;/d:msub&gt;&lt;d:msub&gt;&lt;d:mi&gt;Cl&lt;/d:mi&gt;&lt;d:mn&gt;2&lt;/d:mn&gt;&lt;/d:msub&gt;&lt;/d:mrow&gt;&lt;/d:math&gt; we find substitution by Cu of the Zn atoms in the layers separating the kagome layers as well as substantial Zn substitution for Cu in the kagome layers. In &lt;g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;g:mrow&gt;&lt;g:msub&gt;&lt;g:mi&gt;YCu&lt;/g:mi&gt;&lt;g:mn&gt;3&lt;/g:mn&gt;&lt;/g:msub&gt;&lt;g:msub&gt;&lt;g:mrow&gt;&lt;g:mo&gt;(&lt;/g:mo&gt;&lt;g:mi&gt;OH&lt;/g:mi&gt;&lt;g:mo&gt;)&lt;/g:mo&gt;&lt;/g:mrow&gt;&lt;g:mn&gt;6&lt;/g:mn&gt;&lt;/g:msub&gt;&lt;g:msub&gt;&lt;g:mi&gt;Br&lt;/g:mi&gt;&lt;g:mn&gt;2&lt;/g:mn&gt;&lt;/g:msub&gt;&lt;g:msub&gt;&lt;g:mrow&gt;&lt;g:mo&gt;[&lt;/g:mo&gt;&lt;g:mi&gt;Br&lt;/g:mi&gt;&lt;/g:mrow&gt;&lt;g:mi&gt;x&lt;/g:mi&gt;&lt;/g:msub&gt;&lt;g:msub&gt;&lt;g:mrow&gt;&lt;g:mo&gt;(&lt;/g:mo&gt;&lt;g:mi&gt;OH&lt;/g:mi&gt;&lt;g:mo&gt;)&lt;/g:mo&gt;&lt;/g:mrow&gt;&lt;g:mrow&gt;&lt;g:mn&gt;1&lt;/g:mn&gt;&lt;g:mo&gt;−&lt;/g:mo&gt;&lt;g:mi&gt;x&lt;/g:mi&gt;&lt;/g:mrow&gt;&lt;/g:msub&gt;&lt;/g:mrow&gt;&lt;g:mo&gt;]&lt;/g:mo&gt;&lt;/g:math&gt; site mixing disorder is present for intermediate &lt;h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;h:mi&gt;x&lt;/h:mi&gt;&lt;/h:math&gt;. Analogous to the Cl homologous system in crystals with &lt;i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;i:mrow&gt;&lt;i:mi&gt;x&lt;/i:mi&gt;&lt;i:mo&gt;=&lt;/i:mo&gt;&lt;i:mn&gt;1&lt;/i:mn&gt;&lt;i:mo&gt;/&lt;/i:mo&gt;&lt;i:mn&gt;3&lt;/i:mn&gt;&lt;/i:mrow&gt;&lt;/i:math&gt; disorder is absent and a low-temperature structural transition emerges driven by strong magnetophonon coupling as a release of frustration. Apart from this structural anomaly we find the physical properties of these crystals unchanged compared to intermediate &lt;j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;j:mi&gt;x&lt;/j:mi&gt;&lt;/j:math&gt; and closely resembling the Cl homologue where lon","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncollinear phase of the antiferromagnetic sawtooth chain
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-24 DOI: 10.1103/physrevb.111.045154
Roman Rausch, Christoph Karrasch
The antiferromagnetic sawtooth chain is a prototypical example of a frustrated spin system with vertex-sharing triangles, giving rise to complex quantum states. Depending on the interaction parameters, this system has three phases, of which the gapless noncollinear phase (for strongly coupled basal spins and loosely attached apical spins) has received little theoretical attention so far. In this work, we comprehensively investigate the properties of the noncollinear phase using large-scale tensor network computations which exploit the full SU(2) symmetry of the underlying Heisenberg model. We study the ground state both for finite systems using the density-matrix renormalization group (DMRG) as well as for infinite chains via the variational uniform matrix-product state (VUMPS) formalism. Finite temperatures and correlation functions are tackled via imaginary or real time evolutions, which we implement using the time-dependent variational principle (TDVP). We find that the noncollinear phase is characterized by a low-momentum peak and a diffuse tail for the apex-apex correlations. Deep into the phase, the pattern sharpens into a peak indicating a 90∘ spiral. The apical spins are soft and highly susceptible to external perturbations; they give rise to a large number of gapless magnetic states that are polarized by weak fields and cause a long low-temperature tail in the specific heat. The dynamic spin-structure factor exhibits additive contributions from a two-spinon continuum (excitations of the basal chain) and a gapless peak at k=π/2 (excitations of the apical spins). Small temperatures excite the gapless states and smear the spectral weight of the k=π/2 peak out into a homogeneous flat-band structure. Our results are relevant, e.g., for the material atacamite Cu2Cl(OH)3 in high magnetic fields. Published by the American Physical Society 2025
{"title":"Noncollinear phase of the antiferromagnetic sawtooth chain","authors":"Roman Rausch, Christoph Karrasch","doi":"10.1103/physrevb.111.045154","DOIUrl":"https://doi.org/10.1103/physrevb.111.045154","url":null,"abstract":"The antiferromagnetic sawtooth chain is a prototypical example of a frustrated spin system with vertex-sharing triangles, giving rise to complex quantum states. Depending on the interaction parameters, this system has three phases, of which the gapless noncollinear phase (for strongly coupled basal spins and loosely attached apical spins) has received little theoretical attention so far. In this work, we comprehensively investigate the properties of the noncollinear phase using large-scale tensor network computations which exploit the full SU(2) symmetry of the underlying Heisenberg model. We study the ground state both for finite systems using the density-matrix renormalization group (DMRG) as well as for infinite chains via the variational uniform matrix-product state (VUMPS) formalism. Finite temperatures and correlation functions are tackled via imaginary or real time evolutions, which we implement using the time-dependent variational principle (TDVP). We find that the noncollinear phase is characterized by a low-momentum peak and a diffuse tail for the apex-apex correlations. Deep into the phase, the pattern sharpens into a peak indicating a 90</a:mn>∘</a:mo></a:msup></a:math> spiral. The apical spins are soft and highly susceptible to external perturbations; they give rise to a large number of gapless magnetic states that are polarized by weak fields and cause a long low-temperature tail in the specific heat. The dynamic spin-structure factor exhibits additive contributions from a two-spinon continuum (excitations of the basal chain) and a gapless peak at <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mi>k</b:mi><b:mo>=</b:mo><b:mi>π</b:mi><b:mo>/</b:mo><b:mn>2</b:mn></b:mrow></b:math> (excitations of the apical spins). Small temperatures excite the gapless states and smear the spectral weight of the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>k</c:mi><c:mo>=</c:mo><c:mi>π</c:mi><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> peak out into a homogeneous flat-band structure. Our results are relevant, e.g., for the material atacamite <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msub><d:mi>Cu</d:mi><d:mn>2</d:mn></d:msub><d:mi>Cl</d:mi><d:msub><d:mrow><d:mo>(</d:mo><d:mi>OH</d:mi><d:mo>)</d:mo></d:mrow><d:mn>3</d:mn></d:msub></d:mrow></d:math> in high magnetic fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite-size topological phases from semimetals
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-24 DOI: 10.1103/physrevb.111.035146
Adipta Pal, Ashley M. Cook
Topological semimetals are some of the topological phases of matter most intensely studied experimentally. The Weyl semimetal phase, in particular, has garnered tremendous, sustained interest given fascinating signatures such as the Fermi arc surface states and the chiral anomaly, as well as the minimal requirements to protect this three-dimensional (3D) topological phase. Here, we show that thin films of Weyl semimetals [which we call quasi-(3−1)-dimensional, or q(31)D] generically realize finite-size topological phases distinct from 3D and 2D topological phases of established classification schemes: response signatures of the 3D bulk topology coexist with topologically protected, quasi-(32)D Fermi arc states or chiral boundary modes due to a second, previously unidentified bulk-boundary correspondence. We show these finite-size topological semimetal phases are realized by Hamiltonians capturing the Fermiology of few-layer van der Waals material MoTe2 in experiment. Given the broad experimental interest in few-layer van der Waals materials and topological semimetals, our work paves the way for extensive future theoretical and experimental characterization of finite-size topological phases. Published by the American Physical Society 2025
{"title":"Finite-size topological phases from semimetals","authors":"Adipta Pal, Ashley M. Cook","doi":"10.1103/physrevb.111.035146","DOIUrl":"https://doi.org/10.1103/physrevb.111.035146","url":null,"abstract":"Topological semimetals are some of the topological phases of matter most intensely studied experimentally. The Weyl semimetal phase, in particular, has garnered tremendous, sustained interest given fascinating signatures such as the Fermi arc surface states and the chiral anomaly, as well as the minimal requirements to protect this three-dimensional (3D) topological phase. Here, we show that thin films of Weyl semimetals [which we call quasi-(3</a:mn>−</a:mo>1</a:mn></a:mrow></a:math>)-dimensional, or q(<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mn>3</b:mn><b:mo>−</b:mo><b:mn>1</b:mn></b:mrow></b:math>)D] generically realize finite-size topological phases distinct from 3D and 2D topological phases of established classification schemes: response signatures of the 3D bulk topology coexist with topologically protected, quasi-(<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mn>3</c:mn><c:mo>−</c:mo><c:mn>2</c:mn></c:mrow></c:math>)D Fermi arc states or chiral boundary modes due to a second, previously unidentified bulk-boundary correspondence. We show these finite-size topological semimetal phases are realized by Hamiltonians capturing the Fermiology of few-layer van der Waals material <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:msub><d:mi>MoTe</d:mi><d:mn>2</d:mn></d:msub></d:math> in experiment. Given the broad experimental interest in few-layer van der Waals materials and topological semimetals, our work paves the way for extensive future theoretical and experimental characterization of finite-size topological phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct free energy calculation from ab initio path integral Monte Carlo simulations of warm dense matter
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-23 DOI: 10.1103/physrevb.111.l041114
Tobias Dornheim, Zhandos A. Moldabekov, Sebastian Schwalbe, Jan Vorberger
We carry out highly accurate path integral Monte Carlo simulations to directly estimate the free energy of various warm dense matter systems including the uniform electron gas and hydrogen without any nodal restrictions or other approximations. Since our approach is based on an effective ensemble in a bosonic configuration space, it does not increase the computational complexity beyond the usual fermion sign problem. Its application to inhomogeneous cases such as an electronic system in a fixed external ion potential is straightforward and opens up the enticing possibility to benchmark density functional theory and other existing methods. Finally, it is not limited to warm dense matter and can be applied to a gamut of other systems such as ultracold atoms and electrons in quantum dots. Published by the American Physical Society 2025
{"title":"Direct free energy calculation from ab initio path integral Monte Carlo simulations of warm dense matter","authors":"Tobias Dornheim, Zhandos A. Moldabekov, Sebastian Schwalbe, Jan Vorberger","doi":"10.1103/physrevb.111.l041114","DOIUrl":"https://doi.org/10.1103/physrevb.111.l041114","url":null,"abstract":"We carry out highly accurate path integral Monte Carlo simulations to directly estimate the free energy of various warm dense matter systems including the uniform electron gas and hydrogen without any nodal restrictions or other approximations. Since our approach is based on an effective ensemble in a bosonic configuration space, it does not increase the computational complexity beyond the usual fermion sign problem. Its application to inhomogeneous cases such as an electronic system in a fixed external ion potential is straightforward and opens up the enticing possibility to benchmark density functional theory and other existing methods. Finally, it is not limited to warm dense matter and can be applied to a gamut of other systems such as ultracold atoms and electrons in quantum dots. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of a magnetic cobalt STM tip on the electronic, magnetic, and spin-dependent transport properties of cobalt phthalocyanine junctions on a Co(111) substrate
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-23 DOI: 10.1103/physrevb.111.035442
Ali Jaafar, Tarek Khalil
The effect of a magnetic scanning tunneling microscopy (STM) tip on electronic, magnetic, and electronic transport properties through the molecular junction STM-tip-Co/CoPc/Co(111) was investigated by mean of electronic structure calculations. The spin transition was studied by varying the distance (passing from the tunneling regime to the contact regime) between the tip and the CoPc molecule in both parallel and antiparallel configurations. Our calculation shows that the transition of spin of the Co atom of a CoPc molecule has led to a change of the sign of the . It is also shown that the characteristic has been influenced by this spin transition of the central atom of the CoPc molecule. Published by the American Physical Society 2025
{"title":"Effects of a magnetic cobalt STM tip on the electronic, magnetic, and spin-dependent transport properties of cobalt phthalocyanine junctions on a Co(111) substrate","authors":"Ali Jaafar, Tarek Khalil","doi":"10.1103/physrevb.111.035442","DOIUrl":"https://doi.org/10.1103/physrevb.111.035442","url":null,"abstract":"The effect of a magnetic scanning tunneling microscopy (STM) tip on electronic, magnetic, and electronic transport properties through the molecular junction STM-tip-Co/CoPc/Co(111) was investigated by mean of electronic structure calculations. The spin transition was studied by varying the distance (passing from the tunneling regime to the contact regime) between the tip and the CoPc molecule in both parallel and antiparallel configurations. Our calculation shows that the transition of spin of the Co atom of a CoPc molecule has led to a change of the sign of the . It is also shown that the characteristic has been influenced by this spin transition of the central atom of the CoPc molecule. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric field induced second-order anomalous Hall transport in unconventional Rashba systems
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-23 DOI: 10.1103/physrevb.111.l041202
Ankita Bhattacharya, Annica M. Black-Schaffer
Nonlinear responses in transport experiments may unveil information and generate new phenomena in materials that are not accessible at linear order due to symmetry constraints. While the linear anomalous Hall response strictly requires the absence of time-reversal symmetry, the second-order, thus nonlinear, Hall response needs broken inversion symmetry. Recently, much effort has been made to obtain a second-order Hall voltage in response to a longitudinal ac driving current, both to obtain information about band geometric quantities and for its useful technological applications, including rectification and frequency doubling. Typically, additional material engineering is required in noncentrosymmetric systems to obtain second-order responses since it obeys a stringent crystallographic symmetry constraint. To circumvent this, an alternative route is to apply a dc electric field. In this Letter, we uncover an electric field induced second-order anomalous Hall effect in inversion-broken systems possessing experimentally accessible unconventional Rashba bands. We establish that the quantum metric, a geometrical feature of electronic wave functions providing information on the nontrivial structure of Bloch bands, is responsible for providing the nonlinear Hall response. Published by the American Physical Society 2025
{"title":"Electric field induced second-order anomalous Hall transport in unconventional Rashba systems","authors":"Ankita Bhattacharya, Annica M. Black-Schaffer","doi":"10.1103/physrevb.111.l041202","DOIUrl":"https://doi.org/10.1103/physrevb.111.l041202","url":null,"abstract":"Nonlinear responses in transport experiments may unveil information and generate new phenomena in materials that are not accessible at linear order due to symmetry constraints. While the linear anomalous Hall response strictly requires the absence of time-reversal symmetry, the second-order, thus nonlinear, Hall response needs broken inversion symmetry. Recently, much effort has been made to obtain a second-order Hall voltage in response to a longitudinal ac driving current, both to obtain information about band geometric quantities and for its useful technological applications, including rectification and frequency doubling. Typically, additional material engineering is required in noncentrosymmetric systems to obtain second-order responses since it obeys a stringent crystallographic symmetry constraint. To circumvent this, an alternative route is to apply a dc electric field. In this Letter, we uncover an electric field induced second-order anomalous Hall effect in inversion-broken systems possessing experimentally accessible unconventional Rashba bands. We establish that the quantum metric, a geometrical feature of electronic wave functions providing information on the nontrivial structure of Bloch bands, is responsible for providing the nonlinear Hall response. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"46 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavity-enhanced charge-driven feedback loop in single quantum dot photocurrent spectroscopy
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-23 DOI: 10.1103/physrevb.111.035306
M. Hohn, M. Schmidt, S. Höfling, S. Reitzenstein
This study investigates a charge-driven feedback loop on single quantum dots (QDs) embedded in micropillar cavities under electrical readout. The coupled quantum–dot–microcavity system demonstrates a significant reduction in hysteresis under temperature sweep when the QD is in resonance with the cavity mode. To describe the experimental results, we develop a feedback model for the photocurrent response which incorporates a quadratic Stark shift to accurately fit the observed asymmetries and hysteresis in the spectra. Supported by this model, we attribute the observed reduction in hysteresis to an interplay between cavity-enhanced effective excitation power and the competition between radiative and nonradiative recombination by cavity quantum electrodynamics effects in the Purcell regime. This work provides important insights that can guide future optimization of QD-based devices for applications in quantum technologies. Published by the American Physical Society 2025
{"title":"Cavity-enhanced charge-driven feedback loop in single quantum dot photocurrent spectroscopy","authors":"M. Hohn, M. Schmidt, S. Höfling, S. Reitzenstein","doi":"10.1103/physrevb.111.035306","DOIUrl":"https://doi.org/10.1103/physrevb.111.035306","url":null,"abstract":"This study investigates a charge-driven feedback loop on single quantum dots (QDs) embedded in micropillar cavities under electrical readout. The coupled quantum–dot–microcavity system demonstrates a significant reduction in hysteresis under temperature sweep when the QD is in resonance with the cavity mode. To describe the experimental results, we develop a feedback model for the photocurrent response which incorporates a quadratic Stark shift to accurately fit the observed asymmetries and hysteresis in the spectra. Supported by this model, we attribute the observed reduction in hysteresis to an interplay between cavity-enhanced effective excitation power and the competition between radiative and nonradiative recombination by cavity quantum electrodynamics effects in the Purcell regime. This work provides important insights that can guide future optimization of QD-based devices for applications in quantum technologies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1