Pub Date : 2025-01-01Epub Date: 2024-11-28DOI: 10.1002/ptr.8383
Mehran Alavi, Sónia N Pedro, Mara G Freire, Morahem Ashengroph, Haroon Khan
Theaflavins, powerful antioxidants found in black tea ( Camellia sinensis ), have garnered increasing interest for their promising therapeutic potential. Experimental studies have contributed to enlightening about the advantages of theaflavins, including their antioxidant, anti-inflammatory, anticancer, antiosteoporosis, and antimicrobial properties. Theaflavin and its derivatives, particularly theaflavin-3,3'-digallate, have been particularly noted for their enhanced action in different areas. These compounds have found an important role as alternatives or adjuvants in the pharmaceutical sector, food industry, and in the improvement of health conditions. This review focuses on the antioxidant and anti-inflammatory aspects of theaflavins, particularly their potential in addressing peri-implant osteolysis. We explore mechanisms and pathways involved in this therapeutic action. Furthermore, we cover some of the relevant studies on the antimicrobial action of theaflavins in both the health and food sectors. Specifically, we explore the use of theaflavins for the treatment of dental infections, where these compounds have shown particular efficacy against several bacterial strains and their antimicrobial application in food matrices. Given the low solubility and stability of theaflavins in physiological conditions, we emphasize the benefits of the development of biocompatible and biodegradable nanoformulations to enhance the stability, bioavailability, and efficacy of these polyphenols, to promote their broader research and application. Given the potential demonstrated so far by in vitro and in vivo studies, the application of theaflavins stands as a promising alternative to enhance the existing strategies and fight prosthetic failure and antimicrobial resistance in the health and food sectors.
{"title":"Theaflavins Applications to Ameliorate Implant Failure and Eradicate Microbial Infections and Foodborne Pathogens: A Comprehensive Review.","authors":"Mehran Alavi, Sónia N Pedro, Mara G Freire, Morahem Ashengroph, Haroon Khan","doi":"10.1002/ptr.8383","DOIUrl":"10.1002/ptr.8383","url":null,"abstract":"<p><p>Theaflavins, powerful antioxidants found in black tea ( Camellia sinensis ), have garnered increasing interest for their promising therapeutic potential. Experimental studies have contributed to enlightening about the advantages of theaflavins, including their antioxidant, anti-inflammatory, anticancer, antiosteoporosis, and antimicrobial properties. Theaflavin and its derivatives, particularly theaflavin-3,3'-digallate, have been particularly noted for their enhanced action in different areas. These compounds have found an important role as alternatives or adjuvants in the pharmaceutical sector, food industry, and in the improvement of health conditions. This review focuses on the antioxidant and anti-inflammatory aspects of theaflavins, particularly their potential in addressing peri-implant osteolysis. We explore mechanisms and pathways involved in this therapeutic action. Furthermore, we cover some of the relevant studies on the antimicrobial action of theaflavins in both the health and food sectors. Specifically, we explore the use of theaflavins for the treatment of dental infections, where these compounds have shown particular efficacy against several bacterial strains and their antimicrobial application in food matrices. Given the low solubility and stability of theaflavins in physiological conditions, we emphasize the benefits of the development of biocompatible and biodegradable nanoformulations to enhance the stability, bioavailability, and efficacy of these polyphenols, to promote their broader research and application. Given the potential demonstrated so far by in vitro and in vivo studies, the application of theaflavins stands as a promising alternative to enhance the existing strategies and fight prosthetic failure and antimicrobial resistance in the health and food sectors.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"494-504"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
{"title":"A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals.","authors":"Soumyadip Ghosh, Soumya Basu, Anand Anbarasu, Sudha Ramaiah","doi":"10.1002/ptr.8365","DOIUrl":"10.1002/ptr.8365","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"138-161"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-04DOI: 10.1002/ptr.8344
Monalisha Samal, Varsha Srivastava, Muzayyana Khan, Areeba Insaf, Naveen Reddy Penumallu, Aftab Alam, Bushra Parveen, Shahid Hussain Ansari, Sayeed Ahmad
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
{"title":"Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review.","authors":"Monalisha Samal, Varsha Srivastava, Muzayyana Khan, Areeba Insaf, Naveen Reddy Penumallu, Aftab Alam, Bushra Parveen, Shahid Hussain Ansari, Sayeed Ahmad","doi":"10.1002/ptr.8344","DOIUrl":"10.1002/ptr.8344","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"25-50"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear. In this study, we utilized 16S rRNA gene sequencing, nontargeted metabolomic analysis, and network pharmacology to identify changes in lung microbiota and metabolites that mediate alveolar epithelial cell senescence in bleomycin (BLM)-induced PF in mice. Additionally, we employed Western blot analysis, RT-PCR, and immunofluorescence staining to investigate the in vitro and in vivo effects of TET and its influential bacterial metabolites on PF. The TET intervention alleviated PF by regulating the compositions of lung microbial communities (Streptococcus, Micrococcus, Acinetobacter, Altererythrobacter, Atopostipes, Candidatus Cloacimonas, Clostridium sensu stricto 1, Sphingomonas, Listeria, Blautia, and Pseudomonas) and metabolites (3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 6-Aminonicotinamide, N-acetyl-5-methoxykynuramine, and resiniferatoxin). Through network pharmacological analysis, it was determined that 3,4-DHPPA played a crucial role in alleviating PF by further inhibiting the senescence of alveolar epithelial cells, a finding further validated in ex vivo experiments. TET mitigated BLM-induced PF in murine models through the modulation of lung microbiota composition and metabolism. Specifically, TET augmented the level of the microbiota-derived metabolite, 3,4-DHPPA, which in turn attenuated alveolar epithelial cell senescence.
{"title":"Tetrandrine Alleviates Pulmonary Fibrosis by Modulating Lung Microbiota-Derived Metabolism and Ameliorating Alveolar Epithelial Cell Senescence.","authors":"Jinzhong Zhuo, Lanhe Chu, Dongyu Liu, Jinming Zhang, Weimou Chen, Haohua Huang, Qi Yu, Xiaojin Meng, Fei Zou, Shaixi Cai, Hangming Dong","doi":"10.1002/ptr.8374","DOIUrl":"10.1002/ptr.8374","url":null,"abstract":"<p><p>Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear. In this study, we utilized 16S rRNA gene sequencing, nontargeted metabolomic analysis, and network pharmacology to identify changes in lung microbiota and metabolites that mediate alveolar epithelial cell senescence in bleomycin (BLM)-induced PF in mice. Additionally, we employed Western blot analysis, RT-PCR, and immunofluorescence staining to investigate the in vitro and in vivo effects of TET and its influential bacterial metabolites on PF. The TET intervention alleviated PF by regulating the compositions of lung microbial communities (Streptococcus, Micrococcus, Acinetobacter, Altererythrobacter, Atopostipes, Candidatus Cloacimonas, Clostridium sensu stricto 1, Sphingomonas, Listeria, Blautia, and Pseudomonas) and metabolites (3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 6-Aminonicotinamide, N-acetyl-5-methoxykynuramine, and resiniferatoxin). Through network pharmacological analysis, it was determined that 3,4-DHPPA played a crucial role in alleviating PF by further inhibiting the senescence of alveolar epithelial cells, a finding further validated in ex vivo experiments. TET mitigated BLM-induced PF in murine models through the modulation of lung microbiota composition and metabolism. Specifically, TET augmented the level of the microbiota-derived metabolite, 3,4-DHPPA, which in turn attenuated alveolar epithelial cell senescence.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"298-314"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-10DOI: 10.1002/ptr.8370
Wenxuan Liu, Runlin Gui, Yang Li, Man Li, Zhen Lei, Yanyan Jin, Yi Yu, Yujia Li, Lu Qian, Yuyan Xiong
Insulin resistance (IR) is a central pathophysiological process underlying numerous chronic metabolic disorders, including type 2 diabetes and obesity. Lycii Cortex, a widely used traditional Chinese herb, has demonstrated potential benefits in preventing and managing diabetes and IR. Whereas, the specific bioactive compounds responsible for these protective effects and their underlying mechanisms of action remain elusive. This study aimed to identify the bioactive components within Lycii Cortex that contribute to its anti-diabetic effects and to elucidate the molecular mechanisms underlying its beneficial actions on insulin resistance. Network pharmacology and molecular docking analyses were employed to identify the potential active compounds in Lycii Cortex and their corresponding target proteins. An in vitro model of IR was established using palmitic acid (PA)-treated HepG2 cells. Cell viability was assessed using the CCK-8 assay, while glucose uptake was evaluated by 2-NBDG staining and extracellular glucose measurement. To validate the in vitro findings, an in vivo model of obesity-induced IR was established using high-fat diet (HFD)-fed mice. The network pharmacology analysis preliminarily identified 13 candidate chemicals and 10 hub LyC and IR-related genes (LIRRGs). Molecular docking analysis demonstrates that Linarin as the potential active component exhibits the greatest potential to target c-FOS for preventing obesity-induced IR. Enrichment analysis suggested that Linarin-targeted pathways are correlated with inflammation. In vitro experimental validation demonstrated that Linarin was capable of protecting against PA-induced IR in HepG2 cells evidenced by improving glucose uptake ability and reducing extracellular glucose content. Additionally, we found that Linarin ablated PA-induced increase in the expression of c-FOS and inflammatory cytokines. Furthermore, in PA-treated cells, silencing c-FOS markedly improved glucose consumption, and reduced inflammation and Arginase 2 (ARG2) expression. Similarly, as exposure to PA, silencing ARG2 also ameliorated glucose uptake and inflammation, while not affecting c-FOS expression. In vivo experiments further showed that Linarin administration remarkably improved glucose tolerance and insulin sensitivity, and reduced the fat mass and body weight in HFD-induced obese mice. In this study, Linarin has been identified as the bioactive compound of Lycii Cortex to ameliorate obesity-related IR and inflammation through the c-FOS/ARG2 signaling cascade. These findings underscore the therapeutic potential of Linarin and provide valuable insights into developing novel intervention strategies for type 2 diabetes therapy.
胰岛素抵抗(IR)是许多慢性代谢疾病(包括 2 型糖尿病和肥胖症)的核心病理生理过程。枸杞子是一种广泛使用的传统中草药,在预防和控制糖尿病和胰岛素抵抗方面具有潜在的益处。然而,产生这些保护作用的特定生物活性化合物及其潜在的作用机制仍未确定。本研究旨在确定枸杞皮中有助于其抗糖尿病作用的生物活性成分,并阐明其对胰岛素抵抗有益作用的分子机制。研究采用了网络药理学和分子对接分析来确定枸杞皮中潜在的活性化合物及其相应的靶蛋白。使用棕榈酸(PA)处理的 HepG2 细胞建立了 IR 体外模型。细胞活力通过 CCK-8 试验进行评估,葡萄糖摄取通过 2-NBDG 染色和细胞外葡萄糖测量进行评估。为了验证体外研究结果,研究人员利用高脂饮食(HFD)喂养的小鼠建立了肥胖诱导的IR体内模型。网络药理学分析初步确定了 13 种候选化学物质和 10 个中枢 LyC 和 IR 相关基因(LIRRGs)。分子对接分析表明,亚麻仁作为潜在的活性成分,在靶向 c-FOS 预防肥胖诱导的 IR 方面表现出最大的潜力。富集分析表明,利奈林靶向的通路与炎症相关。体外实验验证表明,通过提高葡萄糖摄取能力和降低细胞外葡萄糖含量,亚麻arin能够保护肝癌细胞免受PA诱导的IR影响。此外,我们还发现 Linarin 能抑制 PA 诱导的 c-FOS 和炎性细胞因子的表达。此外,在 PA 处理的细胞中,沉默 c-FOS 可显著改善葡萄糖消耗,并减少炎症和精氨酸酶 2(ARG2)的表达。同样,在暴露于 PA 的情况下,沉默 ARG2 也能改善葡萄糖摄取和炎症,而不影响 c-FOS 的表达。体内实验进一步表明,服用利奈林可显著改善糖耐量和胰岛素敏感性,并降低高氟日粮诱导的肥胖小鼠的脂肪量和体重。在这项研究中,枸杞多糖被鉴定为枸杞皮的生物活性化合物,可通过 c-FOS/ARG2 信号级联改善肥胖相关的红外和炎症。这些发现强调了枸杞多糖的治疗潜力,并为开发治疗2型糖尿病的新型干预策略提供了宝贵的见解。
{"title":"Linarin Identified as a Bioactive Compound of Lycii Cortex Ameliorates Insulin Resistance and Inflammation Through the c-FOS/ARG2 Signaling Axis.","authors":"Wenxuan Liu, Runlin Gui, Yang Li, Man Li, Zhen Lei, Yanyan Jin, Yi Yu, Yujia Li, Lu Qian, Yuyan Xiong","doi":"10.1002/ptr.8370","DOIUrl":"10.1002/ptr.8370","url":null,"abstract":"<p><p>Insulin resistance (IR) is a central pathophysiological process underlying numerous chronic metabolic disorders, including type 2 diabetes and obesity. Lycii Cortex, a widely used traditional Chinese herb, has demonstrated potential benefits in preventing and managing diabetes and IR. Whereas, the specific bioactive compounds responsible for these protective effects and their underlying mechanisms of action remain elusive. This study aimed to identify the bioactive components within Lycii Cortex that contribute to its anti-diabetic effects and to elucidate the molecular mechanisms underlying its beneficial actions on insulin resistance. Network pharmacology and molecular docking analyses were employed to identify the potential active compounds in Lycii Cortex and their corresponding target proteins. An in vitro model of IR was established using palmitic acid (PA)-treated HepG2 cells. Cell viability was assessed using the CCK-8 assay, while glucose uptake was evaluated by 2-NBDG staining and extracellular glucose measurement. To validate the in vitro findings, an in vivo model of obesity-induced IR was established using high-fat diet (HFD)-fed mice. The network pharmacology analysis preliminarily identified 13 candidate chemicals and 10 hub LyC and IR-related genes (LIRRGs). Molecular docking analysis demonstrates that Linarin as the potential active component exhibits the greatest potential to target c-FOS for preventing obesity-induced IR. Enrichment analysis suggested that Linarin-targeted pathways are correlated with inflammation. In vitro experimental validation demonstrated that Linarin was capable of protecting against PA-induced IR in HepG2 cells evidenced by improving glucose uptake ability and reducing extracellular glucose content. Additionally, we found that Linarin ablated PA-induced increase in the expression of c-FOS and inflammatory cytokines. Furthermore, in PA-treated cells, silencing c-FOS markedly improved glucose consumption, and reduced inflammation and Arginase 2 (ARG2) expression. Similarly, as exposure to PA, silencing ARG2 also ameliorated glucose uptake and inflammation, while not affecting c-FOS expression. In vivo experiments further showed that Linarin administration remarkably improved glucose tolerance and insulin sensitivity, and reduced the fat mass and body weight in HFD-induced obese mice. In this study, Linarin has been identified as the bioactive compound of Lycii Cortex to ameliorate obesity-related IR and inflammation through the c-FOS/ARG2 signaling cascade. These findings underscore the therapeutic potential of Linarin and provide valuable insights into developing novel intervention strategies for type 2 diabetes therapy.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"246-263"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-09DOI: 10.1002/ptr.8372
Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu
The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.
{"title":"Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway.","authors":"Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu","doi":"10.1002/ptr.8372","DOIUrl":"10.1002/ptr.8372","url":null,"abstract":"<p><p>The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"282-297"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-21DOI: 10.1002/ptr.8387
Niu Zi-Chang, An Ran, Shi Hui-Hui, Jin Qi, Song Jun-Li, Chang Yan-Xu, Li Yu-Hong, Fu Shu-Fei, Mao Hao-Ping
Acute myocardial infarction (AMI) is a leading cause of mortality among cardiovascular diseases, yet effective therapies for AMI are limited. Previous studies have suggested cardioprotective effects of columbianadin (CBN), but its specific role in AMI and the underlying mechanisms remain unclear. This study aims to investigate whether CBN influences AMI and to elucidate the underlying mechanisms. We conducted a network pharmacology analysis to investigate the relationship between CBN and AMI. The AMI model was established by ligating the left anterior descending (LAD) artery in C57BL/6J mice, which were subsequently administered CBN. Hypoxic H9c2 cells were utilized to evaluate the effects of CBN in vitro. Our study revealed that CBN treatment significantly reduced myocardial infarction in AMI mice. It enhanced mitochondrial function and suppressed autophagy flux in hypoxic H9c2 cells. Furthermore, CBN downregulated the expression of LC3, Beclin1, and Atg 5 genes and proteins. In response to CBN treatment, the phosphorylation levels of PI3K, Akt, and mTOR increased. Notably, RAPA attenuated the protective effect of CBN in enhancing the survival of hypoxic H9c2 cells and abolished its regulation of autophagy-related proteins via the PI3K/Akt/mTOR signaling pathway. In conclusion, CBN reduces myocardial damage by suppressing autophagy via the PI3K/Akt/mTOR signaling pathway in AMI mice and hypoxic H9c2 cells.
急性心肌梗死(AMI)是导致心血管疾病死亡的主要原因,但目前治疗急性心肌梗死的有效疗法却很有限。以往的研究表明,结肠淀粉(CBN)具有保护心脏的作用,但其在急性心肌梗死中的具体作用及其内在机制仍不清楚。本研究旨在探讨 CBN 是否会影响 AMI 并阐明其潜在机制。我们进行了网络药理学分析,以研究 CBN 与 AMI 之间的关系。通过结扎 C57BL/6J 小鼠的左前降支(LAD)动脉建立 AMI 模型,随后给小鼠注射 CBN。利用缺氧的 H9c2 细胞来评估 CBN 在体外的作用。我们的研究表明,CBN 治疗能明显减轻急性心肌梗死小鼠的心肌梗死程度。它增强了缺氧 H9c2 细胞的线粒体功能,抑制了自噬通量。此外,CBN还下调了LC3、Beclin1和Atg 5基因和蛋白的表达。CBN 处理后,PI3K、Akt 和 mTOR 的磷酸化水平升高。值得注意的是,RAPA削弱了CBN在提高缺氧H9c2细胞存活率方面的保护作用,并取消了其通过PI3K/Akt/mTOR信号通路对自噬相关蛋白的调节。总之,CBN可通过PI3K/Akt/mTOR信号通路抑制AMI小鼠和缺氧H9c2细胞的自噬,从而减轻心肌损伤。
{"title":"Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells.","authors":"Niu Zi-Chang, An Ran, Shi Hui-Hui, Jin Qi, Song Jun-Li, Chang Yan-Xu, Li Yu-Hong, Fu Shu-Fei, Mao Hao-Ping","doi":"10.1002/ptr.8387","DOIUrl":"10.1002/ptr.8387","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is a leading cause of mortality among cardiovascular diseases, yet effective therapies for AMI are limited. Previous studies have suggested cardioprotective effects of columbianadin (CBN), but its specific role in AMI and the underlying mechanisms remain unclear. This study aims to investigate whether CBN influences AMI and to elucidate the underlying mechanisms. We conducted a network pharmacology analysis to investigate the relationship between CBN and AMI. The AMI model was established by ligating the left anterior descending (LAD) artery in C57BL/6J mice, which were subsequently administered CBN. Hypoxic H9c2 cells were utilized to evaluate the effects of CBN in vitro. Our study revealed that CBN treatment significantly reduced myocardial infarction in AMI mice. It enhanced mitochondrial function and suppressed autophagy flux in hypoxic H9c2 cells. Furthermore, CBN downregulated the expression of LC3, Beclin1, and Atg 5 genes and proteins. In response to CBN treatment, the phosphorylation levels of PI3K, Akt, and mTOR increased. Notably, RAPA attenuated the protective effect of CBN in enhancing the survival of hypoxic H9c2 cells and abolished its regulation of autophagy-related proteins via the PI3K/Akt/mTOR signaling pathway. In conclusion, CBN reduces myocardial damage by suppressing autophagy via the PI3K/Akt/mTOR signaling pathway in AMI mice and hypoxic H9c2 cells.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"521-535"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-07DOI: 10.1002/ptr.8369
Rosa Maria Vitale, Andrea Maria Morace, Antonio D'Errico, Federica Ricciardi, Antimo Fusco, Serena Boccella, Francesca Guida, Rosarita Nasso, Sebastian Rading, Meliha Karsak, Diego Caprioglio, Fabio Arturo Iannotti, Rosaria Arcone, Livio Luongo, Mariorosario Masullo, Sabatino Maione, Pietro Amodeo
Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model. The β-arrestin assay on GPR109A and qPCR on TRPM7 were also carried out. CBDA and CBGA are effective on both acetyl- and butyryl-cholinesterases (AChE/BuChE), as well as on β-secretase-1 (BACE-1) enzymes in a low micromolar range, and they also prevent aggregation of β-amyloid fibrils. Computational studies provided a rationale for the competitive (AChE) vs. noncompetitive (BuChE) inhibitory profile of the two ligands. The repeated treatment with CBDA and CBGA (10 mg/kg, i.p.) improved the cognitive deficit induced by the β-amyloid peptide. A recovery of the long-term potentiation in the hippocampus was observed, where the treatment with CBGA and CBDA also restored the physiological expression level of TRPM7, a receptor channel involved in neurodegenerative diseases. We also showed that these compounds do not stimulate GPR109A in β-arrestin assay. Collectively, these data broaden the pharmacological profile of CBDA and CBGA and suggest their potential use as novel anti-AD MTDLs.
{"title":"Identification of Cannabidiolic and Cannabigerolic Acids as MTDL AChE, BuChE, and BACE-1 Inhibitors Against Alzheimer's Disease by In Silico, In Vitro, and In Vivo Studies.","authors":"Rosa Maria Vitale, Andrea Maria Morace, Antonio D'Errico, Federica Ricciardi, Antimo Fusco, Serena Boccella, Francesca Guida, Rosarita Nasso, Sebastian Rading, Meliha Karsak, Diego Caprioglio, Fabio Arturo Iannotti, Rosaria Arcone, Livio Luongo, Mariorosario Masullo, Sabatino Maione, Pietro Amodeo","doi":"10.1002/ptr.8369","DOIUrl":"10.1002/ptr.8369","url":null,"abstract":"<p><p>Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model. The β-arrestin assay on GPR109A and qPCR on TRPM7 were also carried out. CBDA and CBGA are effective on both acetyl- and butyryl-cholinesterases (AChE/BuChE), as well as on β-secretase-1 (BACE-1) enzymes in a low micromolar range, and they also prevent aggregation of β-amyloid fibrils. Computational studies provided a rationale for the competitive (AChE) vs. noncompetitive (BuChE) inhibitory profile of the two ligands. The repeated treatment with CBDA and CBGA (10 mg/kg, i.p.) improved the cognitive deficit induced by the β-amyloid peptide. A recovery of the long-term potentiation in the hippocampus was observed, where the treatment with CBGA and CBDA also restored the physiological expression level of TRPM7, a receptor channel involved in neurodegenerative diseases. We also showed that these compounds do not stimulate GPR109A in β-arrestin assay. Collectively, these data broaden the pharmacological profile of CBDA and CBGA and suggest their potential use as novel anti-AD MTDLs.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"233-245"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A confluence of genetic, environmental, and epigenetic factors shapes autism spectrum disorder (ASD). Early-life stressors like MS play a contributing role in this multifaceted neurodevelopmental disorder. This research was to explore the efficacy of Ocimum basilicum L. (O.B.) extract in mitigating behaviors reminiscent of autism prompted by maternal separation (MS) stress in male mice, focusing on its impact on neuroinflammation and oxidative stress. MS mice were treated with O.B. extract at varying dosages (20, 40, and 60 mg/kg) from postnatal days (PND) 51-53 to PND 58-60. Behavioral experiments, including the Morris water maze, three-chamber test, shuttle box, and resident-intruder test, were conducted post-treatment. The method of maternal separation involved separating the pups from their mothers for 3 h daily, from PND 2 to PND 14. Molecular analysis of hippocampal tissue was performed to assess gene expression of Toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Hippocampal and serum malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were measured. O.B. extract administration resulted in the amelioration of autistic-like behaviors in MS mice, as evidenced by improved spatial and passive avoidance memories and social interactions, as well as reduced aggression in behavioral tests. O.B. extract attenuated oxidative stress and neuroinflammation, as indicated by decreased MDA and increased TAC levels, as well as downregulation of TLR4, TNF-α, and IL-1β expression in the hippocampus. O.B. extract may offer a novel therapeutic avenue for ASD, potentially mediated through its anti-inflammatory and antioxidant properties.
{"title":"Therapeutic Potential of Ocimum basilicum L. Extract in Alleviating Autistic-Like Behaviors Induced by Maternal Separation Stress in Mice: Role of Neuroinflammation and Oxidative Stress.","authors":"Hossein Amini-Khoei, Nafiseh Taei, Hossein Tahmasebi Dehkordi, Zahra Lorigooini, Elham Bijad, Anahita Farahzad, Mohammad Rahimi Madiseh","doi":"10.1002/ptr.8360","DOIUrl":"10.1002/ptr.8360","url":null,"abstract":"<p><p>A confluence of genetic, environmental, and epigenetic factors shapes autism spectrum disorder (ASD). Early-life stressors like MS play a contributing role in this multifaceted neurodevelopmental disorder. This research was to explore the efficacy of Ocimum basilicum L. (O.B.) extract in mitigating behaviors reminiscent of autism prompted by maternal separation (MS) stress in male mice, focusing on its impact on neuroinflammation and oxidative stress. MS mice were treated with O.B. extract at varying dosages (20, 40, and 60 mg/kg) from postnatal days (PND) 51-53 to PND 58-60. Behavioral experiments, including the Morris water maze, three-chamber test, shuttle box, and resident-intruder test, were conducted post-treatment. The method of maternal separation involved separating the pups from their mothers for 3 h daily, from PND 2 to PND 14. Molecular analysis of hippocampal tissue was performed to assess gene expression of Toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Hippocampal and serum malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were measured. O.B. extract administration resulted in the amelioration of autistic-like behaviors in MS mice, as evidenced by improved spatial and passive avoidance memories and social interactions, as well as reduced aggression in behavioral tests. O.B. extract attenuated oxidative stress and neuroinflammation, as indicated by decreased MDA and increased TAC levels, as well as downregulation of TLR4, TNF-α, and IL-1β expression in the hippocampus. O.B. extract may offer a novel therapeutic avenue for ASD, potentially mediated through its anti-inflammatory and antioxidant properties.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"64-76"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
{"title":"Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis.","authors":"Kuanhui Gao, Longlong Lv, Zhichao Li, Chenmoji Wang, Jiahao Zhang, Daodi Qiu, Haipeng Xue, Zhanwang Xu, Guoqing Tan","doi":"10.1002/ptr.8366","DOIUrl":"10.1002/ptr.8366","url":null,"abstract":"<p><p>Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"162-188"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}