首页 > 最新文献

Photosynthesis Research最新文献

英文 中文
EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP+ reduction. 与光系统 I 驱动的 NADP+ 还原有关的菠菜和蓝藻叶绿体中铁氧还蛋白的 EPR 研究。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2024-03-05 DOI: 10.1007/s11120-023-01072-4
Lisa M Utschig, Colin L Duckworth, Jens Niklas, Oleg G Poluektov

Photosynthetic light-dependent reactions occur in thylakoid membranes where embedded proteins capture light energy and convert it to chemical energy in the form of ATP and NADPH for use in carbon fixation. One of these integral membrane proteins is Photosystem I (PSI). PSI catalyzes light-driven transmembrane electron transfer from plastocyanin (Pc) to oxidized ferredoxin (Fd). Electrons from reduced Fd are used by the enzyme ferredoxin-NADP+ reductase (FNR) for the reduction of NADP+ to NADPH. Fd and Pc are both small soluble proteins whereas the larger FNR enzyme is associated with the membrane. To investigate electron shuttling between these diffusible and embedded proteins, thylakoid photoreduction of NADP+ was studied. As isolated, both spinach and cyanobacterial thylakoids generate NADPH upon illumination without extraneous addition of Fd. These findings indicate that isolated thylakoids either (i) retain a "pool" of Fd which diffuses between PSI and membrane bound FNR or (ii) that a fraction of PSI is associated with Fd, with the membrane environment facilitating PSI-Fd-FNR interactions which enable multiple turnovers of the complex with a single Fd. To explore the functional association of Fd with PSI in thylakoids, electron paramagnetic resonance (EPR) spectroscopic methodologies were developed to distinguish the signals for the reduced Fe-S clusters of PSI and Fd. Temperature-dependent EPR studies show that the EPR signals of the terminal [4Fe-4S] cluster of PSI can be distinguished from the [2Fe-2S] cluster of Fd at > 30 K. At 50 K, the cw X-band EPR spectra of cyanobacterial and spinach thylakoids reduced with dithionite exhibit EPR signals of a [2Fe-2S] cluster with g-values gx = 2.05, gy = 1.96, and gz = 1.89, confirming that Fd is present in thylakoid preparations capable of NADP+ photoreduction. Quantitation of the EPR signals of P700+ and dithionite reduced Fd reveal that Fd is present at a ratio of ~ 1 Fd per PSI monomer in both spinach and cyanobacterial thylakoids. Light-driven electron transfer from PSI to Fd in thylakoids confirms Fd is functionally associated (< 0.4 Fd/PSI) with the acceptor end of PSI in isolated cyanobacterial thylakoids. These EPR experiments provide a benchmark for future spectroscopic characterization of Fd interactions involved in multistep relay of electrons following PSI charge separation in the context of photosynthetic thylakoid microenvironments.

光合作用依赖光的反应发生在类囊体膜中,其中的嵌入式蛋白质捕捉光能,并将其转化为 ATP 和 NADPH 形式的化学能,用于碳固定。光系统 I(PSI)就是这些整体膜蛋白之一。PSI 催化光驱动的跨膜电子转移,从质体花青素(Pc)转移到氧化的铁氧还原蛋白(Fd)。还原 Fd 的电子被铁毒素-NADP+还原酶(FNR)用于将 NADP+ 还原成 NADPH。Fd 和 Pc 都是小型可溶性蛋白,而较大的 FNR 酶则与膜有关。为了研究这些扩散蛋白和嵌入蛋白之间的电子穿梭,我们对 NADP+ 的类囊体光反应进行了研究。经分离,菠菜和蓝藻的硫球都能在光照下产生 NADPH,而无需额外添加 Fd。这些研究结果表明,离体的硫球要么(i)保留了在 PSI 和膜结合 FNR 之间扩散的 Fd "池",要么(ii)一部分 PSI 与 Fd 相关联,膜环境促进了 PSI-Fd-FNR 的相互作用,从而使单个 Fd 的复合物能够多次翻转。为了探索 Fd 与硫球中 PSI 的功能关联,我们开发了电子顺磁共振(EPR)光谱方法,以区分 PSI 和 Fd 的还原 Fe-S 簇的信号。与温度相关的 EPR 研究表明,在 > 30 K 时,PSI 的末端 [4Fe-4S] 簇的 EPR 信号可与 Fd 的 [2Fe-2S] 簇区分开来。在 50 K 时,用连二亚硫酸盐还原的蓝藻和菠菜硫球的 cw X 波段 EPR 光谱显示出[2Fe-2S]簇的 EPR 信号,其 g 值为 gx = 2.05、gy = 1.96 和 gz = 1.89,证实 Fd 存在于能够进行 NADP+ 光还原的硫球制备物中。对 P700+ 和亚硫酸氢盐还原 Fd 的 EPR 信号的定量分析显示,在菠菜和蓝藻的硫球中,Fd 的存在比例为每个 PSI 单体约 1 个 Fd。光驱动的电子传递从PSI到Fd,证实了Fd在功能上与菠菜和蓝藻的叶绿体中的PSI单体(P700+和二亚硫酸盐还原的Fd)有关。
{"title":"EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP<sup>+</sup> reduction.","authors":"Lisa M Utschig, Colin L Duckworth, Jens Niklas, Oleg G Poluektov","doi":"10.1007/s11120-023-01072-4","DOIUrl":"10.1007/s11120-023-01072-4","url":null,"abstract":"<p><p>Photosynthetic light-dependent reactions occur in thylakoid membranes where embedded proteins capture light energy and convert it to chemical energy in the form of ATP and NADPH for use in carbon fixation. One of these integral membrane proteins is Photosystem I (PSI). PSI catalyzes light-driven transmembrane electron transfer from plastocyanin (Pc) to oxidized ferredoxin (Fd). Electrons from reduced Fd are used by the enzyme ferredoxin-NADP<sup>+</sup> reductase (FNR) for the reduction of NADP<sup>+</sup> to NADPH. Fd and Pc are both small soluble proteins whereas the larger FNR enzyme is associated with the membrane. To investigate electron shuttling between these diffusible and embedded proteins, thylakoid photoreduction of NADP<sup>+</sup> was studied. As isolated, both spinach and cyanobacterial thylakoids generate NADPH upon illumination without extraneous addition of Fd. These findings indicate that isolated thylakoids either (i) retain a \"pool\" of Fd which diffuses between PSI and membrane bound FNR or (ii) that a fraction of PSI is associated with Fd, with the membrane environment facilitating PSI-Fd-FNR interactions which enable multiple turnovers of the complex with a single Fd. To explore the functional association of Fd with PSI in thylakoids, electron paramagnetic resonance (EPR) spectroscopic methodologies were developed to distinguish the signals for the reduced Fe-S clusters of PSI and Fd. Temperature-dependent EPR studies show that the EPR signals of the terminal [4Fe-4S] cluster of PSI can be distinguished from the [2Fe-2S] cluster of Fd at > 30 K. At 50 K, the cw X-band EPR spectra of cyanobacterial and spinach thylakoids reduced with dithionite exhibit EPR signals of a [2Fe-2S] cluster with g-values g<sub>x</sub> = 2.05, g<sub>y</sub> = 1.96, and g<sub>z</sub> = 1.89, confirming that Fd is present in thylakoid preparations capable of NADP<sup>+</sup> photoreduction. Quantitation of the EPR signals of P<sub>700</sub><sup>+</sup> and dithionite reduced Fd reveal that Fd is present at a ratio of ~ 1 Fd per PSI monomer in both spinach and cyanobacterial thylakoids. Light-driven electron transfer from PSI to Fd in thylakoids confirms Fd is functionally associated (< 0.4 Fd/PSI) with the acceptor end of PSI in isolated cyanobacterial thylakoids. These EPR experiments provide a benchmark for future spectroscopic characterization of Fd interactions involved in multistep relay of electrons following PSI charge separation in the context of photosynthetic thylakoid microenvironments.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"239-250"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absorption changes in Photosystem II in the Soret band region upon the formation of the chlorophyll cation radical [PD1PD2]. 叶绿素阳离子自由基[PD1PD2]形成后,Soret带区域光系统II的吸收变化。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2023-09-26 DOI: 10.1007/s11120-023-01049-3
Alain Boussac, Miwa Sugiura, Makoto Nakamura, Ryo Nagao, Takumi Noguchi, Stefania Viola, A William Rutherford, Julien Sellés

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

在pH 8.6下,在贫Mn的PSII核中测量了由[PD1PD2]+状态引起的Soret区域的闪光诱导的吸收变化,[PD1PD2]+状态是在光系统II(PSII)的光激发下形成的叶绿素阳离子自由基。在这些条件下,TyrD i)在第一次闪蒸之前被还原,以及ii)在随后的闪蒸之前被氧化。在野生型PSII中,当TyrD● 当与TyrD未被氧化时的第一次闪光相比时,在[PD1PD2]+-负-PD1PD2]差谱中观察到额外的信号。附加特征是“W形”,在434纳米和446纳米处具有波谷。该特征在TyrD被还原时不存在,但在(i)TyrD物理上不存在(并被苯丙氨酸取代)或(ii)其氢键组氨酸(D2-His189)物理上不出现(被亮氨酸取代)时存在。因此,在434nm和446nm处没有双波谷特征的简单差分光谱似乎需要存在还原的TyrD及其H键合伙伴周围的天然结构环境。我们没有发现PD1、ChlD1、PheD1、PheD2、TyrZ和Cytb559血红素参与W形差异光谱的证据。然而,使用PD2轴向His配体的突变体D2-His197Ala表明,PD2环境似乎参与了“W形”信号的形成。
{"title":"Absorption changes in Photosystem II in the Soret band region upon the formation of the chlorophyll cation radical [P<sub>D1</sub>P<sub>D2</sub>]<sup />.","authors":"Alain Boussac, Miwa Sugiura, Makoto Nakamura, Ryo Nagao, Takumi Noguchi, Stefania Viola, A William Rutherford, Julien Sellés","doi":"10.1007/s11120-023-01049-3","DOIUrl":"10.1007/s11120-023-01049-3","url":null,"abstract":"<p><p>Flash-induced absorption changes in the Soret region arising from the [P<sub>D1</sub>P<sub>D2</sub>]<sup>+</sup> state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, Tyr<sub>D</sub> is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when Tyr<sub>D</sub><sup>●</sup> is present, an additional signal in the [P<sub>D1</sub>P<sub>D2</sub>]<sup>+</sup>-minus-[P<sub>D1</sub>P<sub>D2</sub>] difference spectrum was observed when compared to the first flash when Tyr<sub>D</sub> is not oxidized. The additional feature was \"W-shaped\" with troughs at 434 nm and 446 nm. This feature was absent when Tyr<sub>D</sub> was reduced, but was present (i) when Tyr<sub>D</sub> was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced Tyr<sub>D</sub> and its H bonding partners to be present. We found no evidence of involvement of P<sub>D1</sub>, Chl<sub>D1</sub>, Phe<sub>D1</sub>, Phe<sub>D2</sub>, Tyr<sub>Z</sub>, and the Cytb<sub>559</sub> heme in the W-shaped difference spectrum. However, the use of a mutant of the P<sub>D2</sub> axial His ligand, the D2-His197Ala, shows that the P<sub>D2</sub> environment seems involved in the formation of \"W-shaped\" signal.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"211-223"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the interdependence of calcium and chloride activation of O2 evolution in photosystem II. 探索钙和氯激活光合系统 II 中 O2 演化的相互依存关系。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2024-05-03 DOI: 10.1007/s11120-024-01094-6
Alice Haddy, Shilpa Beravolu, Jeremiah Johnston, Hannah Kern, Monica McDaniel, Brandon Ore, Rachel Reed, Henry Tai

Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn4CaO5 cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, KM, for each ion is less than the dissociation constant, KS, and that the affinity of PSII for Ca2+ is about ten-fold greater than for Cl-, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl- and lower affinity for Ca2+. Observation of the slow-decaying Tyr Z radical, YZ•, at 77 K and the coupled S2YZ• radical at 10 K, which are both associated with Ca2+ depletion, shows that Cl- is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S3 state preceding Ca2+ loss and possibly for stabilization of YZ• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl- at the Cl-1 site and the Ca2+/Tyr Z region.

钙和氯是高等植物、藻类和蓝藻的光吸收水氧化酶--光系统 II(PSII)中氧进化的激活剂。钙是进行水氧化的催化 Mn4CaO5 簇的重要组成部分,氯在附近有两个结合位点,其中一个与主要的水通道有关。利用双底物酶动力学方法,研究了缺乏外在 PsbP 和 PsbQ 亚基的高等植物 PSII 中这两种离子共同激活氧进化的情况。对 pH 值为 6.3 的三种不同制备物的分析表明,每种离子的迈克尔斯常数(KM)都小于解离常数(KS),PSII 对 Ca2+ 的亲和力是对 Cl- 的亲和力的十倍,这与之前的研究一致。结果与顺序结合模型一致,即任一离子都能首先结合,并且每种离子都能促进第二种离子的激活。在 pH 值为 5.5 时,也发现了类似的结果,只是对 Cl- 的亲和力较高,而对 Ca2+ 的亲和力较低。对 77 K 时缓慢衰减的 Tyr Z 自由基 YZ- 和 10 K 时耦合的 S2YZ- 自由基的观察表明,Cl- 是观察它们的必要条件。考虑到电子和质子转移事件的顺序,这表明在 Ca2+ 丢失之前达到 S3 状态需要氯化物,在 YZ- 形成之后稳定 YZ- 也可能需要氯化物。在 Cl-1 位点的 Cl- 与 Ca2+/Tyr Z 区域之间的水环境背景下,考虑了通过氢键的相互依赖性。
{"title":"Exploring the interdependence of calcium and chloride activation of O<sub>2</sub> evolution in photosystem II.","authors":"Alice Haddy, Shilpa Beravolu, Jeremiah Johnston, Hannah Kern, Monica McDaniel, Brandon Ore, Rachel Reed, Henry Tai","doi":"10.1007/s11120-024-01094-6","DOIUrl":"10.1007/s11120-024-01094-6","url":null,"abstract":"<p><p>Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn<sub>4</sub>CaO<sub>5</sub> cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, K<sub>M</sub>, for each ion is less than the dissociation constant, K<sub>S</sub>, and that the affinity of PSII for Ca<sup>2+</sup> is about ten-fold greater than for Cl<sup>-</sup>, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl<sup>-</sup> and lower affinity for Ca<sup>2+</sup>. Observation of the slow-decaying Tyr Z radical, Y<sub>Z</sub>•, at 77 K and the coupled S<sub>2</sub>Y<sub>Z</sub>• radical at 10 K, which are both associated with Ca<sup>2+</sup> depletion, shows that Cl<sup>-</sup> is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S<sub>3</sub> state preceding Ca<sup>2+</sup> loss and possibly for stabilization of Y<sub>Z</sub>• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl<sup>-</sup> at the Cl-1 site and the Ca<sup>2+</sup>/Tyr Z region.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"385-400"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615033/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the simulation and interpretation of substrate-water exchange experiments in photosynthetic water oxidation. 关于光合作用水氧化过程中基质-水交换实验的模拟和解释。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2024-03-21 DOI: 10.1007/s11120-024-01084-8
Petko Chernev, A Orkun Aydin, Johannes Messinger

Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (Si states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (Mn4CaO5) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with H218O provide insight into the substrate binding modes and sites via determination of exchange rates. Such experiments have revealed that the two substrate waters exchange with different rates that vary independently with the Si state and are hence referred to as the fast (Wf) and the slow (WS) substrate waters. New insight for the molecular interpretation of these rates arises from our recent finding that in the S2 state, under special experimental conditions, two different rates of WS exchange are observed that appear to correlate with the high spin and low spin conformations of the Mn4CaO5 cluster. Here, we reexamine and unite various proposed methods for extracting and assigning rate constants from this recent data set. The analysis results in a molecular model for substrate-water binding and exchange that reconciles the expected non-exchangeability of the central oxo bridge O5 when located between two Mn(IV) ions with the experimental and theoretical assignment of O5 as WS in all S states. The analysis also excludes other published proposals for explaining the water exchange kinetics.

光系统 II(PSII)的水氧化作用维持着地球上的大部分生命,但这一独特过程的分子机制仍存在争议。目前正在对分裂水的四锰五氧钙(Mn4CaO5)簇在反应循环过程中达到的各种中间态(Si 态,i = 0、1、2、3、4)中两个源于水的底物氧原子("底物水")的结合位点和模式进行鉴定,这为解决生物水氧化的独特化学过程提供了核心信息。在 PSII 与 H218O 进行不同时间的孵育后,对单标和双标二氧物种进行质谱测量,通过确定交换率来了解底物的结合模式和位点。这些实验表明,两种底物水的交换速率不同,且随 Si 状态的变化而变化,因此被称为快(Wf)和慢(WS)底物水。我们最近发现,在 S2 状态下,在特殊的实验条件下,可以观察到两种不同的 WS 交换速率,这似乎与 Mn4CaO5 团簇的高自旋和低自旋构象相关,从而为这些速率的分子解释提供了新的见解。在此,我们重新研究并统一了从这组最新数据中提取和分配速率常数的各种建议方法。分析得出了底物与水结合和交换的分子模型,该模型调和了位于两个 Mn(IV)离子之间的中心氧化桥 O5 的预期不可交换性与所有 S 态中 O5 作为 WS 的实验和理论分配。分析还排除了其他已发表的解释水交换动力学的建议。
{"title":"On the simulation and interpretation of substrate-water exchange experiments in photosynthetic water oxidation.","authors":"Petko Chernev, A Orkun Aydin, Johannes Messinger","doi":"10.1007/s11120-024-01084-8","DOIUrl":"10.1007/s11120-024-01084-8","url":null,"abstract":"<p><p>Water oxidation by photosystem II (PSII) sustains most life on Earth, but the molecular mechanism of this unique process remains controversial. The ongoing identification of the binding sites and modes of the two water-derived substrate oxygens ('substrate waters') in the various intermediates (S<sub>i</sub> states, i = 0, 1, 2, 3, 4) that the water-splitting tetra-manganese calcium penta-oxygen (Mn<sub>4</sub>CaO<sub>5</sub>) cluster attains during the reaction cycle provides central information towards resolving the unique chemistry of biological water oxidation. Mass spectrometric measurements of single- and double-labeled dioxygen species after various incubation times of PSII with H<sub>2</sub><sup>18</sup>O provide insight into the substrate binding modes and sites via determination of exchange rates. Such experiments have revealed that the two substrate waters exchange with different rates that vary independently with the S<sub>i</sub> state and are hence referred to as the fast (W<sub>f</sub>) and the slow (W<sub>S</sub>) substrate waters. New insight for the molecular interpretation of these rates arises from our recent finding that in the S<sub>2</sub> state, under special experimental conditions, two different rates of W<sub>S</sub> exchange are observed that appear to correlate with the high spin and low spin conformations of the Mn<sub>4</sub>CaO<sub>5</sub> cluster. Here, we reexamine and unite various proposed methods for extracting and assigning rate constants from this recent data set. The analysis results in a molecular model for substrate-water binding and exchange that reconciles the expected non-exchangeability of the central oxo bridge O5 when located between two Mn(IV) ions with the experimental and theoretical assignment of O5 as W<sub>S</sub> in all S states. The analysis also excludes other published proposals for explaining the water exchange kinetics.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"413-426"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial for the Special Issue 'Energy Conversion Reactions in Natural and Artificial Photosynthesis': A Tribute to Ken Sauer. 为 "天然和人工光合作用中的能量转换反应 "特刊撰写的社论:向 Ken Sauer 致敬
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 DOI: 10.1007/s11120-024-01121-6
Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra
{"title":"Editorial for the Special Issue 'Energy Conversion Reactions in Natural and Artificial Photosynthesis': A Tribute to Ken Sauer.","authors":"Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra","doi":"10.1007/s11120-024-01121-6","DOIUrl":"10.1007/s11120-024-01121-6","url":null,"abstract":"","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"101-102"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribute to Kenneth Sauer (1931-2022): a mentor, a role-model, and an inspiration to all in the field of photosynthesis. 向肯尼思-绍尔(1931-2022 年)致敬:他是光合作用领域的导师、榜样和激励者。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2024-11-13 DOI: 10.1007/s11120-024-01119-0
Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra

Kenneth (Ken) Sauer was a mainstay of research in photosynthesis at the University of California, Berkeley and the Lawrence Berkeley National Laboratory (LBNL) for more than 50 years. Ken will be remembered by his colleagues, and other workers in the field of photosynthesis as well, for his pioneering work that introduced the physical techniques whose application have enriched our understanding of the basic reactions of oxygenic photosynthesis. His laboratory was a training ground for many students and postdocs who went on to success in the field of photosynthesis and many others. Trained as a physical chemist, he always brought that quantitative approach to research questions and used several spectroscopic methods in his research. His broad scientific interests concerned the role of manganese in oxygen evolution, electronic properties of chlorophylls, energy transport in antenna complexes, and electron transport reactions. He was also an enthusiastic teacher, an enormously successful mentor who leaves behind a legion of scientists as his abiding legacy, a lover of music and the outdoors with many interests beyond science, and a dedicated family man with a great sense of humility. In this tribute, we summarize some aspects of Ken Sauer's life and career, illustrated with selected research achievements, and describe his approach to research and life as we perceived it, which is complemented by reminiscences of several current researchers in photosynthesis and other fields. The supporting material includes Ken Sauers's CV and publication list, as well as a list of the graduate students and postdocs he trained and of researchers that spent a sabbatical in his lab.

50 多年来,肯尼斯-绍尔(Kenneth (Ken) Sauer)一直是加州大学伯克利分校和劳伦斯伯克利国家实验室(LBNL)光合作用研究领域的中流砥柱。他的同事以及光合作用领域的其他研究人员都会记住 Ken,因为他的开创性工作引入了物理技术,这些技术的应用丰富了我们对含氧光合作用基本反应的理解。他的实验室是许多学生和博士后的培训基地,这些学生和博士后后来在光合作用领域和其他许多领域取得了成功。作为一名物理化学家,他总是用定量的方法来解决研究问题,并在研究中使用多种光谱方法。他广泛的科学兴趣涉及锰在氧进化中的作用、叶绿素的电子特性、天线复合物中的能量传输以及电子传输反应。他还是一位热情洋溢的教师,一位非常成功的导师,留下了一大批科学家作为他的宝贵遗产;他热爱音乐和户外活动,有着许多科学以外的兴趣;他还是一位尽职尽责、谦逊有礼的家庭主妇。在这篇悼文中,我们总结了肯-绍尔生平和职业生涯的一些方面,并以部分研究成果为例作了说明,还描述了我们所了解的他的研究和生活态度,并辅以几位现任光合作用和其他领域研究人员的回忆。辅助材料包括肯-绍尔斯的简历和出版物清单,以及他培养的研究生和博士后名单,以及在他的实验室度过休假期的研究人员名单。
{"title":"Tribute to Kenneth Sauer (1931-2022): a mentor, a role-model, and an inspiration to all in the field of photosynthesis.","authors":"Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra","doi":"10.1007/s11120-024-01119-0","DOIUrl":"10.1007/s11120-024-01119-0","url":null,"abstract":"<p><p>Kenneth (Ken) Sauer was a mainstay of research in photosynthesis at the University of California, Berkeley and the Lawrence Berkeley National Laboratory (LBNL) for more than 50 years. Ken will be remembered by his colleagues, and other workers in the field of photosynthesis as well, for his pioneering work that introduced the physical techniques whose application have enriched our understanding of the basic reactions of oxygenic photosynthesis. His laboratory was a training ground for many students and postdocs who went on to success in the field of photosynthesis and many others. Trained as a physical chemist, he always brought that quantitative approach to research questions and used several spectroscopic methods in his research. His broad scientific interests concerned the role of manganese in oxygen evolution, electronic properties of chlorophylls, energy transport in antenna complexes, and electron transport reactions. He was also an enthusiastic teacher, an enormously successful mentor who leaves behind a legion of scientists as his abiding legacy, a lover of music and the outdoors with many interests beyond science, and a dedicated family man with a great sense of humility. In this tribute, we summarize some aspects of Ken Sauer's life and career, illustrated with selected research achievements, and describe his approach to research and life as we perceived it, which is complemented by reminiscences of several current researchers in photosynthesis and other fields. The supporting material includes Ken Sauers's CV and publication list, as well as a list of the graduate students and postdocs he trained and of researchers that spent a sabbatical in his lab.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"103-138"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn-porphyrins in a four-helix bundle participate in photo-induced electron transfer with a bacterial reaction center. 四螺旋束中的Mn卟啉参与与细菌反应中心的光诱导电子转移。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2023-11-01 DOI: 10.1007/s11120-023-01051-9
J C Williams, M S Faillace, E J Gonzalez, R E Dominguez, K Knappenberger, D A Heredia, T A Moore, A L Moore, J P Allen

Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.

将合成的锰卟啉结合到细菌反应中心的人工四螺旋束结构域中的杂化复合物创造了一个研究新电子转移途径的系统。反应是由细菌反应中心的光照引发的,其主要光化学涉及从细菌叶绿素二聚体通过一系列电子受体到醌电子受体的电子转移。合成了含有Mn或Zn的具有二苯基、二甲基或氟化取代基的卟啉。电化学测量揭示了Mn(III)/Mn(II)跃迁的电势 ~ 氟化的Mn卟啉比二苯基和二甲基Mn卟啉高0.4V。合成卟啉通过与四螺旋束结构域结合而被引入蛋白质中,该结构域与反应中心基因融合。反应中心的细菌叶绿素二聚体的光激发在光减去暗光谱的400至450nm区域中产生新的衍生物信号,其与氟化Mn(II)卟啉的氧化和二苯基和二甲基Mn(III)卟啉的还原一致。这些特征在黑暗中恢复,并且在Zn(II)卟啉中没有观察到。信号的幅度取决于细菌叶绿素二聚体的氧化/还原中点电位。这些结果被解释为光诱导的电荷分离过程导致Mn卟啉的氧化还原变化,证明了混合人工反应中心系统在建立新型电子转移反应设计指南方面的实用性。
{"title":"Mn-porphyrins in a four-helix bundle participate in photo-induced electron transfer with a bacterial reaction center.","authors":"J C Williams, M S Faillace, E J Gonzalez, R E Dominguez, K Knappenberger, D A Heredia, T A Moore, A L Moore, J P Allen","doi":"10.1007/s11120-023-01051-9","DOIUrl":"10.1007/s11120-023-01051-9","url":null,"abstract":"<p><p>Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences. 别藻蓝蛋白变体的结构比较揭示了它们光谱差异的分子基础。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2023-09-29 DOI: 10.1007/s11120-023-01048-4
Christopher J Gisriel, Eduard Elias, Gaozhong Shen, Nathan T Soulier, Gary W Brudvig, Roberta Croce, Donald A Bryant

Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.

异藻蓝蛋白是一种藻胆蛋白,它吸收红光并将能量转移到蓝藻和红藻的含氧光合作用反应中心。最近,研究表明,一些别藻蓝蛋白吸收远红光,并且这些别藻蓝素的一个子集,包括来自ApcD4和ApcB3亚家族(FRL-AP)的亚基,形成螺旋纳米管。寡聚ApcD4-ApcB3复合物的最低能量吸收最大值出现在709nm处,这不同于在 ~ 650nm和 ~ 分别为670nm。AP变体不同光谱的分子基础目前尚不清楚。为了解决这一问题,我们在结构上将FRL-AP与AP和AP-B进行了比较,对FRL-AP进行了光谱分析,并利用了计算方法。我们发现,在AP变体中,α-亚基在不同程度上限制了其藻蓝素发色团的吡咯环A,并且环A与环B和C的共面性为发色团吸收最大值设定了基线。低聚后,所有AP变体的α-发色团表现出最大吸光度的红移 ~ 25至30nm并且带变窄。我们排除了FRL-AP中的激子耦合作为这种红移的基础,并将结果扩展到讨论AP和AP-B。相反,我们将这些光谱变化归因于吡咯环D的构象变化,在低聚时,吡咯环D与环B和C变得更加共面。这项研究扩展了对藻胆蛋白光捕获特性的分子理解,并将有助于设计用于生物技术应用的藻胆蛋白。
{"title":"Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences.","authors":"Christopher J Gisriel, Eduard Elias, Gaozhong Shen, Nathan T Soulier, Gary W Brudvig, Roberta Croce, Donald A Bryant","doi":"10.1007/s11120-023-01048-4","DOIUrl":"10.1007/s11120-023-01048-4","url":null,"abstract":"<p><p>Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"157-170"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41145540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the first electron transfer step at the donor side of oxygen-evolving photosystem II by time-resolved infrared spectroscopy. 用时间分辨红外光谱法追踪出氧光系统II供体侧的第一个电子转移步骤。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-12-01 Epub Date: 2023-11-23 DOI: 10.1007/s11120-023-01057-3
Mohamad Yahia Dekmak, Sarah M Mäusle, Janosch Brandhorst, Philipp S Simon, Holger Dau

In oxygen-evolving photosystem II (PSII), the multi-phasic electron transfer from a redox-active tyrosine residue (TyrZ) to a chlorophyll cation radical (P680+) precedes the water-oxidation chemistry of the S-state cycle of the Mn4Ca cluster. Here we investigate these early events, observable within about 10 ns to 10 ms after laser-flash excitation, by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of 1310-1890 cm-1 for oxygen-evolving PSII membrane particles from spinach. Comparing the IR difference spectra at 80 ns, 500 ns, and 10 µs allowed for the identification of quinone, P680 and TyrZ contributions. A broad electronic absorption band assignable P680+ was used to trace largely specifically the P680+ reduction kinetics. The experimental time resolution was taken into account in least-square fits of P680+ transients with a sum of four exponentials, revealing two nanosecond phases (30-46 ns and 690-1110 ns) and two microsecond phases (4.5-8.3 µs and 42 µs), which mostly exhibit a clear S-state dependence, in agreement with results obtained by other methods. Our investigation paves the road for further insight in the early events associated with TyrZ oxidation and their role in the preparing the PSII donor side for the subsequent water oxidation chemistry.

在进化氧光系统II (PSII)中,从氧化还原活性酪氨酸残基(TyrZ)到叶绿素阳离子自由基(P680+)的多相电子转移先于Mn4Ca簇s态循环的水氧化化学反应。本文利用1310-1890 cm-1光谱范围内的时间分辨单频红外(IR)光谱,研究了在激光闪光激发后约10 ns至10 ms内菠菜PSII膜颗粒的这些早期事件。比较80ns、500ns和10µs的红外光谱差异,可以确定醌、P680和TyrZ的贡献。可分配的P680+宽电子吸收带用于跟踪P680+的还原动力学。P680+瞬态的最小二乘拟合考虑了实验时间分辨率,得到了两个纳秒相(30-46 ns和690-1110 ns)和两个微秒相(4.5-8.3µs和42µs),它们大部分表现出明显的s态依赖,与其他方法得到的结果一致。我们的研究为进一步了解与TyrZ氧化相关的早期事件及其在为随后的水氧化化学准备PSII供体侧中的作用铺平了道路。
{"title":"Tracking the first electron transfer step at the donor side of oxygen-evolving photosystem II by time-resolved infrared spectroscopy.","authors":"Mohamad Yahia Dekmak, Sarah M Mäusle, Janosch Brandhorst, Philipp S Simon, Holger Dau","doi":"10.1007/s11120-023-01057-3","DOIUrl":"10.1007/s11120-023-01057-3","url":null,"abstract":"<p><p>In oxygen-evolving photosystem II (PSII), the multi-phasic electron transfer from a redox-active tyrosine residue (TyrZ) to a chlorophyll cation radical (P680<sup>+</sup>) precedes the water-oxidation chemistry of the S-state cycle of the Mn<sub>4</sub>Ca cluster. Here we investigate these early events, observable within about 10 ns to 10 ms after laser-flash excitation, by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of 1310-1890 cm<sup>-1</sup> for oxygen-evolving PSII membrane particles from spinach. Comparing the IR difference spectra at 80 ns, 500 ns, and 10 µs allowed for the identification of quinone, P680 and TyrZ contributions. A broad electronic absorption band assignable P680<sup>+</sup> was used to trace largely specifically the P680<sup>+</sup> reduction kinetics. The experimental time resolution was taken into account in least-square fits of P680<sup>+</sup> transients with a sum of four exponentials, revealing two nanosecond phases (30-46 ns and 690-1110 ns) and two microsecond phases (4.5-8.3 µs and 42 µs), which mostly exhibit a clear S-state dependence, in agreement with results obtained by other methods. Our investigation paves the road for further insight in the early events associated with TyrZ oxidation and their role in the preparing the PSII donor side for the subsequent water oxidation chemistry.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"353-369"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mg2+ limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803. Mg2+ 限制会导致叶绿素减少,从而使蓝藻 Synechocytis sp. PCC6803 的光合装置失衡。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI: 10.1007/s11120-024-01112-7
Anne-Christin Pohland, Gábor Bernát, Stefan Geimer, Dirk Schneider

Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.

Mg2+ 是活细胞中含量最高的二价阳离子,在许多酶促反应中起着关键作用,对于进行含氧光合作用的生物体尤为重要。它的意义不仅在于充当叶绿素分子的中心离子,还在于在光反应过程中充当平衡质子梯度的反离子。在本研究中,我们研究了 Mg2+ 限制对著名模式微生物 Synechocystis sp.我们的研究结果表明,Mg2+ 缺乏会引发形态和功能的变化。与其他含氧光合生物一样,Mg2+ 缺乏会导致细胞叶绿素浓度下降。此外,PSI-PSII 比率下降,影响了细胞的光合效率。与此相应的是,Mg2+缺乏导致在光照下形成的质子梯度发生变化。
{"title":"Mg<sup>2+</sup> limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803.","authors":"Anne-Christin Pohland, Gábor Bernát, Stefan Geimer, Dirk Schneider","doi":"10.1007/s11120-024-01112-7","DOIUrl":"10.1007/s11120-024-01112-7","url":null,"abstract":"<p><p>Mg<sup>2+</sup>, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg<sup>2+</sup> limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg<sup>2+</sup> deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg<sup>2+</sup> deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg<sup>2+</sup> deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"13-27"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photosynthesis Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1