首页 > 最新文献

Physical Review B最新文献

英文 中文
Effect of correlated disorder on superconductivity in a kagome lattice: A Bogoliubov–de Gennes analysis 相关无序对神户晶格超导性的影响:波哥留布夫-德-热分析
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.184506
Ravi Kiran, Sudipta Biswas, Monodeep Chakraborty
This paper investigates the superconducting properties of a two-dimensional 𝑠-wave superconductor on a kagome lattice subjected to correlated disorder. Using the Bogoliubov–de Gennes theory, we analyze the impact of disorder correlations on superconducting behavior. Additionally, we derive the stiffness formula for the kagome lattice and calculate its superfluid stiffness. An intriguing finding of our paper is the bimodal characteristic in the probability distribution of the superconducting pairing amplitude at higher disorder correlation strengths for intermediate values of the disordered potential. Our results provide valuable insights into how disorder correlations influence superconductivity and underscore the role of lattice geometry in shaping superconducting properties.
本文研究了一种二维𝑠波超导体的超导特性。我们利用波哥留布夫-德-吉尼斯理论分析了无序相关性对超导行为的影响。此外,我们还推导出了 kagome 晶格的刚度公式,并计算出了其超流体刚度。我们论文的一个引人入胜的发现是,在无序势的中间值下,当无序相关强度较高时,超导配对振幅的概率分布具有双峰特征。我们的研究结果为了解无序相关如何影响超导性提供了宝贵的见解,并强调了晶格几何在塑造超导特性中的作用。
{"title":"Effect of correlated disorder on superconductivity in a kagome lattice: A Bogoliubov–de Gennes analysis","authors":"Ravi Kiran, Sudipta Biswas, Monodeep Chakraborty","doi":"10.1103/physrevb.110.184506","DOIUrl":"https://doi.org/10.1103/physrevb.110.184506","url":null,"abstract":"This paper investigates the superconducting properties of a two-dimensional <mjx-container ctxtmenu_counter=\"78\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"s\" data-semantic-type=\"identifier\"><mjx-c>𝑠</mjx-c></mjx-mi></mjx-math></mjx-container>-wave superconductor on a kagome lattice subjected to correlated disorder. Using the Bogoliubov–de Gennes theory, we analyze the impact of disorder correlations on superconducting behavior. Additionally, we derive the stiffness formula for the kagome lattice and calculate its superfluid stiffness. An intriguing finding of our paper is the bimodal characteristic in the probability distribution of the superconducting pairing amplitude at higher disorder correlation strengths for intermediate values of the disordered potential. Our results provide valuable insights into how disorder correlations influence superconductivity and underscore the role of lattice geometry in shaping superconducting properties.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"5 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulator-to-insulator transition and sign problem in the periodic Anderson model with a staggered potential 具有交错电势的周期性安德森模型中的绝缘体到绝缘体转变和符号问题
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.195122
Mengfan Wang, Danqing Hu, Yi-feng Yang
Motivated by the recent proposal that the Monte Carlo sign problem might be used as an indicator of quantum phase transitions, we simulate the periodic Anderson model at half-filling with a staggered ionic potential using the determinant quantum Monte Carlo (DQMC) approach. We observe a phase transition from a band insulator to a Kondo insulator as the hybridization increases. At finite temperature, an intermediate metallic region emerges between two insulating phases, which is characterized by a pseudogap in the spectral functions near the boundary of the intermediate region and a quasiparticle peak in the middle. The latter coincides with a crossing point of the 𝑓-electron occupation on different sublattices as well as the maximum antiferromagnetic (AFM) correlations. The metallic region extrapolates to a single quantum critical point at zero temperature, which may result in exotic quasiparticle excitations associated with the emergent metallic state. The Monte Carlo sign problem is found to be most pronounced in the quantum critical region, implying a close connection between the two phenomena. Our results are qualitatively supported by the Hartree-Fock (HF) mean-field calculations. Our work reveals interesting physics in inhomogeneous Kondo lattice systems that may be worthwhile of more investigations in the future.
最近有人提出蒙特卡洛符号问题可以作为量子相变的指标,受此启发,我们采用行列式量子蒙特卡洛(DQMC)方法模拟了半填充时交错离子势的周期性安德森模型。随着杂化程度的增加,我们观察到从带状绝缘体到 Kondo 绝缘体的相变。在有限温度下,两个绝缘相之间出现了一个中间金属区域,其特征是中间区域边界附近的光谱函数出现了一个伪缺口,中间出现了一个准粒子峰。后者与不同亚晶格上的𝑓-电子占据的交叉点以及最大反铁磁(AFM)相关性相吻合。金属区域外推到零温时的单量子临界点,这可能导致与出现的金属态相关的奇异准粒子激发。蒙特卡洛符号问题在量子临界区最为明显,这意味着这两种现象之间存在密切联系。我们的结果得到了哈特里-福克(HF)均场计算的定性支持。我们的研究揭示了不均匀近藤晶格系统中有趣的物理现象,值得在未来进行更多研究。
{"title":"Insulator-to-insulator transition and sign problem in the periodic Anderson model with a staggered potential","authors":"Mengfan Wang, Danqing Hu, Yi-feng Yang","doi":"10.1103/physrevb.110.195122","DOIUrl":"https://doi.org/10.1103/physrevb.110.195122","url":null,"abstract":"Motivated by the recent proposal that the Monte Carlo sign problem might be used as an indicator of quantum phase transitions, we simulate the periodic Anderson model at half-filling with a staggered ionic potential using the determinant quantum Monte Carlo (DQMC) approach. We observe a phase transition from a band insulator to a Kondo insulator as the hybridization increases. At finite temperature, an intermediate metallic region emerges between two insulating phases, which is characterized by a pseudogap in the spectral functions near the boundary of the intermediate region and a quasiparticle peak in the middle. The latter coincides with a crossing point of the <mjx-container ctxtmenu_counter=\"72\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container>-electron occupation on different sublattices as well as the maximum antiferromagnetic (AFM) correlations. The metallic region extrapolates to a single quantum critical point at zero temperature, which may result in exotic quasiparticle excitations associated with the emergent metallic state. The Monte Carlo sign problem is found to be most pronounced in the quantum critical region, implying a close connection between the two phenomena. Our results are qualitatively supported by the Hartree-Fock (HF) mean-field calculations. Our work reveals interesting physics in inhomogeneous Kondo lattice systems that may be worthwhile of more investigations in the future.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poor man's Majorana edge mode enabled by specular Andreev reflection 通过镜面安德烈耶夫反射实现穷人的马约拉纳边缘模式
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.l180402
C. W. J. Beenakker
It is known that the surface of a three-dimensional topological insulator (3D TI) supports a chiral Majorana edge mode at the interface between a superconductor and a magnetic insulator. The complexity of the materials combination is such that this state has not yet been observed. Here we show that a helical Majorana edge mode appears even in the absence of the magnetic insulator, if the Fermi level of the massless surface electrons is at the Dirac point. Specular Andreev reflection of Dirac fermions is at the origin of the effect. The simplified geometry may favor experimental observation of the helical Majorana mode, although it lacks the topological protection of its chiral counterpart.
众所周知,三维拓扑绝缘体(3D TI)的表面支持超导体和磁性绝缘体界面上的手性马约拉纳边缘模式。由于材料组合的复杂性,这种状态尚未被观测到。在这里,我们展示了即使在没有磁绝缘体的情况下,如果无质量表面电子的费米级处于狄拉克点,也会出现螺旋马约拉纳边缘模式。狄拉克费米子的镜面安德列夫反射是这种效应的起源。虽然螺旋马约拉纳模式缺乏手性对应模式的拓扑保护,但简化的几何形状可能有利于实验观察。
{"title":"Poor man's Majorana edge mode enabled by specular Andreev reflection","authors":"C. W. J. Beenakker","doi":"10.1103/physrevb.110.l180402","DOIUrl":"https://doi.org/10.1103/physrevb.110.l180402","url":null,"abstract":"It is known that the surface of a three-dimensional topological insulator (3D TI) supports a chiral Majorana edge mode at the interface between a superconductor and a magnetic insulator. The complexity of the materials combination is such that this state has not yet been observed. Here we show that a helical Majorana edge mode appears even in the absence of the magnetic insulator, if the Fermi level of the massless surface electrons is at the Dirac point. Specular Andreev reflection of Dirac fermions is at the origin of the effect. The simplified geometry may favor experimental observation of the helical Majorana mode, although it lacks the topological protection of its chiral counterpart.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ga vacancies as dominant intrinsic acceptors in Sn-doped𝛽−Ga2⁢O3revealed by positron annihilation spectroscopy 正电子湮灭光谱法揭示掺锡鄂尔冈-Ga2O3 中作为主要本征受体的镓空位
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174106
Y. H. Li, Y. Dong, G. W. Xu, Y. Z. Bu, Q. L. Sai, H. J. Qi, S. B. Long, Z. Q. Chen, B. J. Ye, H. J. Zhang
The conductive properties and defect structure of Sn-doped <mjx-container ctxtmenu_counter="13" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 0 1 (9 (4 2 3) 8 (7 5 6)))"><mjx-mrow data-semantic-children="0,9" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 9" data-semantic-role="subtraction" data-semantic-speech="beta minus upper G a 2 normal upper O 3" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="10" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝛽</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation="general:text" data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="10" data-semantic-role="subtraction" data-semantic-type="operator" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;" variant="-explicitFont">−</mjx-utext></mjx-mtext><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:unit" data-semantic-children="4,7" data-semantic-content="8" data-semantic- data-semantic-owns="4 8 7" data-semantic-parent="10" data-semantic-role="implicit" data-semantic-type="infixop" space="2"><mjx-msub data-semantic-children="2,3" data-semantic- data-semantic-owns="2 3" data-semantic-parent="9" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">G</mjx-c><mjx-c style="padding-top: 0.669em;">a</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="9" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="5,6" data-semantic- data-semantic-owns="5 6" data-semantic-parent="9" data-semantic-role="latinletter" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-mrow
本文研究了不同锡浓度的掺锡 锗-Ga2O3 块体材料的导电特性和缺陷结构。正电子湮灭光谱的计算和实验证实了这些半导体中存在高浓度的镓单质。正电子湮灭参数的温度依赖性以及补偿载流子浓度与镓空位浓度之间的线性关系清楚地揭示了带-3 电荷的镓单空位是掺锡 砷化镓氧化物中的主要固有接受体。
{"title":"Ga vacancies as dominant intrinsic acceptors in Sn-doped𝛽−Ga2⁢O3revealed by positron annihilation spectroscopy","authors":"Y. H. Li, Y. Dong, G. W. Xu, Y. Z. Bu, Q. L. Sai, H. J. Qi, S. B. Long, Z. Q. Chen, B. J. Ye, H. J. Zhang","doi":"10.1103/physrevb.110.174106","DOIUrl":"https://doi.org/10.1103/physrevb.110.174106","url":null,"abstract":"The conductive properties and defect structure of Sn-doped &lt;mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 0 1 (9 (4 2 3) 8 (7 5 6)))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,9\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 9\" data-semantic-role=\"subtraction\" data-semantic-speech=\"beta minus upper G a 2 normal upper O 3\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝛽&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"10\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\"&gt;−&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"4,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"4 8 7\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"2\"&gt;&lt;mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;G&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;a&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"196 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of strain engineering in𝑅⁢NiO3(𝑅=Sm,Nd) 𝑅氧化镍(𝑅=Sm,Nd)中的应变工程热力学
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.205117
Yin Shi, Long-Qing Chen
Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial <mjx-container ctxtmenu_counter="35" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper S m upper N i upper O 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">m</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">N</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c style="padding-top: 0.673em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter="36" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper N d upper N i upper O 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">N</mjx-c><mjx-c noic="true" style="padding-top: 0.706em;">d</mjx-c><mjx-c noic="true" style="padding-top: 0.706em;">N</mjx-c><mjx-c noic="true" style="padding-top: 0.706em;">i</mjx-c><mjx-c style="padding-top: 0.706em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> thin films with various orientations, which are consistent with the limited existing experimental measureme
透镜稀土镍酸盐是一类典型的量子材料,表现出丰富的相变物理特性,在神经形态计算领域具有广阔的应用前景。尽管已有实验证据表明应变会对镍酸盐薄膜的相变产生强烈影响,但要通过实验构建不同薄膜取向的温度-应变相图来指导应用却极具挑战性。在此,我们利用金兹堡-朗道理论来阐述应变镍酸盐的热力学,并计算了不同取向的 SmNiO3 和 NdNiO3 外延薄膜的温度-应变相图,这与有限的现有实验测量结果是一致的。我们预测,剪切应变可以有效调节两个非等价镍亚晶格上磁矩的相对大小。我们的理论为预测应变镍酸盐的热力学提供了一个有效的理论框架,这将为通过应变来设计其特性提供指导。
{"title":"Thermodynamics of strain engineering in𝑅⁢NiO3(𝑅=Sm,Nd)","authors":"Yin Shi, Long-Qing Chen","doi":"10.1103/physrevb.110.205117","DOIUrl":"https://doi.org/10.1103/physrevb.110.205117","url":null,"abstract":"Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial &lt;mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S m upper N i upper O 3\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;m&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; and &lt;mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N d upper N i upper O 3\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;d&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; thin films with various orientations, which are consistent with the limited existing experimental measureme","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism 双层堆积𝐴型变磁体:产生二维变磁性的一般方法
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-06 DOI: 10.1103/physrevb.110.174410
Sike Zeng, Yu-Jun Zhao
In this paper, we propose a concept of bilayer stacking <mjx-container ctxtmenu_counter="32" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper A" data-semantic-type="identifier"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) <mjx-container ctxtmenu_counter="33" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper A" data-semantic-type="identifier"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic <mjx-container ctxtmenu_counter="34" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper A" data-semantic-type="identifier"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnetism. All 2D <mjx-container ctxtmenu_counter="35" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper A" data-semantic-type="identifier"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D <mjx-container ctxtmenu_counter="36" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper A" data-semantic-type="identifier"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-math></mjx-container>-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using <mjx-container ctxtmenu_counter="37" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure
本文提出了双层堆叠𝐴型变磁体(BSAA)的概念,即两个相同的铁磁单层通过反铁磁耦合堆叠形成二维(2D)𝐴型变磁体。通过求解堆叠模型,我们推导出所有层组的所有 BSAAs,并得出三个重要结论:(i) 只有 17 个层组能实现本征𝐴型反磁性。所有二维𝐴型变磁体都必须属于这 17 个层组,这将有助于寻找二维𝐴型变磁体。(ii) 用𝑆3𝑧或𝑆6𝑧连接 BSAA 的两个子晶格是不可能的,这一限制也适用于所有二维变磁体。(iii) 𝐶2𝛼是产生任意单层 BSAA 的一般堆叠操作。我们的理论不仅可以解释之前报道过的扭曲双层改变磁体,还能为𝐴型改变磁体的产生提供更多可能性。我们的研究大大拓宽了二维变磁体候选材料的范围。基于结论 (i),我们预测双层 NiZrCl6 将表现出本征𝐴型变磁性。此外,我们还使用扭曲双层 NiCl2 和 CrOCl 作为 BSAA 的补充示例。此外,我们还利用对称性分析和第一性原理计算,仔细研究了它们的自旋动量锁定特性,以证实它们的变磁性。
{"title":"Bilayer stacking𝐴-type altermagnet: A general approach to generating two-dimensional altermagnetism","authors":"Sike Zeng, Yu-Jun Zhao","doi":"10.1103/physrevb.110.174410","DOIUrl":"https://doi.org/10.1103/physrevb.110.174410","url":null,"abstract":"In this paper, we propose a concept of bilayer stacking &lt;mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐴&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-type altermagnet (BSAA), in which two identical ferromagnetic monolayers are stacked with antiferromagnetic coupling to form a two-dimensional (2D) &lt;mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐴&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-type altermagnet. By solving the stacking model, we derive all BSAAs for all layer groups and draw three key conclusions: (i) Only 17 layer groups can realize intrinsic &lt;mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐴&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-type altermagnetism. All 2D &lt;mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐴&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-type altermagnets must belong to these 17 layer groups, which will be helpful to search for 2D &lt;mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper A\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐴&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-type altermagnet. (ii) It is impossible to connect the two sublattices of BSAA using &lt;mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of symmetry breaking and deconfinement in three-dimensional quantum vertex models 三维量子顶点模型中对称性破缺与去封闭的相互作用
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-06 DOI: 10.1103/physrevb.110.l180401
Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath
We construct a broad class of frustration-free <i>quantum vertex models</i> in <mjx-container ctxtmenu_counter="17" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 1 2)"><mjx-mrow data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="addition" data-semantic-speech="3 plus 1" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="3" data-semantic-role="addition" data-semantic-type="operator" space="3"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" space="3"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter="18" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 4 3))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="addition" data-semantic-speech="3 plus 1 normal upper D" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="6" data-semantic-role="addition" data-semantic-type="operator" space="3"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="2,3" data-semantic-content="4" data-semantic- data-semantic-owns="2 4 3" data-semantic-parent="6" data-semantic-role="implicit" data-semantic-type="infixop" space="3"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>D</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container>) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results ar
我们构建了一大类 3+1 维(3+1D)无挫折量子顶点模型,其基态是经典三维顶点模型配置的加权叠加。我们的结果针对钻石晶格、立方晶格和 BCC 晶格进行了说明,但对偶数配位数的三维晶格也普遍适用。相应的经典顶点模型具有富含ℤ2 全局对称性的ℤ2 gauge constraint。我们利用精确波函数对偶性和有效场理论研究了这些对称性之间的相互作用。我们发现了一个精确的无间隙点,通过对偶性,它与𝑈(1) 自旋液体的 Rokhsar-Kivelson (RK) 点有关。在这一点上,对称性破缺和去抵消阶次参数都表现出长程阶次。此外,无间隙点还是第二个对偶性的自偶点,它将ℤ2去约束相和ℤ2对称破缺相相互映射。对于 BCC 晶格顶点模型,我们发现无间隙点接近于一个不寻常的中间阶段,在这个阶段中,对称破缺和去封闭共存。
{"title":"Interplay of symmetry breaking and deconfinement in three-dimensional quantum vertex models","authors":"Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath","doi":"10.1103/physrevb.110.l180401","DOIUrl":"https://doi.org/10.1103/physrevb.110.l180401","url":null,"abstract":"We construct a broad class of frustration-free &lt;i&gt;quantum vertex models&lt;/i&gt; in &lt;mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 1 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; dimensions (&lt;mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 4 3))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1 normal upper D\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-parent=\"6\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"3\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;D&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results ar","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between Dirac and Rashba surface states specific for topologically nontrivial van der Waals superlattices 拓扑非三维范德华超晶格特有的狄拉克表面态和拉什巴表面态之间的相互作用
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-06 DOI: 10.1103/physrevb.110.205113
I. A. Shvets, E. V. Chulkov, S. V. Eremeev
Here we show that, in contrast to the observed surface states in well studied pnictogen chalcogenide van der Waals (vdW) topological insulators with quintuple layer (QL) or septuple layer (SL) structure, in superlattices, comprising the alternating QL and SL vdW blocks, the Dirac state becomes accompanied by emergent spin-polarized states of the Rashba type. This specific feature is caused by an inequivalence of the surface and subsurface structural blocks and an electrostatic potential bending near the surface. Within density functional theory and ab initio tight-binding calculations we analyze peculiarities of these states depending on the surface termination, structural parameters, and chemical composition. It is found that their possible hybridization with the Dirac state significantly affects its dispersion and spatial localization. We analyze the influence of intrinsic magnetism on behavior of the termination-dependent surface states for magnetic QL/SL superlattices. These findings provide a better understanding of the existing experimental observations of such QL/SL alternating superlattices.
在这里,我们展示了在具有五重层(QL)或七重层(SL)结构的对镱基氰基范德华(vdW)拓扑绝缘体中观察到的表面态,与之相反,在由交替的 QL 和 SL vdW 块组成的超晶格中,狄拉克态伴随着拉什巴类型的自旋极化态出现。这一特性是由表面和次表面结构块的不等价性以及表面附近的静电势弯曲造成的。在密度泛函理论和 ab initio 紧约束计算中,我们分析了这些态的特殊性取决于表面终端、结构参数和化学成分。研究发现,它们与狄拉克态的可能杂化会显著影响狄拉克态的色散和空间定位。我们分析了本征磁性对磁性 QL/SL 超晶格的终止相关表面态行为的影响。这些发现使我们能够更好地理解对这种 QL/SL 交替超晶格的现有实验观察结果。
{"title":"Interplay between Dirac and Rashba surface states specific for topologically nontrivial van der Waals superlattices","authors":"I. A. Shvets, E. V. Chulkov, S. V. Eremeev","doi":"10.1103/physrevb.110.205113","DOIUrl":"https://doi.org/10.1103/physrevb.110.205113","url":null,"abstract":"Here we show that, in contrast to the observed surface states in well studied pnictogen chalcogenide van der Waals (vdW) topological insulators with quintuple layer (QL) or septuple layer (SL) structure, in superlattices, comprising the alternating QL and SL vdW blocks, the Dirac state becomes accompanied by emergent spin-polarized states of the Rashba type. This specific feature is caused by an inequivalence of the surface and subsurface structural blocks and an electrostatic potential bending near the surface. Within density functional theory and <i>ab initio</i> tight-binding calculations we analyze peculiarities of these states depending on the surface termination, structural parameters, and chemical composition. It is found that their possible hybridization with the Dirac state significantly affects its dispersion and spatial localization. We analyze the influence of intrinsic magnetism on behavior of the termination-dependent surface states for magnetic QL/SL superlattices. These findings provide a better understanding of the existing experimental observations of such QL/SL alternating superlattices.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of the charge density wave state inBaFe2⁢Al9 BaFe2Al9 中电荷密度波态的起源
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-06 DOI: 10.1103/physrevb.110.195118
Yuping Li, Mingfeng Liu, Jiangxu Li, Jiantao Wang, Junwen Lai, Dongchang He, Ruizhi Qiu, Yan Sun, Xing-Qiu Chen, Peitao Liu
Recently, a first-order phase transition associated with charge density wave (CDW) has been observed at low temperatures in intermetallic compound <mjx-container ctxtmenu_counter="33" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper B a upper F e 2 upper A l 9" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">B</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">a</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">F</mjx-c><mjx-c style="padding-top: 0.657em;">e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">A</mjx-c><mjx-c style="padding-top: 0.706em;">l</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>9</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>. However, this transition is absent in its isostructural sister compound <mjx-container ctxtmenu_counter="34" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper B a upper C o 2 upper A l 9" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic-
最近,在金属间化合物 BaFe2Al9 中观察到低温下与电荷密度波(CDW)相关的一阶相变。然而,在其等结构姊妹化合物 BaCo2Al9 中却没有出现这种转变。因此,一个耐人寻味的问题出现了,即区分 BaFe2Al9 与 BaCo2Al9 并驱动 BaFe2Al9 中 CDW 转变的潜在因素是什么。在这里,我们通过对这两种化合物高温相的电子结构、晶格动力学和电子-声子相互作用进行比较性的 ab initio 研究来解决这个问题。我们发现,这两种化合物都具有类似的声子色散,动态稳定。电子结构计算显示,这两种化合物都是非磁性金属;但是,它们在费米级附近表现出不同的带状结构。其中,BaFe2Al9 在费米水平表现出更高的态密度,主要是部分填充的 Fe-3𝑑态和更复杂的费米面。这导致 BaFe2Al9 在向 CDW 转变时出现电子不稳定性,具体表现为在 CDW 波矢量 𝐪CDW=(0.5,0,0.3) 处的电子易感性发散,在实部和虚部均可观察到。相反,BaCo2Al9 没有显示出这种行为,这与实验观察结果非常吻合。虽然 BaFe2Al9 中的电子-声子相互作用比 BaCo2Al9 高出两个数量级,但在 CDW 波矢处的强度相对较弱,这表明 BaFe2Al9 中的 CDW 主要由电子因素驱动。
{"title":"Origin of the charge density wave state inBaFe2⁢Al9","authors":"Yuping Li, Mingfeng Liu, Jiangxu Li, Jiantao Wang, Junwen Lai, Dongchang He, Ruizhi Qiu, Yan Sun, Xing-Qiu Chen, Peitao Liu","doi":"10.1103/physrevb.110.195118","DOIUrl":"https://doi.org/10.1103/physrevb.110.195118","url":null,"abstract":"Recently, a first-order phase transition associated with charge density wave (CDW) has been observed at low temperatures in intermetallic compound &lt;mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper B a upper F e 2 upper A l 9\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;B&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;a&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;F&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;A&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;l&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;9&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;. However, this transition is absent in its isostructural sister compound &lt;mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper B a upper C o 2 upper A l 9\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- ","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inducing topological flat bands in bilayer graphene with electric and magnetic superlattices 用电超晶格和磁超晶格诱导双层石墨烯中的拓扑扁带
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-06 DOI: 10.1103/physrevb.110.205115
Daniel Seleznev, Jennifer Cano, David Vanderbilt
It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice (SL) potential exhibits a variety of intriguing behaviors [Ghorashi et al., Phys. Rev. Lett. 130, 196201 (2023)]. Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the model of Ghorashi et al. to find additional means of inducing flat Chern bands. We focus on fields that vary on length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux. We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric coupling permits control of both SLs, and we study their effects on the band structure of BLG.
最近有人提出,暴露在二维超晶格(SL)电势下的贝纳尔堆叠双层石墨烯(BLG)会表现出各种有趣的行为[Ghorashi 等人,Phys.其中最主要的是出现平坦的切尔带,这有利于分数切尔绝缘体态的出现。在这里,我们探讨了将空间周期性平面外轨道磁场应用到 Ghorashi 等人的模型中,以寻找诱导平坦切尔带的其他方法。我们重点研究的磁场的长度尺度远大于 BLG 中的原子间距,从而产生我们所说的磁性 SL。我们研究的磁性 SL 要么没有向 SL 单元引入净磁通量,要么只有单量子磁通量。我们发现,磁性 SLs 本身可以诱导拓扑平坦带,但当磁性 SLs 与相称的电性 SLs 共同作用时,可以观察到更丰富的行为,例如出现具有高切尔数的平坦带和通用带。最后,我们提出了一种生成单位流量子磁SL和相应电SL的方法。磁SL是由源于II型超导体的磁通漩涡周期性阵列产生的,而电SL则是由于磁SL在磁电材料表面引起的电荷密度而产生的。调节涡流晶格和磁电耦合可以控制这两种 SL,我们还研究了它们对 BLG 带状结构的影响。
{"title":"Inducing topological flat bands in bilayer graphene with electric and magnetic superlattices","authors":"Daniel Seleznev, Jennifer Cano, David Vanderbilt","doi":"10.1103/physrevb.110.205115","DOIUrl":"https://doi.org/10.1103/physrevb.110.205115","url":null,"abstract":"It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice (SL) potential exhibits a variety of intriguing behaviors [Ghorashi <i>et al.</i>, <span>Phys. Rev. Lett.</span> <b>130</b>, 196201 (2023)]. Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the model of Ghorashi <i>et al.</i> to find additional means of inducing flat Chern bands. We focus on fields that vary on length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux. We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric coupling permits control of both SLs, and we study their effects on the band structure of BLG.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"90 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1