First‐principles calculations based on density functional theory (DFT) are used to investigate the phase transition characteristics, electronic structures, and optical properties of pure and Co‐doped VO2 (M1 and R phase). Studies show that the metal‐to‐insulator phase transition temperature of VO2 is significantly reduced after Co doping, which is correlated to the decrease of bandgap value. Besides, the decrease of the energy required for electron transition of M1‐phase Co‐doped VO2 corresponds to the imaginary part of the dielectric peak moving to the low‐energy region. For both the M1‐ and R‐phase VO2, the visible light transmissivity of the Co‐doped VO2 is increased than that of pure VO2, which is beneficial to the application of VO2 film as visible windows. In addition, the absorptivity and reflectivity of Co‐doped R‐phase VO2 in the infrared light range are larger than those of M1‐phase VO2, indicating that the Co‐doped VO2 can block more infrared light at higher temperature to fulfill the purpose of lowering temperature. Overall, these results give new insights for the application of Co‐doped VO2 as a photoenergy material to regulate the room temperature.
{"title":"First‐Principles Studies of Electronic Structures and Optical Properties of Cobalt‐Doped VO2","authors":"Jinyu Wan, Xuejiao Li","doi":"10.1002/pssb.202300240","DOIUrl":"https://doi.org/10.1002/pssb.202300240","url":null,"abstract":"First‐principles calculations based on density functional theory (DFT) are used to investigate the phase transition characteristics, electronic structures, and optical properties of pure and Co‐doped VO2 (M1 and R phase). Studies show that the metal‐to‐insulator phase transition temperature of VO2 is significantly reduced after Co doping, which is correlated to the decrease of bandgap value. Besides, the decrease of the energy required for electron transition of M1‐phase Co‐doped VO2 corresponds to the imaginary part of the dielectric peak moving to the low‐energy region. For both the M1‐ and R‐phase VO2, the visible light transmissivity of the Co‐doped VO2 is increased than that of pure VO2, which is beneficial to the application of VO2 film as visible windows. In addition, the absorptivity and reflectivity of Co‐doped R‐phase VO2 in the infrared light range are larger than those of M1‐phase VO2, indicating that the Co‐doped VO2 can block more infrared light at higher temperature to fulfill the purpose of lowering temperature. Overall, these results give new insights for the application of Co‐doped VO2 as a photoenergy material to regulate the room temperature.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74537910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Yu, Yong Wang, Teng Li, Feng Chen, Jiefeng Cao, F. Zhu, Xiangzhi Zhang, R. Tai
Multifunctional oxide heterostructures exhibiting magnetoelectric properties show great potential in advanced applications which are attracting a number of recent investigations. Herein, hybrid structures are presented including the antiferroelectricity film PbZrO3 (PZO) and the ferrimagnetic insulator (FMI) yttrium iron garnet (Y3Fe5O12, (YIG)) film by means of pulse laser deposition and magnetron sputtering, respectively. A visible double ferroelectricity hysteresis loop for PZO at low electrical field and the distinct X‐ray magnetic circular dichroism (XMCD) spectra for YIG are obtained. To study the spin current transfer processes between platinum (Pt) and the PZO/YIG system, the Pt film is deposited on the PZO/YIG bilayers as the conversion detector and the spin–charge conversion voltage can be obtained via inverse spin Hall effect (ISHE) under thermal gradient excitation. These results indicate that the hybrid structure PZO/YIG/Pt provides a potential route to realize an electric field control of spin–charge conversion and is instructive for future low‐power multiferroic heterostructures‐based spintronic devices.
{"title":"Spin–Charge Conversion in Hybrid Structure PbZrO3/Y3Fe5O12/Pt","authors":"Rui Yu, Yong Wang, Teng Li, Feng Chen, Jiefeng Cao, F. Zhu, Xiangzhi Zhang, R. Tai","doi":"10.1002/pssb.202300134","DOIUrl":"https://doi.org/10.1002/pssb.202300134","url":null,"abstract":"Multifunctional oxide heterostructures exhibiting magnetoelectric properties show great potential in advanced applications which are attracting a number of recent investigations. Herein, hybrid structures are presented including the antiferroelectricity film PbZrO3 (PZO) and the ferrimagnetic insulator (FMI) yttrium iron garnet (Y3Fe5O12, (YIG)) film by means of pulse laser deposition and magnetron sputtering, respectively. A visible double ferroelectricity hysteresis loop for PZO at low electrical field and the distinct X‐ray magnetic circular dichroism (XMCD) spectra for YIG are obtained. To study the spin current transfer processes between platinum (Pt) and the PZO/YIG system, the Pt film is deposited on the PZO/YIG bilayers as the conversion detector and the spin–charge conversion voltage can be obtained via inverse spin Hall effect (ISHE) under thermal gradient excitation. These results indicate that the hybrid structure PZO/YIG/Pt provides a potential route to realize an electric field control of spin–charge conversion and is instructive for future low‐power multiferroic heterostructures‐based spintronic devices.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73306904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Ausserré, Refahi Abou Khachfe, T. Taniguchi, Kenji Watanabe, F. Vialla
The properties of two‐dimensional (2D) material stacks critically depend on the number of monolayers (m) in the stack. It is therefore important to quantify this number, which is a local quantity since 2D stacks are essentially heterogeneous. Optical interferential techniques based on contrast‐enhancing surfaces may be sensitive enough to visualize m variations but the experimental determination of m requires heavy and unstable comparisons with multiparameter numerical models. Focusing on the recent backside absorbing layer microscopy, the most sensitive to date among interferential techniques, a self‐calibrating method is demonstrated allowing instantaneous monolayer counting all over the sample surface which does not require the knowledge of the instrumental parameters, the sample or ambient refractive indices or the detailed structure of the contrast‐enhancing layer. This method is introduced step by step using examples of hexagonal boron nitride (hBN) stacks with increasing complexity. Exact monolayer counting up to 36 hBN monolayers is obtained using basic image analysis.
{"title":"Backside Absorbing Layer Microscopy: Monolayer Counting in 2D Crystal Flakes","authors":"D. Ausserré, Refahi Abou Khachfe, T. Taniguchi, Kenji Watanabe, F. Vialla","doi":"10.1002/pssb.202300068","DOIUrl":"https://doi.org/10.1002/pssb.202300068","url":null,"abstract":"The properties of two‐dimensional (2D) material stacks critically depend on the number of monolayers (m) in the stack. It is therefore important to quantify this number, which is a local quantity since 2D stacks are essentially heterogeneous. Optical interferential techniques based on contrast‐enhancing surfaces may be sensitive enough to visualize m variations but the experimental determination of m requires heavy and unstable comparisons with multiparameter numerical models. Focusing on the recent backside absorbing layer microscopy, the most sensitive to date among interferential techniques, a self‐calibrating method is demonstrated allowing instantaneous monolayer counting all over the sample surface which does not require the knowledge of the instrumental parameters, the sample or ambient refractive indices or the detailed structure of the contrast‐enhancing layer. This method is introduced step by step using examples of hexagonal boron nitride (hBN) stacks with increasing complexity. Exact monolayer counting up to 36 hBN monolayers is obtained using basic image analysis.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74709020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Through a rigorous application of first‐principles simulations, it is endeavored to provide a systematic examination of how the crystal structure, electronic structure, density of states, optical properties, and superconducting transition temperature of ZrBeSi are influenced by variations in pressure. The research has shown that pressure can alter the electronic structure and density of states, with a tendency for expansion toward higher energy regions as pressure increases. By manipulating the pressure, both the absorption coefficient and energy loss are sensitive to pressure and exhibit sharp absorption and loss peaks in the UV wavelength region. In addition to the above, the effects of electron–phonon coupling are taken into account and further investigations of the superconducting transition temperature Tc$T_{c}$ , which is found to be 0.564 K at 0 GPa, are subsequently delved into. Additionally, there exists a quadratic attenuation relationship between the temperature and pressure. Further studies reveal that the decrease of Tc$T_{text{c}}$ with increasing pressure is a result of the combined effects of the gradual increase in the phonon density of states’ frequency and the flattening of the density of states near the Fermi level. The findings of this study contribute to the understanding of the impact of pressure on the physical properties of materials.
{"title":"Crystal Structure, Electronic Structure, the Density of States, Optical Properties, and Superconducting Transition Temperature of ZrBeSi Crystal under Pressure","authors":"Yu-Huan Li","doi":"10.1002/pssb.202300196","DOIUrl":"https://doi.org/10.1002/pssb.202300196","url":null,"abstract":"Through a rigorous application of first‐principles simulations, it is endeavored to provide a systematic examination of how the crystal structure, electronic structure, density of states, optical properties, and superconducting transition temperature of ZrBeSi are influenced by variations in pressure. The research has shown that pressure can alter the electronic structure and density of states, with a tendency for expansion toward higher energy regions as pressure increases. By manipulating the pressure, both the absorption coefficient and energy loss are sensitive to pressure and exhibit sharp absorption and loss peaks in the UV wavelength region. In addition to the above, the effects of electron–phonon coupling are taken into account and further investigations of the superconducting transition temperature Tc$T_{c}$ , which is found to be 0.564 K at 0 GPa, are subsequently delved into. Additionally, there exists a quadratic attenuation relationship between the temperature and pressure. Further studies reveal that the decrease of Tc$T_{text{c}}$ with increasing pressure is a result of the combined effects of the gradual increase in the phonon density of states’ frequency and the flattening of the density of states near the Fermi level. The findings of this study contribute to the understanding of the impact of pressure on the physical properties of materials.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80589483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Kumari, K. Anand, Mohd Alam, L. Ghosh, Srishti Dixit, Rahul K Singh, A. Jain, S. Yusuf, Chetna Gautam, Anup K. Ghosh, A. Mohan, S. Chatterjee
An experimental analysis of the Bi0.90Tb0.1Fe0.90Mn0.1O3 system synthesized via the solid‐state method is presented in this report. UV–visible measurements are carried out and a smaller bandgap (i.e., semiconductor‐type behavior) is obtained. The structural phase of the present system is analyzed with X‐ray diffraction and neutron diffraction measurement. Structural‐phase analysis reveals that the system contains two nuclear phases (rhombohedral structure [R3c space group] with orthorhombic [Pn21a space group]). Moreover, also more bending in the bond angle is found, and the existence of a magnetic phase with a nuclear phase for the Bi0.90Tb0.1Fe0.90Mn0.1O3 system is also confirmed by neutron diffraction. The magnetic moment versus temperature (M–T) curve demonstrates that the system's Néel transition temperature is at 568 K. The magnetization data show enhancement in the magnetic property by displaying the weak ferromagnetic‐type behavior at room temperature in the magnetic field versus magnetic moment (M–H) curve as compared to the parent compound. From dielectric measurement, the dielectric constant increases while the loss decreases.
{"title":"Enhancement of Multiferroic and Optical Properties in BiFeO3 Due to Different Exchange Interactions Between Transition and Rare Earth Ions","authors":"S. Kumari, K. Anand, Mohd Alam, L. Ghosh, Srishti Dixit, Rahul K Singh, A. Jain, S. Yusuf, Chetna Gautam, Anup K. Ghosh, A. Mohan, S. Chatterjee","doi":"10.1002/pssb.202300026","DOIUrl":"https://doi.org/10.1002/pssb.202300026","url":null,"abstract":"An experimental analysis of the Bi0.90Tb0.1Fe0.90Mn0.1O3 system synthesized via the solid‐state method is presented in this report. UV–visible measurements are carried out and a smaller bandgap (i.e., semiconductor‐type behavior) is obtained. The structural phase of the present system is analyzed with X‐ray diffraction and neutron diffraction measurement. Structural‐phase analysis reveals that the system contains two nuclear phases (rhombohedral structure [R3c space group] with orthorhombic [Pn21a space group]). Moreover, also more bending in the bond angle is found, and the existence of a magnetic phase with a nuclear phase for the Bi0.90Tb0.1Fe0.90Mn0.1O3 system is also confirmed by neutron diffraction. The magnetic moment versus temperature (M–T) curve demonstrates that the system's Néel transition temperature is at 568 K. The magnetization data show enhancement in the magnetic property by displaying the weak ferromagnetic‐type behavior at room temperature in the magnetic field versus magnetic moment (M–H) curve as compared to the parent compound. From dielectric measurement, the dielectric constant increases while the loss decreases.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78771302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grain boundary engineering is an effective and feasible metal strengthening strategy to enhance the properties of nanopolycrystalline alloys by changing the number, configuration, and connectivity of different types of grain boundaries, especially for the twin boundaries. In the present contribution, the effect of twin spacing and loading mode on the deformation behavior and mechanism of NiCoAl columnar polycrystalline alloy is investigated. The results show that the nanotwins can not only increase the bearing capacity of dislocations but also emit many dislocations, resulting in the coupling effect of dislocation strengthening and twin strengthening. When the twin spacing is large, intrinsic stacking faults occur and gradually transform into deformation twins. In this stage, Shockley partial dislocation controls plastic deformation. When the twin spacing is small, the high‐density twin layers and stacking faults are more likely to interweave, showing a combination action of Shockley partial dislocation and stair‐rod dislocation. With the loading changing to Z axis, the yield strength decreases due to reduced resistance to the dislocation and a weakened number of Shockley partial dislocations of the emission, leading to less strengthening of the twins. The insights provide a solid theoretical foundation for the further application of NiCoAl in industrial production.
{"title":"Effect of Twin Spacing and Loading Mode on Mechanical Properties and Deformation Mechanism of NiCoAl Columnar Polycrystalline Alloy","authors":"Wei Zhang, Xuefeng Lu, Ping Yang, Xu Yang, Junqiang Ren, H. Xue, Yutian Ding, Xin Guo","doi":"10.1002/pssb.202300166","DOIUrl":"https://doi.org/10.1002/pssb.202300166","url":null,"abstract":"Grain boundary engineering is an effective and feasible metal strengthening strategy to enhance the properties of nanopolycrystalline alloys by changing the number, configuration, and connectivity of different types of grain boundaries, especially for the twin boundaries. In the present contribution, the effect of twin spacing and loading mode on the deformation behavior and mechanism of NiCoAl columnar polycrystalline alloy is investigated. The results show that the nanotwins can not only increase the bearing capacity of dislocations but also emit many dislocations, resulting in the coupling effect of dislocation strengthening and twin strengthening. When the twin spacing is large, intrinsic stacking faults occur and gradually transform into deformation twins. In this stage, Shockley partial dislocation controls plastic deformation. When the twin spacing is small, the high‐density twin layers and stacking faults are more likely to interweave, showing a combination action of Shockley partial dislocation and stair‐rod dislocation. With the loading changing to Z axis, the yield strength decreases due to reduced resistance to the dislocation and a weakened number of Shockley partial dislocations of the emission, leading to less strengthening of the twins. The insights provide a solid theoretical foundation for the further application of NiCoAl in industrial production.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79196754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LeBert Sam Billgates, G. A. Jacob, S. Sellaiyan, Raphel Justin Joseyphus
The equilibrium FeNi alloy prefers face centered cubic (fcc) phase whereas the formation of metastable phases through certain low‐temperature synthesis methods is obscure. FeNi alloy exhibiting nonequilibrium body centered cubic (bcc) structure beyond 5 at% Ni is obtained through chemical reduction at 453 K with noticeable lattice shrinkage. Positron lifetime analysis and Doppler broadening spectroscopy are employed to probe the correlation between defects and phase stability. The mean lifetime of the chemically synthesized alloys is larger than 300 ps, implying an average of 7‐vacancy cluster. The modified two‐state trapping model reveals defect concentration in the range of 1022 m−3$left(10right)^{22} left(text{ m}right)^{- 3}$ , on par with irradiated alloys. Significant deviation in the high‐momentum component between the bulk and chemically synthesized samples is correlated to the changes in 3d electrons. The Fe and FeNi alloy uncover significant contraction in d‐band of Fe which facilitates bcc phase stabilization above 5 at% Ni through cluster vacancy formation.
{"title":"Unconventional Nonequilibrium Phase Stabilization in FeNi Alloy Examined by Positron Annihilation Spectroscopy","authors":"LeBert Sam Billgates, G. A. Jacob, S. Sellaiyan, Raphel Justin Joseyphus","doi":"10.1002/pssb.202300182","DOIUrl":"https://doi.org/10.1002/pssb.202300182","url":null,"abstract":"The equilibrium FeNi alloy prefers face centered cubic (fcc) phase whereas the formation of metastable phases through certain low‐temperature synthesis methods is obscure. FeNi alloy exhibiting nonequilibrium body centered cubic (bcc) structure beyond 5 at% Ni is obtained through chemical reduction at 453 K with noticeable lattice shrinkage. Positron lifetime analysis and Doppler broadening spectroscopy are employed to probe the correlation between defects and phase stability. The mean lifetime of the chemically synthesized alloys is larger than 300 ps, implying an average of 7‐vacancy cluster. The modified two‐state trapping model reveals defect concentration in the range of 1022 m−3$left(10right)^{22} left(text{ m}right)^{- 3}$ , on par with irradiated alloys. Significant deviation in the high‐momentum component between the bulk and chemically synthesized samples is correlated to the changes in 3d electrons. The Fe and FeNi alloy uncover significant contraction in d‐band of Fe which facilitates bcc phase stabilization above 5 at% Ni through cluster vacancy formation.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88574464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growth of Sn overlayers on the W(110) surface is investigated using low‐energy electron diffraction analysis. The structural investigation reveals Sn adsorption sites on the W(110) for (1 × 3) and (1 × 4) structures. During the formation of the (1 × 3) structure, Sn atoms are only adsorbed on the threefold hollow sites. However, at higher coverages, Sn atoms are adsorbed on the fourfold hollow sites after the threefold hollow sites are filled up to form the (1 × 4) structure, resulting in a dense overlayer structure. Both structures are overlayer with no alloy formation at the interface. The (1 × 3) phase exhibits a temperature‐reversible phase transition below ≈270 K. At low temperatures, a phase with long‐range order is developed.
{"title":"Surface Structure and Temperature‐Reversible Phase Transition of Sn on W(110) Surface","authors":"Dhiman Banik, T. Nakagawa","doi":"10.1002/pssb.202300070","DOIUrl":"https://doi.org/10.1002/pssb.202300070","url":null,"abstract":"The growth of Sn overlayers on the W(110) surface is investigated using low‐energy electron diffraction analysis. The structural investigation reveals Sn adsorption sites on the W(110) for (1 × 3) and (1 × 4) structures. During the formation of the (1 × 3) structure, Sn atoms are only adsorbed on the threefold hollow sites. However, at higher coverages, Sn atoms are adsorbed on the fourfold hollow sites after the threefold hollow sites are filled up to form the (1 × 4) structure, resulting in a dense overlayer structure. Both structures are overlayer with no alloy formation at the interface. The (1 × 3) phase exhibits a temperature‐reversible phase transition below ≈270 K. At low temperatures, a phase with long‐range order is developed.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88857999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krishnanshu Basak, S. Nath, Rajkumar Mondal, D. Jana
Herein, the electronic, thermoelectric, and optical properties of semimetallic HPX6 (X = C, Si, Ge, Sn) monolayers are systematically studied under the influence of external electric field in the framework of density functional theory. A band tuning has been achieved in these structures by the application of an external electric field of appropriate strength. It is predicted that Dirac cone splitting is nearly proportional to the external electric field strength. The modulation of electric properties induced by external field can alter the position of chemical potential in the band diagram and brings significant improvement in thermoelectric responses. The application of an external electric field significantly modulates the optical properties. The electric field‐induced HPX6 system provides better thermoelectric and optical response for nanodevice applications.
{"title":"Electric Field‐Induced Phase Transition on HPX6 (X = C, Si, Ge, Sn) Monolayers","authors":"Krishnanshu Basak, S. Nath, Rajkumar Mondal, D. Jana","doi":"10.1002/pssb.202300112","DOIUrl":"https://doi.org/10.1002/pssb.202300112","url":null,"abstract":"Herein, the electronic, thermoelectric, and optical properties of semimetallic HPX6 (X = C, Si, Ge, Sn) monolayers are systematically studied under the influence of external electric field in the framework of density functional theory. A band tuning has been achieved in these structures by the application of an external electric field of appropriate strength. It is predicted that Dirac cone splitting is nearly proportional to the external electric field strength. The modulation of electric properties induced by external field can alter the position of chemical potential in the band diagram and brings significant improvement in thermoelectric responses. The application of an external electric field significantly modulates the optical properties. The electric field‐induced HPX6 system provides better thermoelectric and optical response for nanodevice applications.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75040384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Bensehil, H. Baaziz, T. Ghellab, Z. Charifi, Ahlem Kolli, N. Guechi
This study employs density functional theory to investigate the structural, elastic, electronic, and magnetic properties of FeVScSb and FeVYSb Heusler compounds. FeVScSb exhibits ferromagnetic properties in its stable state, whereas FeVYSb displays ferrimagnetic behavior. The obtained elastic constants (Cij) indicate that FeVScSb and FeVYSb possess mechanical stability and ductility, while also displaying a significant degree of elastic anisotropy. The aggregate magnetic moment of said alloys is determined to be equivalent to 3 μB, in accordance with the Slater–Pauling principle. The investigation of the impact of uniform strain on electronic and magnetic characteristics is conducted. The findings indicate that FeVScSb and FeVYSb exhibit semiconductivity within extensive lattice parameter intervals, ranging from 5.84 to 6.60 Å for FeVScSb and from 6.11 to 6.70 Å for FeVYSb. The Heusler compounds FeVScSb and FeVYSb exhibit half‐metallic behavior within a range of lattice parameters. Specifically, FeVScSb displays this behavior when the lattice parameter varies from 6.61 to 6.72 Å, while FeVYSb exhibits half‐metallicity within the range of 6.71–6.81 Å. Under the influence of strain, the magnetic moment retains a constant value of 3 μB. Therefore, the potential for spintronics is promising.
{"title":"Electronic, Magnetic, and Elastic Features of Quaternary Heusler Alloys: FeVScSb and FeVYSb","authors":"I. Bensehil, H. Baaziz, T. Ghellab, Z. Charifi, Ahlem Kolli, N. Guechi","doi":"10.1002/pssb.202300178","DOIUrl":"https://doi.org/10.1002/pssb.202300178","url":null,"abstract":"This study employs density functional theory to investigate the structural, elastic, electronic, and magnetic properties of FeVScSb and FeVYSb Heusler compounds. FeVScSb exhibits ferromagnetic properties in its stable state, whereas FeVYSb displays ferrimagnetic behavior. The obtained elastic constants (Cij) indicate that FeVScSb and FeVYSb possess mechanical stability and ductility, while also displaying a significant degree of elastic anisotropy. The aggregate magnetic moment of said alloys is determined to be equivalent to 3 μB, in accordance with the Slater–Pauling principle. The investigation of the impact of uniform strain on electronic and magnetic characteristics is conducted. The findings indicate that FeVScSb and FeVYSb exhibit semiconductivity within extensive lattice parameter intervals, ranging from 5.84 to 6.60 Å for FeVScSb and from 6.11 to 6.70 Å for FeVYSb. The Heusler compounds FeVScSb and FeVYSb exhibit half‐metallic behavior within a range of lattice parameters. Specifically, FeVScSb displays this behavior when the lattice parameter varies from 6.61 to 6.72 Å, while FeVYSb exhibits half‐metallicity within the range of 6.71–6.81 Å. Under the influence of strain, the magnetic moment retains a constant value of 3 μB. Therefore, the potential for spintronics is promising.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"141 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77238266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}