首页 > 最新文献

Physical Review Applied最新文献

英文 中文
Mitigating variability in epitaxial-heterostructure-based spin-qubit devices by optimizing gate layout 通过优化栅极布局降低基于外延-异质结构的自旋量子比特器件的变异性
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-09 DOI: 10.1103/physrevapplied.22.024030
Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet
The scalability of spin-qubit devices is conditioned by qubit-to-qubit variability. Disorder in the host materials indeed affects the wave functions of the confined carriers, which leads to variations in their charge and spin properties. Charge disorder in the amorphous oxides is particularly detrimental owing to its long-range influence. Here we analyze the effects of charge traps at the semiconductor-oxide interface, which are generally believed to play a dominant role in variability. We consider multiple random distributions of these interface traps and numerically calculate their impact on the chemical potentials, detuning, and tunnel coupling of two adjacent quantum dots in SiGe heterostructure. Our results highlight the beneficial screening effect of the metal gates. The surface of the heterostructure shall, therefore, be covered as much as possible by the gates in order to limit variability. We propose an alternative layout with tip-shaped gates that maximizes the coverage of the semiconductor-oxide interface and outperforms the usual planar layout in some regimes. This highlights the importance of design in the management of device-to-device variability.
自旋量子比特器件的可扩展性受制于量子比特与量子比特之间的变化。宿主材料中的无序确实会影响约束载流子的波函数,从而导致其电荷和自旋特性的变化。非晶氧化物中的电荷无序因其长程影响而尤其有害。在此,我们分析了半导体-氧化物界面电荷阱的影响,一般认为电荷阱在变化中起主导作用。我们考虑了这些界面陷阱的多种随机分布,并数值计算了它们对 SiGe 异质结构中相邻两个量子点的化学势、失谐和隧道耦合的影响。我们的结果凸显了金属栅极的有利屏蔽效应。因此,异质结构的表面应尽可能被栅极覆盖,以限制可变性。我们提出了一种具有尖端形状栅极的替代布局,它能最大限度地覆盖半导体-氧化物界面,并在某些情况下优于通常的平面布局。这凸显了设计在管理器件间变异性方面的重要性。
{"title":"Mitigating variability in epitaxial-heterostructure-based spin-qubit devices by optimizing gate layout","authors":"Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet","doi":"10.1103/physrevapplied.22.024030","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024030","url":null,"abstract":"The scalability of spin-qubit devices is conditioned by qubit-to-qubit variability. Disorder in the host materials indeed affects the wave functions of the confined carriers, which leads to variations in their charge and spin properties. Charge disorder in the amorphous oxides is particularly detrimental owing to its long-range influence. Here we analyze the effects of charge traps at the semiconductor-oxide interface, which are generally believed to play a dominant role in variability. We consider multiple random distributions of these interface traps and numerically calculate their impact on the chemical potentials, detuning, and tunnel coupling of two adjacent quantum dots in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Si</mi><mi>Ge</mi></mrow></math> heterostructure. Our results highlight the beneficial screening effect of the metal gates. The surface of the heterostructure shall, therefore, be covered as much as possible by the gates in order to limit variability. We propose an alternative layout with tip-shaped gates that maximizes the coverage of the semiconductor-oxide interface and outperforms the usual planar layout in some regimes. This highlights the importance of design in the management of device-to-device variability.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"14 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry-based quantum circuit mapping 基于对称的量子电路映射
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-09 DOI: 10.1103/physrevapplied.22.024029
Di Yu, Kun Fang
Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating the transformation of a logical quantum circuit into a list of instructions directly executable on a target quantum system. Recent research has introduced a postcompilation step known as remapping, which seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping and the overall compilation process has become of paramount importance. In this work, we introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, making it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for large-scale quantum computing.
量子电路映射是量子电路编译流水线中的一个关键步骤,有助于将逻辑量子电路转化为可在目标量子系统上直接执行的指令列表。最近的研究引入了一个被称为 "重映射 "的编译后步骤,旨在重新配置初始电路映射,以减少系统变异引起的量子电路错误。随着量子处理器规模的不断扩大,量子电路映射和整个编译过程的效率变得至关重要。在这项工作中,我们介绍了一种量子电路重映射算法,该算法利用量子处理器的内在对称性,非常适合大规模量子系统。该算法利用对称性限制搜索空间,从而识别所有拓扑上等价的电路映射,并利用矢量计算加速每个映射的评分。值得注意的是,这种基于对称性的电路重映射算法与目标量子硬件中的量子比特数量呈线性比例关系,并被证明在时间复杂度方面是最优的。此外,我们还与文献中的现有方法进行了对比分析,证明了我们基于对称性的方法在最先进的量子硬件架构上的优越性能,并强调了我们算法的实用性,尤其是在大规模量子计算方面。
{"title":"Symmetry-based quantum circuit mapping","authors":"Di Yu, Kun Fang","doi":"10.1103/physrevapplied.22.024029","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024029","url":null,"abstract":"Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating the transformation of a logical quantum circuit into a list of instructions directly executable on a target quantum system. Recent research has introduced a postcompilation step known as remapping, which seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping and the overall compilation process has become of paramount importance. In this work, we introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, making it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for large-scale quantum computing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"3 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic inductance parametric converter 动感参数转换器
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-08 DOI: 10.1103/physrevapplied.22.024025
M. Khalifa, P. Feldmann, J. Salfi
Parametric converters are parametric amplifiers that mix two spatially separate nondegenerate modes and are commonly used for amplifying and squeezing microwave signals in quantum computing and sensing. In Josephson parametric converters, the strong localized nonlinearity of the Josephson junction limits the amplification and squeezing, as well as the dynamic range, in current devices. In contrast, a weak distributed nonlinearity can provide higher gain and dynamic range, when implemented as a kinetic inductance (KI) nanowire of a dirty superconductor, and has additional benefits such as resilience to magnetic field, higher-temperature operation, and simplified fabrication. Here, we propose, demonstrate, and analyze the performance of a KI parametric converter that relies on the weak distributed nonlinearity of a Nb-Ti-N KI nanowire. The device utilizes three-wave mixing induced by a dc current bias. We demonstrate its operation as a nondegenerate parametric amplifier with high phase-sensitive gain, reaching two-mode amplification and deamplification of approximately 30 dB for two resonances separated by 0.8 GHz, in excellent agreement with our theory of the device. We observe a dynamic range of 108 dBm at 30 dB gain. Our device can significantly broaden applications of quantum-limited signal processing devices including phase-preserving amplification and two-mode squeezing.
参量转换器是一种参量放大器,它混合了两个空间上独立的非退行模式,通常用于放大和挤压量子计算和传感中的微波信号。在约瑟夫森参数转换器中,约瑟夫森结的强局部非线性限制了当前设备的放大和挤压以及动态范围。与此相反,弱分布式非线性可以提供更高的增益和动态范围,当作为脏超导体的动电感(KI)纳米线实现时,还具有抗磁场、更高温度操作和简化制造等额外优势。在此,我们提出、演示并分析了一种 KI 参数转换器的性能,该转换器依赖于 Nb-Ti-N KI 纳米线的微弱分布式非线性。该器件利用直流电流偏压诱导的三波混合。我们展示了它作为具有高相位敏感增益的非衰减参量放大器的运行情况,在两个相隔 0.8 GHz 的谐振中,它的双模放大和去放大率约为 30 dB,与我们的器件理论非常吻合。我们观察到 30 dB 增益时的动态范围为 -108 dBm。我们的器件可以大大拓宽量子限幅信号处理器件的应用范围,包括保相放大和双模挤压。
{"title":"Kinetic inductance parametric converter","authors":"M. Khalifa, P. Feldmann, J. Salfi","doi":"10.1103/physrevapplied.22.024025","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024025","url":null,"abstract":"Parametric converters are parametric amplifiers that mix two spatially separate nondegenerate modes and are commonly used for amplifying and squeezing microwave signals in quantum computing and sensing. In Josephson parametric converters, the strong localized nonlinearity of the Josephson junction limits the amplification and squeezing, as well as the dynamic range, in current devices. In contrast, a weak distributed nonlinearity can provide higher gain and dynamic range, when implemented as a kinetic inductance (KI) nanowire of a dirty superconductor, and has additional benefits such as resilience to magnetic field, higher-temperature operation, and simplified fabrication. Here, we propose, demonstrate, and analyze the performance of a KI parametric converter that relies on the weak distributed nonlinearity of a Nb-Ti-N KI nanowire. The device utilizes three-wave mixing induced by a dc current bias. We demonstrate its operation as a nondegenerate parametric amplifier with high phase-sensitive gain, reaching two-mode amplification and deamplification of approximately 30 dB for two resonances separated by 0.8 GHz, in excellent agreement with our theory of the device. We observe a dynamic range of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>108</mn></math> dBm at 30 dB gain. Our device can significantly broaden applications of quantum-limited signal processing devices including phase-preserving amplification and two-mode squeezing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"22 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays 用于百万像素阵列的集成了超导纳米线单光子探测器的纳米ryotron波纹计数器
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-08 DOI: 10.1103/physrevapplied.22.024020
Matteo Castellani, Owen Medeiros, Reed A. Foster, Alessandro Buzzi, Marco Colangelo, Joshua C. Bienfang, Alessandro Restelli, Karl K. Berggren
Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 106 readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrate that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires patterned on niobium nitride thin films. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an N-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof of principle, we first experimentally demonstrate the building block of the counter, an integer-N frequency divider with N ranging from 2 to 5. Then, we demonstrate photon-counting operations at 405 nm and 1550 nm by coupling an SNSPD with a two-digit nanocryotron counter partially integrated on chip. The two-digit counter can operate in either base 2 or base 3, with a bit-error rate lower than 2×104 and a count rate of 107s1. We simulate circuit architectures for integrated readout of the counter state and we evaluate the capabilities of reading out an SNSPD megapixel array that would collect up to 1012 counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit.
减少将热量带入低温恒温器的电缆数量是所有低温电子器件的关键问题。尤其是超导纳米线单光子探测器(SNSPD)阵列可能需要超过 106 根读出线。在低温下进行信号处理操作可能是一种解决方案。超导纳米线三端器件纳米ryotrons 是在光子计数应用中将传感和电子器件集成到与 SNSPD 相同的技术平台上的理想候选器件。在这项研究中,我们证明了利用氮化铌薄膜上的超导纳米线,可以读出、处理、编码和存储 SNSPD 的输出。我们特别介绍了纳米克里奥特伦波纹计数器的设计和开发,该计数器可检测输入电压尖峰,并将脉冲数转换为 N 位数值。计数基数可从 2 调整到更高的数值,从而在不扩大电路的情况下实现更高的最大计数。作为原理验证,我们首先通过实验演示了计数器的构件,即一个 N 为 2 至 5 的整数 N 分频器。然后,我们通过将 SNSPD 与部分集成在芯片上的两位数纳米ryotron 计数器耦合,演示了在 405 nm 和 1550 nm 波长下的光子计数操作。两位数计数器可以以基数 2 或基数 3 运行,误码率低于 2×10-4,计数率为 107s-1。我们模拟了集成读出计数器状态的电路结构,并评估了读出 SNSPD 百万像素阵列的能力,该阵列每秒最多可收集 1012 个计数。这项工作的成果,加上我们最近发表的关于纳米微管移位寄存器和逻辑门的论文,为开发纳米微管处理器铺平了道路,多种超导平台都可能从中受益。
{"title":"Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays","authors":"Matteo Castellani, Owen Medeiros, Reed A. Foster, Alessandro Buzzi, Marco Colangelo, Joshua C. Bienfang, Alessandro Restelli, Karl K. Berggren","doi":"10.1103/physrevapplied.22.024020","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024020","url":null,"abstract":"Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>6</mn></msup></math> readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrate that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires patterned on niobium nitride thin films. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof of principle, we first experimentally demonstrate the building block of the counter, an integer-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> frequency divider with <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> ranging from 2 to 5. Then, we demonstrate photon-counting operations at 405 nm and 1550 nm by coupling an SNSPD with a two-digit nanocryotron counter partially integrated on chip. The two-digit counter can operate in either base 2 or base 3, with a bit-error rate lower than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> and a count rate of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>7</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">s</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. We simulate circuit architectures for integrated readout of the counter state and we evaluate the capabilities of reading out an SNSPD megapixel array that would collect up to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>12</mn></msup></math> counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"28 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic microelastography for evaluation of ultrasound-induced softening of pancreatic cancer spheroids 评估超声诱导的胰腺癌球体软化的磁性微弹性成像技术
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-08 DOI: 10.1103/physrevapplied.22.024024
G. Laloy-Borgna, L. Vovard, A. Rohfritsch, L. Wang, J. Ngo, M. Perier, A. Drainville, F. Prat, M. Lafond, C. Lafon, S. Catheline
Pancreatic ductal adenocarcinoma is a devastating disease with very low survival rates 5 years after diagnosis. The main reason for this dismal prognosis is the thick stroma which both protects tumor cells from drug penetration and supports tumor development. Ultrasound inertial cavitation is a promising treatment with potential for stromal disruption, enhancing tumor cells’ sensitivity to chemical agents and biomodulators. Our goal was to develop a dedicated microelastography setup allowing us to measure the elasticity of in vitro tumor models called spheroids. In a second step, the impact of cavitation treatment on their mechanical properties was assessed. A transcranial magnetic stimulation clinical device was used to induce shear waves in the spheroids containing magnetic nanoparticles. Using an inverted optical microscope, particle imaging velocimetry, and noise correlation algorithms, the shear wave velocity, indicative of the medium’s elasticity, could be measured. Shear waves generated by the magnetic pulse inside the spheroids were detected and their velocity was measured using noise correlation elastography. This allowed the estimation of the spheroids’ elasticity. Cavitation treatment softened them significantly, and the impact of the exposure conditions and the spheroids’ composition have been studied. In the future, such a method could be used to monitor cavitation treatments. In addition, since it is now well established that mechanical constraints and elasticity play an important role in tumor growth, it is of great interest to measure the elasticity of tumor models to better understand the mechanisms of tumor growth.
胰腺导管腺癌是一种毁灭性疾病,确诊后 5 年的存活率非常低。预后不佳的主要原因是厚厚的基质既能保护肿瘤细胞免受药物渗透,又能支持肿瘤的发展。超声惯性空化是一种很有前景的治疗方法,具有破坏基质的潜力,可提高肿瘤细胞对化学制剂和生物调节剂的敏感性。我们的目标是开发一种专用的微弹性成像装置,使我们能够测量称为球体的体外肿瘤模型的弹性。第二步是评估空化处理对其机械性能的影响。我们使用经颅磁刺激临床设备在含有磁性纳米粒子的球体内诱发剪切波。利用倒置光学显微镜、粒子成像测速仪和噪声相关算法,可以测量剪切波速度,这表明了介质的弹性。磁脉冲在球体内产生的剪切波被检测到,并利用噪声相关弹性成像技术测量了剪切波的速度。这样就可以估算出球体的弹性。空化处理大大软化了球体,并研究了暴露条件和球体成分的影响。今后,这种方法可用于监测空化处理。此外,由于机械约束和弹性在肿瘤生长中起着重要作用已被证实,因此测量肿瘤模型的弹性以更好地了解肿瘤生长的机制是非常有意义的。
{"title":"Magnetic microelastography for evaluation of ultrasound-induced softening of pancreatic cancer spheroids","authors":"G. Laloy-Borgna, L. Vovard, A. Rohfritsch, L. Wang, J. Ngo, M. Perier, A. Drainville, F. Prat, M. Lafond, C. Lafon, S. Catheline","doi":"10.1103/physrevapplied.22.024024","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024024","url":null,"abstract":"Pancreatic ductal adenocarcinoma is a devastating disease with very low survival rates 5 years after diagnosis. The main reason for this dismal prognosis is the thick stroma which both protects tumor cells from drug penetration and supports tumor development. Ultrasound inertial cavitation is a promising treatment with potential for stromal disruption, enhancing tumor cells’ sensitivity to chemical agents and biomodulators. Our goal was to develop a dedicated microelastography setup allowing us to measure the elasticity of <i>in vitro</i> tumor models called spheroids. In a second step, the impact of cavitation treatment on their mechanical properties was assessed. A transcranial magnetic stimulation clinical device was used to induce shear waves in the spheroids containing magnetic nanoparticles. Using an inverted optical microscope, particle imaging velocimetry, and noise correlation algorithms, the shear wave velocity, indicative of the medium’s elasticity, could be measured. Shear waves generated by the magnetic pulse inside the spheroids were detected and their velocity was measured using noise correlation elastography. This allowed the estimation of the spheroids’ elasticity. Cavitation treatment softened them significantly, and the impact of the exposure conditions and the spheroids’ composition have been studied. In the future, such a method could be used to monitor cavitation treatments. In addition, since it is now well established that mechanical constraints and elasticity play an important role in tumor growth, it is of great interest to measure the elasticity of tumor models to better understand the mechanisms of tumor growth.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"74 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine-learning optimal control pulses in an optical quantum memory experiment 光量子记忆实验中的机器学习优化控制脉冲
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-08 DOI: 10.1103/physrevapplied.22.024026
Elizabeth Robertson, Luisa Esguerra, Leon Meßner, Guillermo Gallego, Janik Wolters
Efficient optical quantum memories are a milestone required for several quantum technologies, including repeater-based quantum key distribution and on-demand multiphoton generation. We present an efficiency optimization of an optical electromagnetically induced transparency (EIT) memory experiment in a warm cesium vapor using a genetic algorithm and analyze the resulting wave forms. The control pulse is represented either as a Gaussian or free-form pulse and the results from the optimization are compared. We see an improvement factor of 3(7)% when using optimized free-form pulses. By limiting the allowed pulse energy in a solution, we show an energy-based optimization giving a 30% reduction in energy, with minimal efficiency loss.
高效光量子存储器是若干量子技术(包括基于中继器的量子密钥分发和按需多光子生成)所需的一个里程碑。我们利用遗传算法对暖铯蒸汽中的光电磁诱导透明(EIT)存储器实验进行了效率优化,并分析了由此产生的波形。控制脉冲可表示为高斯脉冲或自由形式脉冲,并对优化结果进行比较。我们发现,使用优化后的自由形态脉冲时,改进系数为 3(7)%。通过限制解决方案中允许的脉冲能量,我们展示了一种基于能量的优化方法,可将能量减少 30%,同时将效率损失降至最低。
{"title":"Machine-learning optimal control pulses in an optical quantum memory experiment","authors":"Elizabeth Robertson, Luisa Esguerra, Leon Meßner, Guillermo Gallego, Janik Wolters","doi":"10.1103/physrevapplied.22.024026","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024026","url":null,"abstract":"Efficient optical quantum memories are a milestone required for several quantum technologies, including repeater-based quantum key distribution and on-demand multiphoton generation. We present an efficiency optimization of an optical electromagnetically induced transparency (EIT) memory experiment in a warm cesium vapor using a genetic algorithm and analyze the resulting wave forms. The control pulse is represented either as a Gaussian or free-form pulse and the results from the optimization are compared. We see an improvement factor of 3(7)% when using optimized free-form pulses. By limiting the allowed pulse energy in a solution, we show an energy-based optimization giving a 30% reduction in energy, with minimal efficiency loss.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"75 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power-in-bucket enhancement in tiled-aperture coherent beam combining through inducing spatial chirp 通过诱导空间啁啾增强瓦片孔径相干光束组合的桶内功率
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-07 DOI: 10.1103/physrevapplied.22.024018
Wenhai Liang, Shuman Du, Renjing Chen, Chengru Wu, Xiong Shen, Peng Wang, Jun Liu, Ruxin Li
Spatial gaps between sub-beams in high-peak-power lasers with tiled-aperture-based coherent beam combining (TACBC) give rise to relatively strong sidelobes and impair the power in bucket (PIB) at far field. To address the aforementioned issue, spatial chirp is employed in this paper to fill the gaps and further enhance PIB. With two sub-beams, both simulations and experiments indicate that spatial chirp can boost PIB by 1.8 times at a gap-beam width ratio of 0.2. The same enhancement is observed in simulations even when four sub-beams are considered. To put it briefly, the spatial-chirp-assisted TACBC approach holds the potential in boosting focal intensity during constructing tens to hundreds of petawatt (PW) lasers.
采用基于平铺孔径的相干波束合成(TACBC)技术的高峰值功率激光器中,子波束之间的空间间隙会产生相对较强的挎边,从而损害远场的斗内功率(PIB)。为了解决上述问题,本文采用了空间啁啾来填补空白,进一步提高 PIB。模拟和实验都表明,在两个子光束中,当间隙-光束宽度比为 0.2 时,空间啁啾能将 PIB 提高 1.8 倍。即使考虑四个子光束,在模拟中也能观察到相同的增强效果。简而言之,空间啁啾辅助 TACBC 方法有望在建造数十到数百 petawatt (PW) 激光器时提高焦点强度。
{"title":"Power-in-bucket enhancement in tiled-aperture coherent beam combining through inducing spatial chirp","authors":"Wenhai Liang, Shuman Du, Renjing Chen, Chengru Wu, Xiong Shen, Peng Wang, Jun Liu, Ruxin Li","doi":"10.1103/physrevapplied.22.024018","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024018","url":null,"abstract":"Spatial gaps between sub-beams in high-peak-power lasers with tiled-aperture-based coherent beam combining (TACBC) give rise to relatively strong sidelobes and impair the power in bucket (PIB) at far field<b>.</b> To address the aforementioned issue, spatial chirp is employed in this paper to fill the gaps and further enhance PIB. With two sub-beams, both simulations and experiments indicate that spatial chirp can boost PIB by 1.8 times at a gap-beam width ratio of 0.2. The same enhancement is observed in simulations even when four sub-beams are considered. To put it briefly, the spatial-chirp-assisted TACBC approach holds the potential in boosting focal intensity during constructing tens to hundreds of petawatt (PW) lasers.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stroboscopic x-ray diffraction microscopy of dynamic strain in diamond thin-film bulk acoustic resonators for quantum control of nitrogen-vacancy centers 金刚石薄膜体声谐振器动态应变的频闪 X 射线衍射显微镜,用于氮空位中心的量子控制
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-07 DOI: 10.1103/physrevapplied.22.024016
Anthony D’Addario, Johnathan Kuan, Noah F. Opondo, Ozan Erturk, Tao Zhou, Sunil A. Bhave, Martin V. Holt, Gregory D. Fuchs
Bulk-mode acoustic waves in a crystalline material exert lattice strain through the thickness of the sample, which couples to the spin Hamiltonian of defect-based qubits such as the nitrogen-vacancy (N-V) center defect in diamond. This mechanism has previously been harnessed for unconventional quantum spin control, spin decoherence protection, and quantum sensing. Bulk-mode acoustic wave devices are also important in the microelectronics industry as microwave filters. A key challenge in both applications is a lack of appropriate operando microscopy tools for quantifying and visualizing gigahertz-frequency dynamic strain. In this work, we directly image acoustic strain within N-V center-coupled diamond thin-film bulk acoustic wave resonators using stroboscopic scanning hard x-ray diffraction microscopy at the Advanced Photon Source. The far-field scattering patterns of the nanofocused x-ray diffraction encode strain information entirely through the illuminated thickness of the resonator. These patterns have a real-space spatial variation that is consistent with the bulk strain’s expected modal distribution and a momentum-space angular variation from which the strain amplitude can be quantitatively deduced. We also perform optical measurements of strain-driven Rabi precession of of the N-V center spin ensemble, providing an additional quantitative measurement of the strain amplitude. As a result, we directly measure one of the six N-V spin-stress coupling parameters, b=2.73(2) MHz/GPa, by correlating these measurements at the same spatial position and applied microwave power. Our results demonstrate a unique technique for directly imaging ac lattice strain in micromechanical structures and provide a direct measurement of a fundamental constant for the N-V center defect spin Hamiltonian.
晶体材料中的体模声波会通过样品的厚度产生晶格应变,这种应变会耦合到基于缺陷的量子比特(如金刚石中的氮-隙(N-V)中心缺陷)的自旋哈密顿。这种机制曾被用于非常规量子自旋控制、自旋退相干保护和量子传感。体模声波器件作为微波滤波器在微电子工业中也很重要。这两种应用中的一个关键挑战是缺乏适当的操作显微镜工具来量化和可视化千兆赫频率动态应变。在这项工作中,我们利用先进光子源的频闪扫描硬 X 射线衍射显微镜,直接对 N-V 中心耦合金刚石薄膜体声波谐振器内的声应变进行成像。纳米聚焦 X 射线衍射的远场散射图案完全通过谐振器的照射厚度编码应变信息。这些图案的实空间空间变化与块体应变的预期模态分布一致,而动量空间角度变化则可从中定量推导出应变振幅。我们还对 N-V 中心自旋合集的应变驱动拉比前驱进行了光学测量,为应变振幅提供了额外的定量测量。因此,通过在相同空间位置和应用微波功率下进行相关测量,我们直接测量了六个 N-V 自旋应力耦合参数之一 b=2.73(2) MHz/GPa。我们的研究结果展示了一种直接成像微机械结构中交流晶格应变的独特技术,并提供了对 N-V 中心缺陷自旋哈密顿基本常数的直接测量。
{"title":"Stroboscopic x-ray diffraction microscopy of dynamic strain in diamond thin-film bulk acoustic resonators for quantum control of nitrogen-vacancy centers","authors":"Anthony D’Addario, Johnathan Kuan, Noah F. Opondo, Ozan Erturk, Tao Zhou, Sunil A. Bhave, Martin V. Holt, Gregory D. Fuchs","doi":"10.1103/physrevapplied.22.024016","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024016","url":null,"abstract":"Bulk-mode acoustic waves in a crystalline material exert lattice strain through the thickness of the sample, which couples to the spin Hamiltonian of defect-based qubits such as the nitrogen-vacancy (N-<i>V</i>) center defect in diamond. This mechanism has previously been harnessed for unconventional quantum spin control, spin decoherence protection, and quantum sensing. Bulk-mode acoustic wave devices are also important in the microelectronics industry as microwave filters. A key challenge in both applications is a lack of appropriate operando microscopy tools for quantifying and visualizing gigahertz-frequency dynamic strain. In this work, we directly image acoustic strain within N-<i>V</i> center-coupled diamond thin-film bulk acoustic wave resonators using stroboscopic scanning hard x-ray diffraction microscopy at the Advanced Photon Source. The far-field scattering patterns of the nanofocused x-ray diffraction encode strain information entirely through the illuminated thickness of the resonator. These patterns have a real-space spatial variation that is consistent with the bulk strain’s expected modal distribution and a momentum-space angular variation from which the strain amplitude can be quantitatively deduced. We also perform optical measurements of strain-driven Rabi precession of of the N-<i>V</i> center spin ensemble, providing an additional quantitative measurement of the strain amplitude. As a result, we directly measure one of the six N-<i>V</i> spin-stress coupling parameters, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi><mo>=</mo><mn>2.73</mn><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> MHz/GPa, by correlating these measurements at the same spatial position and applied microwave power. Our results demonstrate a unique technique for directly imaging ac lattice strain in micromechanical structures and provide a direct measurement of a fundamental constant for the N-<i>V</i> center defect spin Hamiltonian.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"36 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetization dynamics driven by displacement currents across a magnetic tunnel junction 跨磁性隧道结的位移电流驱动的磁化动力学
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-07 DOI: 10.1103/physrevapplied.22.024019
C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal
Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in CoFeB/MgO-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.
了解磁隧道结(MTJ)的高频传输特性对于开发快速运行的自旋电子存储器和射频设备至关重要。在此,我们利用时间分辨磁光克尔效应技术,研究了 CoFeB/MgO 基 MTJ 中随频率变化的电容电流效应及其对磁化动态的影响。在我们的器件中,工作频率为千兆赫,我们发现了一个毫安数量级的大位移电流,它不会破坏 MTJ 的隧道势垒。重要的是,这种电流会产生奥斯特磁场和自旋轨道力矩,诱导磁化动力学。我们的发现为制造在高电流条件下运行的坚固 MTJ 器件带来了希望,同时也凸显了电容阻抗在高频磁传输技术中的重要性。
{"title":"Magnetization dynamics driven by displacement currents across a magnetic tunnel junction","authors":"C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal","doi":"10.1103/physrevapplied.22.024019","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024019","url":null,"abstract":"Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Co</mi><mi>Fe</mi><mi mathvariant=\"normal\">B</mi></mrow><mo>/</mo><mrow><mi>Mg</mi><mi mathvariant=\"normal\">O</mi></mrow></math>-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"2 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bright spatially coherent beam from carbon-nanotube fiber field-emission cathode 来自碳纳米管光纤场发射阴极的明亮空间相干光束
IF 4.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Pub Date : 2024-08-07 DOI: 10.1103/physrevapplied.22.024017
Taha Y. Posos, Jack Cook, Sergey V. Baryshev
Large-area carbon-nanotube (CNT) cathodes made from yarns, films, or fibers have long been promising as next-generation electron sources for high-power rf and microwave-vacuum-electronic devices. However, experimental evidence has highlighted that spatial incoherence of the electron beam produced by such cathodes impeded the progress toward high brightness CNT electron sources and their practical applications. Indeed, typically large-area CNT fibers, films, or textiles emit stochastically across their physical surface at large emission angles and with large transverse spread, meaning large emittance and hence low brightness. In this work, using high-resolution field-emission microscopy, we demonstrate that conventional electroplating of hair-thick CNT fibers followed by a femtosecond laser cutting, producing an emitter surface, solves the described incoherent emission issues extremely well. Strikingly, it was observed that the entire (within the error margin) cathode surface of a radius of approximately 75μm emitted uniformly (with no hot spots) in the direction of the applied electric field. The normalized cathode emittance, i.e., on the fiber surface, was estimated as 26-nmrad with brightness of >1016A/m2rad2 (or >107Am2sr1V1) estimated for pulsed-mode operation.
长期以来,由纱线、薄膜或纤维制成的大面积碳纳米管(CNT)阴极一直有望成为用于高功率射频和微波真空电子设备的下一代电子源。然而,实验证据表明,这类阴极产生的电子束在空间上的不一致性阻碍了高亮度碳纳米管电子源及其实际应用的发展。事实上,大面积的碳纳米管纤维、薄膜或纺织品通常会在其物理表面以大发射角和大横向扩散随机发射,这意味着发射率大,因此亮度低。在这项工作中,我们利用高分辨率场发射显微镜证明,对头发丝粗的 CNT 纤维进行传统的电镀,然后用飞秒激光切割,产生一个发射器表面,可以非常好地解决所述的不连贯发射问题。令人震惊的是,我们观察到半径约为 75 微米的整个阴极表面(误差范围内)在施加电场的方向上均匀发射(无热点)。归一化阴极辐照度(即光纤表面上的辐照度)估计为 26 纳米,脉冲模式运行时的亮度估计为 1016A/m2rad2(或 107Am-2sr-1V-1)。
{"title":"Bright spatially coherent beam from carbon-nanotube fiber field-emission cathode","authors":"Taha Y. Posos, Jack Cook, Sergey V. Baryshev","doi":"10.1103/physrevapplied.22.024017","DOIUrl":"https://doi.org/10.1103/physrevapplied.22.024017","url":null,"abstract":"Large-area carbon-nanotube (CNT) cathodes made from yarns, films, or fibers have long been promising as next-generation electron sources for high-power rf and microwave-vacuum-electronic devices. However, experimental evidence has highlighted that spatial incoherence of the electron beam produced by such cathodes impeded the progress toward high brightness CNT electron sources and their practical applications. Indeed, typically large-area CNT fibers, films, or textiles emit stochastically across their physical surface at large emission angles and with large transverse spread, meaning large emittance and hence low brightness. In this work, using high-resolution field-emission microscopy, we demonstrate that conventional electroplating of hair-thick CNT fibers followed by a femtosecond laser cutting, producing an emitter surface, solves the described incoherent emission issues extremely well. Strikingly, it was observed that the entire (within the error margin) cathode surface of a radius of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>75</mn><mspace width=\"0.2em\"></mspace><mtext fontfamily=\"times\">μ</mtext><mtext>m</mtext></math> emitted uniformly (with no hot spots) in the direction of the applied electric field. The normalized cathode emittance, i.e., on the fiber surface, was estimated as 26-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>nm</mtext><mspace width=\"0.2em\"></mspace><mtext>rad</mtext></math> with brightness of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>&gt;</mo><msup><mn>10</mn><mn>16</mn></msup><mspace width=\"0.2em\"></mspace><mtext>A</mtext><mo>/</mo><mrow><msup><mtext>m</mtext><mn>2</mn></msup><mspace width=\"0.2em\"></mspace><msup><mtext>rad</mtext><mn>2</mn></msup></mrow></math> (or <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>&gt;</mo><msup><mn>10</mn><mn>7</mn></msup><mspace width=\"0.2em\"></mspace><mrow><mi mathvariant=\"normal\">A</mi></mrow><mspace width=\"0.2em\"></mspace><msup><mrow><mi mathvariant=\"normal\">m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mspace width=\"0.2em\"></mspace><msup><mi>sr</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mi mathvariant=\"normal\">V</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>) estimated for pulsed-mode operation.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"75 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Applied
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1