首页 > 最新文献

Physical Review Applied最新文献

英文 中文
Two-way quantum time transfer: a method for daytime space-Earth links 双向量子时空转移:昼间空间-地球链路方法
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-06 DOI: 10.1103/physrevapplied.22.024012
Randy Lafler, Mark L. Eickhoff, Scott C. Newey, Yamil Nieves Gonzalez, Kurt E. Stoltenberg, J. Frank Camacho, Mark A. Harris, Denis W. Oesch, Adrian J. Lewis, R. Nicholas Lanning
High-precision remote clock synchronization is crucial for many classical and quantum network applications. Evaluating options for space-Earth links, we find that traditional solutions may not produce the desired synchronization for low Earth orbits and unnecessarily complicate quantum networking architectures. Demonstrating an alternative, we use commercial off-the-shelf quantum photon sources and detection equipment to synchronize two remote clocks across our free-space testbed utilizing a method called two-way quantum time transfer (QTT). We reach picosecond-scale timing precision under very lossy and noisy channel conditions representative of daytime space-Earth links and software-emulated satellite motion. This work demonstrates how QTT is potentially relevant for daytime space-Earth quantum networking and/or providing high-precision timing in GPS-denied environments.
高精度远程时钟同步对许多经典和量子网络应用至关重要。在评估天-地链路的各种选择时,我们发现传统的解决方案可能无法为低地球轨道提供所需的同步,并不必要地使量子网络架构复杂化。为了展示一种替代方案,我们使用现成的商用量子光子源和检测设备,利用一种名为双向量子时间传输(QTT)的方法,在我们的自由空间测试平台上同步两个远程时钟。在代表日间空间-地球链路和软件模拟卫星运动的高损耗、高噪声信道条件下,我们达到了皮秒级的计时精度。这项工作展示了 QTT 如何与日间空间-地球量子网络和/或在全球定位系统失效环境中提供高精度定时具有潜在的相关性。
{"title":"Two-way quantum time transfer: a method for daytime space-Earth links","authors":"Randy Lafler, Mark L. Eickhoff, Scott C. Newey, Yamil Nieves Gonzalez, Kurt E. Stoltenberg, J. Frank Camacho, Mark A. Harris, Denis W. Oesch, Adrian J. Lewis, R. Nicholas Lanning","doi":"10.1103/physrevapplied.22.024012","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024012","url":null,"abstract":"High-precision remote clock synchronization is crucial for many classical and quantum network applications. Evaluating options for space-Earth links, we find that traditional solutions may not produce the desired synchronization for low Earth orbits and unnecessarily complicate quantum networking architectures. Demonstrating an alternative, we use commercial off-the-shelf quantum photon sources and detection equipment to synchronize two remote clocks across our free-space testbed utilizing a method called two-way quantum time transfer (QTT). We reach picosecond-scale timing precision under very lossy and noisy channel conditions representative of daytime space-Earth links and software-emulated satellite motion. This work demonstrates how QTT is potentially relevant for daytime space-Earth quantum networking and/or providing high-precision timing in GPS-denied environments.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"2 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing carrier transport and interfacial recombination at perovskite/transport-layer interfaces using ultrafast spectroscopy and numerical simulation 利用超快光谱和数值模拟区分过氧化物/传输层界面上的载流子传输和界面重组
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-06 DOI: 10.1103/physrevapplied.22.024013
Edward Butler-Caddle, K.D.G. Imalka Jayawardena, Anjana Wijesekara, Rebecca L. Milot, James Lloyd-Hughes
In perovskite solar cells, photovoltaic action is created by charge transport layers (CTLs) either side of the light-absorbing metal halide perovskite semiconductor. Hence, the rates for desirable charge extraction and unwanted interfacial recombination at the perovskite-CTL interfaces play a critical role for device efficiency. Here, the electrical properties of perovskite-CTL bilayer heterostructures are obtained using ultrafast terahertz and optical studies of the charge carrier dynamics after pulsed photoexcitation, combined with a physical model of charge carrier transport that includes the prominent Coulombic forces that arise after selective charge extraction into a CTL, and cross-interfacial recombination. The charge extraction velocity at the interface and the ambipolar diffusion coefficient within the perovskite are determined from the experimental decay profiles for heterostructures with three of the highest-performing CTLs, namely C60, PCBM and Spiro-OMeTAD. Definitive targets for the further improvement of devices are deduced: fullerenes deliver fast electron extraction, but suffer from a large rate constant for cross-interface recombination or hole extraction. Conversely, Spiro-OMeTAD exhibits slow hole extraction but does not increase the perovskite’s surface recombination rate, likely contributing to its success in solar cell devices.
在透辉石太阳能电池中,电荷传输层(CTL)在光吸收金属卤化物透辉石半导体的两侧产生光伏作用。因此,在包晶-CTL界面上理想的电荷提取率和不需要的界面重组率对设备效率起着至关重要的作用。本文利用脉冲光激发后电荷载流子动力学的超快太赫兹和光学研究,结合电荷载流子传输的物理模型(包括选择性电荷萃取进入 CTL 后产生的突出库仑力和跨界面重组),获得了包晶-CTL 双层异质结构的电学特性。根据三种性能最高的 CTL(即 C60、PCBM 和 Spiro-OMeTAD)异质结构的实验衰减曲线,确定了界面上的电荷萃取速度和包晶内部的伏极扩散系数。推导出了进一步改进设备的明确目标:富勒烯能快速萃取电子,但跨界面重组或空穴萃取的速率常数较大。相反,Spiro-OMeTAD 的空穴萃取速度较慢,但不会增加过氧化物表面的重组率,这可能是其在太阳能电池设备中取得成功的原因。
{"title":"Distinguishing carrier transport and interfacial recombination at perovskite/transport-layer interfaces using ultrafast spectroscopy and numerical simulation","authors":"Edward Butler-Caddle, K.D.G. Imalka Jayawardena, Anjana Wijesekara, Rebecca L. Milot, James Lloyd-Hughes","doi":"10.1103/physrevapplied.22.024013","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024013","url":null,"abstract":"In perovskite solar cells, photovoltaic action is created by charge transport layers (CTLs) either side of the light-absorbing metal halide perovskite semiconductor. Hence, the rates for desirable charge extraction and unwanted interfacial recombination at the perovskite-CTL interfaces play a critical role for device efficiency. Here, the electrical properties of perovskite-CTL bilayer heterostructures are obtained using ultrafast terahertz and optical studies of the charge carrier dynamics after pulsed photoexcitation, combined with a physical model of charge carrier transport that includes the prominent Coulombic forces that arise after selective charge extraction into a CTL, and cross-interfacial recombination. The charge extraction velocity at the interface and the ambipolar diffusion coefficient within the perovskite are determined from the experimental decay profiles for heterostructures with three of the highest-performing CTLs, namely <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>C</mtext><mn>60</mn></msub></math>, PCBM and Spiro-OMeTAD. Definitive targets for the further improvement of devices are deduced: fullerenes deliver fast electron extraction, but suffer from a large rate constant for cross-interface recombination or hole extraction. Conversely, Spiro-OMeTAD exhibits slow hole extraction but does not increase the perovskite’s surface recombination rate, likely contributing to its success in solar cell devices.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"14 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resonant switching current detector based on underdamped Josephson junctions 基于欠阻尼约瑟夫森结的谐振开关电流检测器
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-06 DOI: 10.1103/physrevapplied.22.024015
Vladimir M. Krasnov
Current-biased Josephson junctions can act as detectors of electromagnetic radiation. At optimal conditions, their sensitivity is limited by fluctuations causing stochastic switching from the superconducting to the resistive state. This work provides a quantitative description of a stochastic switching current detector, based on an underdamped Josephson junction. It is shown that activation of a Josephson plasma resonance can greatly enhance the detector responsivity in proportion to the quality factor of the junction. The ways of tuning the detector for achieving optimal operation are discussed. For realistic parameters of Nb/AlOx/Nb tunnel junctions, the sensitivity and noise-equivalent power (NEP) can reach values of S5×1012 (V/W) and NEP2×1023 (WHz1/2), respectively. These outstanding characteristics facilitate both bolometric and single-photon detection in microwave and terahertz ranges.
电流偏压约瑟夫森结可作为电磁辐射的探测器。在最佳条件下,它们的灵敏度受到波动的限制,波动会导致从超导态到电阻态的随机切换。这项研究对基于欠阻尼约瑟夫森结的随机切换电流探测器进行了定量描述。研究表明,约瑟夫森等离子体共振的激活可以大大提高检测器的响应速度,与结的品质因数成正比。讨论了如何调整探测器以实现最佳运行。对于 Nb/AlOx/Nb 隧道结的实际参数,灵敏度和噪声等效功率(NEP)可分别达到 S≃5×1012(V/W)和 NEP≃2×10-23(WHz-1/2)。这些出色的特性为微波和太赫兹范围内的测光和单光子探测提供了便利。
{"title":"Resonant switching current detector based on underdamped Josephson junctions","authors":"Vladimir M. Krasnov","doi":"10.1103/physrevapplied.22.024015","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024015","url":null,"abstract":"Current-biased Josephson junctions can act as detectors of electromagnetic radiation. At optimal conditions, their sensitivity is limited by fluctuations causing stochastic switching from the superconducting to the resistive state. This work provides a quantitative description of a stochastic switching current detector, based on an underdamped Josephson junction. It is shown that activation of a Josephson plasma resonance can greatly enhance the detector responsivity in proportion to the quality factor of the junction. The ways of tuning the detector for achieving optimal operation are discussed. For realistic parameters of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Nb</mi></math>/<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>Al</mi><mi mathvariant=\"normal\">O</mi></mrow><mi>x</mi></msub></math>/<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Nb</mi></math> tunnel junctions, the sensitivity and noise-equivalent power (NEP) can reach values of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi><mo>≃</mo><mspace width=\"0.2em\"></mspace><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></math> (V/W) and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>NEP</mi><mo>≃</mo><mspace width=\"0.2em\"></mspace><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>23</mn></mrow></msup></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>WHz</mi><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math>), respectively. These outstanding characteristics facilitate both bolometric and single-photon detection in microwave and terahertz ranges.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photochemically induced acousto-optics in gases 气体中的光化学诱导声光技术
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-06 DOI: 10.1103/physrevapplied.22.024014
P. Michel, L. Lancia, A. Oudin, E. Kur, C. Riconda, K. Ou, V.M. Perez-Ramirez, J. Lee, M.R. Edwards
Acousto-optics consists of launching acoustic waves in a medium (usually a crystal) in order to modulate its refractive index and create a tunable optical grating. In this article, we present the theoretical basis of an alternative scheme to generate acousto-optics in a gas, where the acoustic waves are initiated by the localized absorption (and thus gas heating) of spatially modulated UV light, as was demonstrated by Michine and Yoneda [Commun. Phys. 3, 24 (2020)]. We identify the chemical reactions initiated by the absorption of UV light via the photodissociation of ozone molecules present in the gas, and calculate the resulting temperature increase in the gas as a function of space and time. Solving the Euler fluid equations shows that the modulated, isochoric heating initiates a mixed acoustic-entropy wave in the gas, whose high-amplitude density (and thus refractive index) modulation can be used to manipulate a high-power laser. We calculate that diffraction efficiencies near 100% can be obtained using only a few millimeters of gas containing a few percent ozone fraction at room temperature, with UV fluences of less than 100 mJ/cm2—consistent with the experimental measurements. Our analysis suggests possible ways to optimize the diffraction efficiency by changing the buffer gas composition. Gases have optics damage thresholds 2–3 orders of magnitude beyond those of solids; these optical elements should therefore be able to manipulate kilojoule-class lasers.
声光技术包括在介质(通常是晶体)中发射声波,以调节其折射率并产生可调光栅。在这篇文章中,我们介绍了在气体中产生声光技术的另一种方案的理论基础。在这种方案中,声波是由空间调制紫外光的局部吸收(进而气体加热)引发的,正如 Michine 和 Yoneda [Commun. Phys.我们通过气体中存在的臭氧分子的光解离,确定了紫外线吸收所引发的化学反应,并计算了气体中温度随空间和时间而升高的结果。欧拉流体方程的求解结果表明,调制等温加热会在气体中产生混合声熵波,其高幅值密度(以及折射率)调制可用于操纵高功率激光。根据我们的计算,在室温下,只需使用几毫米含百分之几臭氧成分的气体,紫外线流量小于 100 mJ/cm2,就能获得接近 100% 的衍射效率,这与实验测量结果一致。我们的分析提出了通过改变缓冲气体成分来优化衍射效率的可行方法。气体的光学损伤阈值比固体高出 2-3 个数量级;因此,这些光学元件应该能够操纵千焦耳级激光。
{"title":"Photochemically induced acousto-optics in gases","authors":"P. Michel, L. Lancia, A. Oudin, E. Kur, C. Riconda, K. Ou, V.M. Perez-Ramirez, J. Lee, M.R. Edwards","doi":"10.1103/physrevapplied.22.024014","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024014","url":null,"abstract":"Acousto-optics consists of launching acoustic waves in a medium (usually a crystal) in order to modulate its refractive index and create a tunable optical grating. In this article, we present the theoretical basis of an alternative scheme to generate acousto-optics in a gas, where the acoustic waves are initiated by the localized absorption (and thus gas heating) of spatially modulated UV light, as was demonstrated by Michine and Yoneda [Commun. Phys. 3, 24 (2020)]. We identify the chemical reactions initiated by the absorption of UV light via the photodissociation of ozone molecules present in the gas, and calculate the resulting temperature increase in the gas as a function of space and time. Solving the Euler fluid equations shows that the modulated, isochoric heating initiates a mixed acoustic-entropy wave in the gas, whose high-amplitude density (and thus refractive index) modulation can be used to manipulate a high-power laser. We calculate that diffraction efficiencies near 100% can be obtained using only a few millimeters of gas containing a few percent ozone fraction at room temperature, with UV fluences of less than 100 <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mrow><mi>mJ</mi><mo>/</mo><mi>cm</mi></mrow></mrow><mn>2</mn></msup></math>—consistent with the experimental measurements. Our analysis suggests possible ways to optimize the diffraction efficiency by changing the buffer gas composition. Gases have optics damage thresholds 2–3 orders of magnitude beyond those of solids; these optical elements should therefore be able to manipulate kilojoule-class lasers.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"15 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulse-based variational quantum optimization and metalearning in superconducting circuits 超导电路中基于脉冲的变异量子优化和金属刻蚀
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1103/physrevapplied.22.024009
Yapeng Wang, Yongcheng Ding, Francisco Andrés Cárdenas-López, Xi Chen
Solving optimization problems using variational algorithms stands out as a crucial application for noisy intermediate-scale devices. Instead of constructing gate-based quantum computers, our focus centers on designing variational quantum algorithms within the analog paradigm. This involves optimizing parameters that directly control pulses, driving quantum states toward target states without the necessity to compile a quantum circuit. In this work, we introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework. We illustrate the framework by optimizing external fluxes on superconducting quantum interference devices, effectively driving the wave function of this specific quantum architecture to the ground state of an encoded problem Hamiltonian. Given that the performance of variational algorithms relies heavily on appropriate initial parameters, we introduce a global optimizer as a metalearning technique to tackle a simple problem. The synergy between PBVQO and metalearning provides an advantage over conventional gate-based variational algorithms.
使用变分算法解决优化问题是噪声中等规模器件的一个重要应用。我们的重点不是构建基于门的量子计算机,而是在模拟范例中设计变分量子算法。这涉及优化直接控制脉冲的参数,从而在无需编译量子电路的情况下将量子态驱动至目标态。在这项工作中,我们引入了基于脉冲的变分量子优化(PBVQO)作为硬件级框架。我们通过优化超导量子干涉器件上的外部通量来说明该框架,从而有效地将这种特定量子架构的波函数驱动到编码问题哈密顿的基态。鉴于变分算法的性能在很大程度上依赖于适当的初始参数,我们引入了全局优化器作为金属学习技术来解决一个简单的问题。与传统的基于门的变分算法相比,PBVQO 和金属学习之间的协同作用更具优势。
{"title":"Pulse-based variational quantum optimization and metalearning in superconducting circuits","authors":"Yapeng Wang, Yongcheng Ding, Francisco Andrés Cárdenas-López, Xi Chen","doi":"10.1103/physrevapplied.22.024009","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024009","url":null,"abstract":"Solving optimization problems using variational algorithms stands out as a crucial application for noisy intermediate-scale devices. Instead of constructing gate-based quantum computers, our focus centers on designing variational quantum algorithms within the analog paradigm. This involves optimizing parameters that directly control pulses, driving quantum states toward target states without the necessity to compile a quantum circuit. In this work, we introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework. We illustrate the framework by optimizing external fluxes on superconducting quantum interference devices, effectively driving the wave function of this specific quantum architecture to the ground state of an encoded problem Hamiltonian. Given that the performance of variational algorithms relies heavily on appropriate initial parameters, we introduce a global optimizer as a metalearning technique to tackle a simple problem. The synergy between PBVQO and metalearning provides an advantage over conventional gate-based variational algorithms.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"32 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced measurement of neutral-atom qubits with machine learning 利用机器学习增强对中性原子量子比特的测量
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1103/physrevapplied.22.024011
L. Phuttitarn, B. M. Becker, R. Chinnarasu, T. M. Graham, M. Saffman
We demonstrate qubit-state measurements assisted by a supervised convolutional neural network (CNN) in a neutral-atom quantum processor. We present two CNN architectures for analyzing neutral-atom qubit readout data: a compact five-layer single-qubit CNN architecture and a six-layer multiqubit CNN architecture. We benchmark both architectures against a conventional Gaussian-threshold analysis method. In a sparse array (9-μm atom separation) which experiences negligible crosstalk, we have observed up to 32% and 56% error reduction for the multiqubit and single-qubit architectures, respectively, as compared to the benchmark. In a tightly spaced array (5-μm atom separation), which suffers from readout crosstalk, we have observed up to 43% and 32% error reduction in the multiqubit and single-qubit CNN architectures, respectively, as compared to the benchmark. By examining the correlation between the predicted states of neighboring qubits, we have found that the multiqubit CNN architecture reduces the crosstalk correlation by up to 78.5%. This work demonstrates a proof of concept for a CNN network to be implemented as a real-time readout-processing method on a neutral-atom quantum computer, enabling faster readout time and improved fidelity.
我们在中性原子量子处理器中演示了有监督卷积神经网络(CNN)辅助的量子比特态测量。我们提出了两种用于分析中性原子量子比特读出数据的 CNN 架构:紧凑型五层单量子比特 CNN 架构和六层多量子比特 CNN 架构。我们将这两种架构与传统的高斯阈值分析方法进行比较。在可忽略串扰的稀疏阵列(原子间距为 9μm)中,我们观察到多量子比特和单量子比特架构的误差与基准相比分别减少了 32% 和 56%。在存在读出串扰的紧密间距阵列(原子间距为 5μm)中,我们观察到与基准相比,多量子比特和单量子比特 CNN 架构的误差分别减少了 43% 和 32%。通过检查相邻量子比特预测状态之间的相关性,我们发现多量子比特 CNN 架构最多可将串扰相关性降低 78.5%。这项工作证明了在中性原子量子计算机上实现 CNN 网络作为实时读出处理方法的概念,从而实现更快的读出时间和更高的保真度。
{"title":"Enhanced measurement of neutral-atom qubits with machine learning","authors":"L. Phuttitarn, B. M. Becker, R. Chinnarasu, T. M. Graham, M. Saffman","doi":"10.1103/physrevapplied.22.024011","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024011","url":null,"abstract":"We demonstrate qubit-state measurements assisted by a supervised convolutional neural network (CNN) in a neutral-atom quantum processor. We present two CNN architectures for analyzing neutral-atom qubit readout data: a compact five-layer single-qubit CNN architecture and a six-layer multiqubit CNN architecture. We benchmark both architectures against a conventional Gaussian-threshold analysis method. In a sparse array (9-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext fontfamily=\"times\">μ</mtext><mrow><mi mathvariant=\"normal\">m</mi></mrow></math> atom separation) which experiences negligible crosstalk, we have observed up to 32% and 56% error reduction for the multiqubit and single-qubit architectures, respectively, as compared to the benchmark. In a tightly spaced array (5-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext fontfamily=\"times\">μ</mtext><mrow><mi mathvariant=\"normal\">m</mi></mrow></math> atom separation), which suffers from readout crosstalk, we have observed up to 43% and 32% error reduction in the multiqubit and single-qubit CNN architectures, respectively, as compared to the benchmark. By examining the correlation between the predicted states of neighboring qubits, we have found that the multiqubit CNN architecture reduces the crosstalk correlation by up to 78.5%. This work demonstrates a proof of concept for a CNN network to be implemented as a real-time readout-processing method on a neutral-atom quantum computer, enabling faster readout time and improved fidelity.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-electrical cooling of an optically levitated nanoparticle 全电冷却光学悬浮纳米粒子
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1103/physrevapplied.22.024010
Oscar Kremer, Igor Califrer, Daniel Tandeitnik, Jean Pierre von der Weid, Guilherme Temporão, Thiago Guerreiro
We implement an all-electrical controller for 3D feedback cooling of an optically levitated nanoparticle capable of reaching subkelvin temperatures for the center-of-mass motion. The controller is based on an optimal policy in which state estimation is made by delayed position measurements. The method offers a simplified path for precooling and decoupling the transverse degrees of freedom of the nanoparticle. Numerical simulations show that in an improved setup with quantum limited detection, all three axes can be cooled down to a few-phonon regime.
我们实现了一种全电气控制器,用于光学悬浮纳米粒子的三维反馈冷却,能够使质量中心运动达到亚开尔文温度。该控制器基于最优策略,通过延迟位置测量进行状态估计。该方法提供了预冷和解耦纳米粒子横向自由度的简化路径。数值模拟显示,在改进的量子限制检测装置中,所有三个轴都可以冷却到几声子的状态。
{"title":"All-electrical cooling of an optically levitated nanoparticle","authors":"Oscar Kremer, Igor Califrer, Daniel Tandeitnik, Jean Pierre von der Weid, Guilherme Temporão, Thiago Guerreiro","doi":"10.1103/physrevapplied.22.024010","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024010","url":null,"abstract":"We implement an all-electrical controller for 3D feedback cooling of an optically levitated nanoparticle capable of reaching subkelvin temperatures for the center-of-mass motion. The controller is based on an optimal policy in which state estimation is made by delayed position measurements. The method offers a simplified path for precooling and decoupling the transverse degrees of freedom of the nanoparticle. Numerical simulations show that in an improved setup with quantum limited detection, all three axes can be cooled down to a few-phonon regime.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"41 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the hyperbolic bandwidth in two-dimensional materials via atomic orbital engineering 通过原子轨道工程增强二维材料的双曲带宽
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1103/physrevapplied.22.024005
Shuting Hou, Xikui Ma, Chao Ding, Yueheng Du, Mingwen Zhao
The emergence of two-dimensional (2D) hyperbolic materials, characterized by opposite-sign optical conductivities along two orthogonal axes within a specific band (known as the hyperbolic region), opens an avenue for optical device engineering. Broadening the hyperbolic region is essential for cutting-edge photonic applications. In this study, based on a correlation between the hyperbolic region and anisotropic electronic structures, we propose a strategic framework for identifying 2D natural hyperbolic materials (NHMs) with broadband hyperbolicity. Using this framework, we engineered a 2D lattice incorporating p and d orbitals, and discovered a series of 2D NHMs, MYZ (M = Co,Pd,Ru,Rh; Y = S,Se,Te; and Z = Cl,Br,I). These materials exhibit broadband hyperbolicity that extends from the near-infrared to the visible-light spectrum. We have confirmed the directional propagation of surface plasmon polaritons on these 2D materials based on Maxwell’s equations. Our findings pave the way for future exploration and practical deployment of 2D NHMs in advanced technological applications.
二维(2D)双曲面材料的特点是在特定波段(称为双曲面区域)内沿两个正交轴具有相反的光传导性,这种材料的出现为光学设备工程开辟了一条道路。拓宽双曲区对于尖端光子应用至关重要。在本研究中,基于双曲区与各向异性电子结构之间的关联,我们提出了一种战略框架,用于识别具有宽带双曲性的二维天然双曲材料(NHM)。利用这一框架,我们设计了一个包含 p 和 d 轨道的二维晶格,并发现了一系列二维天然双曲材料 MYZ(M = Co,Pd,Ru,Rh;Y = S,Se,Te;Z = Cl,Br,I)。这些材料表现出从近红外光谱到可见光光谱的宽带双曲性。我们根据麦克斯韦方程证实了表面等离子体极化子在这些二维材料上的定向传播。我们的发现为未来探索和实际部署二维 NHMs 在先进技术应用中的应用铺平了道路。
{"title":"Enhancing the hyperbolic bandwidth in two-dimensional materials via atomic orbital engineering","authors":"Shuting Hou, Xikui Ma, Chao Ding, Yueheng Du, Mingwen Zhao","doi":"10.1103/physrevapplied.22.024005","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024005","url":null,"abstract":"The emergence of two-dimensional (2D) hyperbolic materials, characterized by opposite-sign optical conductivities along two orthogonal axes within a specific band (known as the hyperbolic region), opens an avenue for optical device engineering. Broadening the hyperbolic region is essential for cutting-edge photonic applications. In this study, based on a correlation between the hyperbolic region and anisotropic electronic structures, we propose a strategic framework for identifying 2D natural hyperbolic materials (NHMs) with broadband hyperbolicity. Using this framework, we engineered a 2D lattice incorporating <i>p</i> and <i>d</i> orbitals, and discovered a series of 2D NHMs, <i>MYZ</i> (<i>M</i> = <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Co</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Pd</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Ru</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Rh</mi></math>; <i>Y</i> = <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">S</mi></mrow></mrow><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Se</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Te</mi></math>; and <i>Z</i> = <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cl</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mi>Br</mi><mo>,</mo><mspace width=\"0.2em\"></mspace><mrow><mrow><mi mathvariant=\"normal\">I</mi></mrow></mrow></math>). These materials exhibit broadband hyperbolicity that extends from the near-infrared to the visible-light spectrum. We have confirmed the directional propagation of surface plasmon polaritons on these 2D materials based on Maxwell’s equations. Our findings pave the way for future exploration and practical deployment of 2D NHMs in advanced technological applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"46 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz dynamic multiband perfect absorber with a digital coding graphene-diamond metasurface 具有数字编码石墨烯-钻石元表面的太赫兹动态多频带完美吸收器
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1103/physrevapplied.22.024004
Shaowei Zhang, Feng Wen, Muhua Zhai, Zheng Li, Huapeng Ye, Hengxi Zhang, Yangxin Gu, Yang Lei, Wei Wang, Yanpeng Zhang, Hongxing Wang
The monolayer graphene-based terahertz (THz) perfect absorber has made significant progress in switchable devices with diverse functionalities. However, existing methods for achieving switchability rely on either multilayered metasurface with complex configurations or complicated patterned metasurfaces. A switchable absorber that switches between n-band and m-band modes (n, m correspond to the number of resonance peaks) using tunable materials is also interesting but has not yet been mentioned. Here, a dynamically switchable multiband perfect absorber with a digital coding graphene metasurface is proposed and demonstrated. By integrating multiple metasurface units with different Fermi levels into a newly generated period, we realize a multiband perfect absorber with a rather simple and straightforward configuration composed of a patterned metasurface. Through introducing a digital coding metasurface into the perfect absorber, we use the digital signals via FPGA (field programmable gate array) to convert n-band into m-band absorption modes. Moreover, the results reveal that the THz perfect absorber, possessing great impedance matching with the free space, has excellent angle tolerance and robustness. Such a perfect absorber offers a flexible tool for selecting THz channels and may pave the way for sixthgeneration communication.
基于单层石墨烯的太赫兹(THz)完美吸收器在具有各种功能的可切换器件方面取得了重大进展。然而,实现可切换性的现有方法要么依赖于具有复杂配置的多层元表面,要么依赖于复杂的图案元表面。利用可调材料在 n 波段和 m 波段模式(n、m 对应于共振峰的数量)之间切换的可切换吸收器也很有趣,但尚未被提及。在这里,我们提出并展示了一种具有数字编码石墨烯元表面的动态可切换多波段完美吸收器。通过将具有不同费米级的多个元表面单元集成到一个新产生的周期中,我们实现了一种由图案化元表面组成的多波段完美吸收器,其配置相当简单明了。通过在完美吸收器中引入数字编码元表面,我们利用 FPGA(现场可编程门阵列)的数字信号将 n 波段吸收模式转换为 m 波段吸收模式。此外,研究结果表明,太赫兹完美吸收器与自由空间的阻抗匹配度很高,具有出色的角度容限和鲁棒性。这种完美吸收器为选择太赫兹信道提供了灵活的工具,并可能为第六代通信铺平道路。
{"title":"Terahertz dynamic multiband perfect absorber with a digital coding graphene-diamond metasurface","authors":"Shaowei Zhang, Feng Wen, Muhua Zhai, Zheng Li, Huapeng Ye, Hengxi Zhang, Yangxin Gu, Yang Lei, Wei Wang, Yanpeng Zhang, Hongxing Wang","doi":"10.1103/physrevapplied.22.024004","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024004","url":null,"abstract":"The monolayer graphene-based terahertz (THz) perfect absorber has made significant progress in switchable devices with diverse functionalities. However, existing methods for achieving switchability rely on either multilayered metasurface with complex configurations or complicated patterned metasurfaces. A switchable absorber that switches between <i>n</i>-band and <i>m</i>-band modes (<i>n</i>, <i>m</i> correspond to the number of resonance peaks) using tunable materials is also interesting but has not yet been mentioned. Here, a dynamically switchable multiband perfect absorber with a digital coding graphene metasurface is proposed and demonstrated. By integrating multiple metasurface units with different Fermi levels into a newly generated period, we realize a multiband perfect absorber with a rather simple and straightforward configuration composed of a patterned metasurface. Through introducing a digital coding metasurface into the perfect absorber, we use the digital signals via FPGA (field programmable gate array) to convert <i>n</i>-band into <i>m</i>-band absorption modes. Moreover, the results reveal that the THz perfect absorber, possessing great impedance matching with the free space, has excellent angle tolerance and robustness. Such a perfect absorber offers a flexible tool for selecting THz channels and may pave the way for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>sixth</mi><mo>−</mo></msup></math>generation communication.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"37 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptional points in transistor-metamaterial-inspired transmission lines 晶体管-超材料启发传输线中的异常点
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1103/physrevapplied.22.024003
David E. Fernandes, Sylvain Lannebère, Tiago A. Morgado, Mário G. Silveirinha
Motivated by our recent findings in [Phys. Rev. Lett. 128, 013902, 2022], which introduced a new class of electromagnetic bulk materials whose response is similar to conventional semiconductor transistors, here we propose a one-dimensional (1D) version of such materials based on transmission lines coupled with FET isolators. We demonstrate that the response of this 1D system is nonreciprocal and non-Hermitian, analogous to the idealized transistor-metamaterial, and is also characterized by a broken time-reversal symmetry. We analyze the wave propagation in the system and find that the interaction between the eigenmodes can either lead to gain or loss, depending on the propagation distance. Furthermore, it is also shown that the system may be operated at an exceptional point, wherein the response becomes singular, and the power gain is maximized. Finally, we demonstrate that the exceptional point coincides with the point of operation of typical microwave amplifiers, such as the distributed amplifier.
我们最近在[Phys. Rev. Lett. 128, 013902, 2022]中的研究成果介绍了一类新的电磁体材料,其响应类似于传统的半导体晶体管。我们证明,这种一维系统的响应是非互易和非赫米提的,类似于理想化的晶体管-超材料,而且还具有时间反向对称性被打破的特点。我们分析了波在该系统中的传播,发现特征模之间的相互作用会导致增益或损耗,具体取决于传播距离。此外,我们还发现该系统可在一个特殊点上运行,此时响应变得奇异,功率增益达到最大。最后,我们证明该异常点与典型微波放大器(如分布式放大器)的工作点相吻合。
{"title":"Exceptional points in transistor-metamaterial-inspired transmission lines","authors":"David E. Fernandes, Sylvain Lannebère, Tiago A. Morgado, Mário G. Silveirinha","doi":"10.1103/physrevapplied.22.024003","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024003","url":null,"abstract":"Motivated by our recent findings in [Phys. Rev. Lett. 128, 013902, 2022], which introduced a new class of electromagnetic bulk materials whose response is similar to conventional semiconductor transistors, here we propose a one-dimensional (1D) version of such materials based on transmission lines coupled with FET isolators. We demonstrate that the response of this 1D system is nonreciprocal and non-Hermitian, analogous to the idealized transistor-metamaterial, and is also characterized by a broken time-reversal symmetry. We analyze the wave propagation in the system and find that the interaction between the eigenmodes can either lead to gain or loss, depending on the propagation distance. Furthermore, it is also shown that the system may be operated at an exceptional point, wherein the response becomes singular, and the power gain is maximized. Finally, we demonstrate that the exceptional point coincides with the point of operation of typical microwave amplifiers, such as the distributed amplifier.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"298 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Applied
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1