Pub Date : 2024-12-01DOI: 10.1007/s11120-024-01121-6
Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra
{"title":"Editorial for the Special Issue 'Energy Conversion Reactions in Natural and Artificial Photosynthesis': A Tribute to Ken Sauer.","authors":"Junko Yano, Jan Kern, Robert E Blankenship, Johannes Messinger, Vittal K Yachandra","doi":"10.1007/s11120-024-01121-6","DOIUrl":"10.1007/s11120-024-01121-6","url":null,"abstract":"","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"101-102"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-11-01DOI: 10.1007/s11120-023-01051-9
J C Williams, M S Faillace, E J Gonzalez, R E Dominguez, K Knappenberger, D A Heredia, T A Moore, A L Moore, J P Allen
Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.
{"title":"Mn-porphyrins in a four-helix bundle participate in photo-induced electron transfer with a bacterial reaction center.","authors":"J C Williams, M S Faillace, E J Gonzalez, R E Dominguez, K Knappenberger, D A Heredia, T A Moore, A L Moore, J P Allen","doi":"10.1007/s11120-023-01051-9","DOIUrl":"10.1007/s11120-023-01051-9","url":null,"abstract":"<p><p>Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-09-29DOI: 10.1007/s11120-023-01048-4
Christopher J Gisriel, Eduard Elias, Gaozhong Shen, Nathan T Soulier, Gary W Brudvig, Roberta Croce, Donald A Bryant
Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.
{"title":"Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences.","authors":"Christopher J Gisriel, Eduard Elias, Gaozhong Shen, Nathan T Soulier, Gary W Brudvig, Roberta Croce, Donald A Bryant","doi":"10.1007/s11120-023-01048-4","DOIUrl":"10.1007/s11120-023-01048-4","url":null,"abstract":"<p><p>Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"157-170"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41145540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-11-23DOI: 10.1007/s11120-023-01057-3
Mohamad Yahia Dekmak, Sarah M Mäusle, Janosch Brandhorst, Philipp S Simon, Holger Dau
In oxygen-evolving photosystem II (PSII), the multi-phasic electron transfer from a redox-active tyrosine residue (TyrZ) to a chlorophyll cation radical (P680+) precedes the water-oxidation chemistry of the S-state cycle of the Mn4Ca cluster. Here we investigate these early events, observable within about 10 ns to 10 ms after laser-flash excitation, by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of 1310-1890 cm-1 for oxygen-evolving PSII membrane particles from spinach. Comparing the IR difference spectra at 80 ns, 500 ns, and 10 µs allowed for the identification of quinone, P680 and TyrZ contributions. A broad electronic absorption band assignable P680+ was used to trace largely specifically the P680+ reduction kinetics. The experimental time resolution was taken into account in least-square fits of P680+ transients with a sum of four exponentials, revealing two nanosecond phases (30-46 ns and 690-1110 ns) and two microsecond phases (4.5-8.3 µs and 42 µs), which mostly exhibit a clear S-state dependence, in agreement with results obtained by other methods. Our investigation paves the road for further insight in the early events associated with TyrZ oxidation and their role in the preparing the PSII donor side for the subsequent water oxidation chemistry.
{"title":"Tracking the first electron transfer step at the donor side of oxygen-evolving photosystem II by time-resolved infrared spectroscopy.","authors":"Mohamad Yahia Dekmak, Sarah M Mäusle, Janosch Brandhorst, Philipp S Simon, Holger Dau","doi":"10.1007/s11120-023-01057-3","DOIUrl":"10.1007/s11120-023-01057-3","url":null,"abstract":"<p><p>In oxygen-evolving photosystem II (PSII), the multi-phasic electron transfer from a redox-active tyrosine residue (TyrZ) to a chlorophyll cation radical (P680<sup>+</sup>) precedes the water-oxidation chemistry of the S-state cycle of the Mn<sub>4</sub>Ca cluster. Here we investigate these early events, observable within about 10 ns to 10 ms after laser-flash excitation, by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of 1310-1890 cm<sup>-1</sup> for oxygen-evolving PSII membrane particles from spinach. Comparing the IR difference spectra at 80 ns, 500 ns, and 10 µs allowed for the identification of quinone, P680 and TyrZ contributions. A broad electronic absorption band assignable P680<sup>+</sup> was used to trace largely specifically the P680<sup>+</sup> reduction kinetics. The experimental time resolution was taken into account in least-square fits of P680<sup>+</sup> transients with a sum of four exponentials, revealing two nanosecond phases (30-46 ns and 690-1110 ns) and two microsecond phases (4.5-8.3 µs and 42 µs), which mostly exhibit a clear S-state dependence, in agreement with results obtained by other methods. Our investigation paves the road for further insight in the early events associated with TyrZ oxidation and their role in the preparing the PSII donor side for the subsequent water oxidation chemistry.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"353-369"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-22DOI: 10.1007/s11120-024-01112-7
Anne-Christin Pohland, Gábor Bernát, Stefan Geimer, Dirk Schneider
Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.
{"title":"Mg<sup>2+</sup> limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803.","authors":"Anne-Christin Pohland, Gábor Bernát, Stefan Geimer, Dirk Schneider","doi":"10.1007/s11120-024-01112-7","DOIUrl":"10.1007/s11120-024-01112-7","url":null,"abstract":"<p><p>Mg<sup>2+</sup>, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg<sup>2+</sup> limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg<sup>2+</sup> deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg<sup>2+</sup> deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg<sup>2+</sup> deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"13-27"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-21DOI: 10.1007/s11120-024-01114-5
Nikolay Ryzhkov, Nora Colson, Essraa Ahmed, Paulius Pobedinskas, Ken Haenen, Paul J Janssen, Artur Braun
Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.
{"title":"Fluorescence and electron transfer of Limnospira indica functionalized biophotoelectrodes.","authors":"Nikolay Ryzhkov, Nora Colson, Essraa Ahmed, Paulius Pobedinskas, Ken Haenen, Paul J Janssen, Artur Braun","doi":"10.1007/s11120-024-01114-5","DOIUrl":"10.1007/s11120-024-01114-5","url":null,"abstract":"<p><p>Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"29-45"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-31DOI: 10.1007/s11120-024-01110-9
Kashif Hussain, Defu Wang, Asif Riaz, Emily Patience Bakpa, Guilin Wu, Suping Liu, Yanxia Nie, Hui Liu
Changes in rainfall patterns are important environmental factors affecting plant growth, especially when larger precipitation events and prolonged drought periods occur in subtropical regions. There are many studies on how drought reduces plant biomass through drought-sensitive functional traits, but how excess water affects plant growth and ecophysiology is still poorly understood. Therefore, a greenhouse experiment was conducted on Schima superba (Theaceae), a dominant tree species in subtropical forests and commonly used in forestry, in a closed chamber under control (25% soil water content (SWC) as in local forests), drought stress (D, 15% SWC) and moisture stress (W, 35% SWC). Plant growth and ecophysiological traits related to morphology, leaf gas exchange, water potential and structural traits were measured. Compared to control, S. suberba under dry conditions significantly decreased its aboveground biomass, photosynthetic rate (A), leaf water potential and nitrogen use efficiency, but increased intrinsic water use efficiency, root to shoot ratio and specific root length. S. superba under wet conditions also significantly decreased its total biomass, aboveground biomass and specific root length, while W had no effect on A and leaf water potential. Our results indicate that S. superba shows a decrease in carbon gain under drought stress, but less response under wet conditions. This emphasizes the need to consider the strength and frequency of rainfall pattern changes in future studies because rainfall may either alleviate or intensify the effects of drought stress depending on the moisture level, thus suitable water conditions is important for better management of this tree species in subtropical China.
降雨模式的变化是影响植物生长的重要环境因素,尤其是当亚热带地区出现较大降水事件和长时间干旱时。关于干旱如何通过对干旱敏感的功能特性减少植物生物量的研究很多,但对过量水分如何影响植物生长和生态生理的了解仍然很少。因此,我们在密闭室内对亚热带森林中的主要树种、林业常用树种 Schima superba(茜草科)进行了温室实验,实验条件包括对照(土壤含水量为 25%,与当地森林相同)、干旱胁迫(D,土壤含水量为 15%)和水分胁迫(W,土壤含水量为 35%)。对植物的生长以及与形态、叶片气体交换、水势和结构特征相关的生态生理特征进行了测量。与对照组相比,干燥条件下的苏铁沙棘地上生物量、光合速率(A)、叶片水势和氮利用效率明显降低,但内在水分利用效率、根与芽比和比根长有所增加。在潮湿条件下,S. superba 的总生物量、地上生物量和比根长度也明显减少,而 W 对 A 和叶片水势没有影响。我们的研究结果表明,超级芭蕉在干旱胁迫下碳增量减少,但在潮湿条件下反应较小。这强调了在今后的研究中需要考虑降雨模式变化的强度和频率,因为降雨可能会减轻或加剧干旱胁迫的影响,这取决于水分水平,因此适宜的水分条件对于更好地管理中国亚热带的这一树种非常重要。
{"title":"Effects of drought and moisture stress on the growth and ecophysiological traits of Schima superba seedlings.","authors":"Kashif Hussain, Defu Wang, Asif Riaz, Emily Patience Bakpa, Guilin Wu, Suping Liu, Yanxia Nie, Hui Liu","doi":"10.1007/s11120-024-01110-9","DOIUrl":"10.1007/s11120-024-01110-9","url":null,"abstract":"<p><p>Changes in rainfall patterns are important environmental factors affecting plant growth, especially when larger precipitation events and prolonged drought periods occur in subtropical regions. There are many studies on how drought reduces plant biomass through drought-sensitive functional traits, but how excess water affects plant growth and ecophysiology is still poorly understood. Therefore, a greenhouse experiment was conducted on Schima superba (Theaceae), a dominant tree species in subtropical forests and commonly used in forestry, in a closed chamber under control (25% soil water content (SWC) as in local forests), drought stress (D, 15% SWC) and moisture stress (W, 35% SWC). Plant growth and ecophysiological traits related to morphology, leaf gas exchange, water potential and structural traits were measured. Compared to control, S. suberba under dry conditions significantly decreased its aboveground biomass, photosynthetic rate (A), leaf water potential and nitrogen use efficiency, but increased intrinsic water use efficiency, root to shoot ratio and specific root length. S. superba under wet conditions also significantly decreased its total biomass, aboveground biomass and specific root length, while W had no effect on A and leaf water potential. Our results indicate that S. superba shows a decrease in carbon gain under drought stress, but less response under wet conditions. This emphasizes the need to consider the strength and frequency of rainfall pattern changes in future studies because rainfall may either alleviate or intensify the effects of drought stress depending on the moisture level, thus suitable water conditions is important for better management of this tree species in subtropical China.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"1-12"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic plants are a crucial component of the aquatic ecosystem in the Tibetan Plateau region. Researching the adaptability of plateau aquatic plants in photosynthesis to the plateau environment can enhance understanding of the operational mechanisms of plateau ecosystems, thereby providing a scientific basis for the protection and management of plateau aquatic ecosystems. This study presents an investigation of photosynthetic inorganic carbon utilization strategies and photosynthetic efficiency of 17 aquatic plants under natural growing conditions in Niyang River basin on the Tibetan Plateau. In pH-drift experiments, 10 of 17 species were able to utilize HCO3-, and environmental factors like water pH were shown to have a significant effect on the ability of the tested species to utilize HCO3-. Titratable acidity in the leaves of Stuckenia filiformis, Zannichellia palustris, Batrachium bungei, and Myriophyllum spicatum showed significant diurnal fluctuations at certain sampling sites, indicating the presence of CAM. In B. bungei, water pH positively correlated with CAM activity, while CO2 concentration negatively correlated with CAM activity. The chlorophyll fluorescence analysis revealed that aquatic plants inhabiting the Tibetan Plateau exhibited photosynthetic adaptations. In conclusion, the aquatic plants on the Tibetan Plateau employ diverse strategies for utilizing inorganic carbon during photosynthesis, exhibiting their flexible adaptability to the native high-altitude habitats of the Tibetan Plateau.
{"title":"Inorganic carbon utilization strategies of plateau aquatic plants in response to native habitats.","authors":"Jiajia Jia, Hongsheng Jiang, Xi Zhu, Shanwei Wang, Liyuan Wang, Chufan Liu, Wei Li, Wenmin Huang","doi":"10.1007/s11120-024-01115-4","DOIUrl":"10.1007/s11120-024-01115-4","url":null,"abstract":"<p><p>Aquatic plants are a crucial component of the aquatic ecosystem in the Tibetan Plateau region. Researching the adaptability of plateau aquatic plants in photosynthesis to the plateau environment can enhance understanding of the operational mechanisms of plateau ecosystems, thereby providing a scientific basis for the protection and management of plateau aquatic ecosystems. This study presents an investigation of photosynthetic inorganic carbon utilization strategies and photosynthetic efficiency of 17 aquatic plants under natural growing conditions in Niyang River basin on the Tibetan Plateau. In pH-drift experiments, 10 of 17 species were able to utilize HCO<sub>3</sub><sup>-</sup>, and environmental factors like water pH were shown to have a significant effect on the ability of the tested species to utilize HCO<sub>3</sub><sup>-</sup>. Titratable acidity in the leaves of Stuckenia filiformis, Zannichellia palustris, Batrachium bungei, and Myriophyllum spicatum showed significant diurnal fluctuations at certain sampling sites, indicating the presence of CAM. In B. bungei, water pH positively correlated with CAM activity, while CO<sub>2</sub> concentration negatively correlated with CAM activity. The chlorophyll fluorescence analysis revealed that aquatic plants inhabiting the Tibetan Plateau exhibited photosynthetic adaptations. In conclusion, the aquatic plants on the Tibetan Plateau employ diverse strategies for utilizing inorganic carbon during photosynthesis, exhibiting their flexible adaptability to the native high-altitude habitats of the Tibetan Plateau.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"47-62"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the stability of photosynthetic pigments is crucial for developing crop cultivars with high productivity and resilience to the environmental stresses. This study leveraged GGE biplot, WAASB, and MTSI indices to assess the stability of content and composition of photosynthetic pigments in leaves and siliques of 286 Brassica juncea (L.) Czern. genotypes across three environments. The GGE biplot analysis identified NRCQR-9901 as the best genotype in terms of chlorophyll 'a' under conditions of high irradiance and long days (E1). For chlorophyll 'b' and total chlorophyll, NC-533728 performed the best. AJ-2 and NPJ-208 had the maximum total carotenoids levels in leaves. RLC-2 was characterized by maximum values for chlorophyll a, chlorophyll b, and total chlorophyll in the siliques. The low irradiance, short days, and moderate to high temperatures (E2) seemed perfect for the synthesis of photosynthetic pigments. NPJ-182 shows the maximum concentrations of chlorophyll 'a', total chlorophyll, and total carotenoids in leaves. Conversely, IC-597869, RE-389, and IC-597894 exhibited the highest concentrations of chlorophyll 'b' under an environment characterized by low light intensity, shorter daylights, and low temperatures (E3) during flowering and siliqua formation stages. The combined analysis found NPJ-182, NC-533728, CN-105233, RLC-2, CN-101846, JA-96, PBR-357, JM-3, and DTM-34 as top performers with high stability. Comparative transcriptome analysis with two stable and high-performing genotypes (PBR-357 and DTM-34) and two average performers revealed upregulation of critical photosynthesis-related genes (ELIP1, CAB3.1, ELIP1.5, and LHCB5) in top performers. This study identified promising trait donors for use in breeding programs aimed at improving the mustard crop's photosynthetic efficiency, productivity, and stability.
{"title":"Integrating multiple statistical indices to measure the stability of photosynthetic pigment content and composition in Brassica juncea (L.) Czern germplasm under varying environmental conditions.","authors":"Aaftab Alam Ansari, Javed Akhatar, Sanjula Sharma, Surinder Singh Banga, Chhaya Atri","doi":"10.1007/s11120-024-01116-3","DOIUrl":"10.1007/s11120-024-01116-3","url":null,"abstract":"<p><p>Understanding the stability of photosynthetic pigments is crucial for developing crop cultivars with high productivity and resilience to the environmental stresses. This study leveraged GGE biplot, WAASB, and MTSI indices to assess the stability of content and composition of photosynthetic pigments in leaves and siliques of 286 Brassica juncea (L.) Czern. genotypes across three environments. The GGE biplot analysis identified NRCQR-9901 as the best genotype in terms of chlorophyll 'a' under conditions of high irradiance and long days (E1). For chlorophyll 'b' and total chlorophyll, NC-533728 performed the best. AJ-2 and NPJ-208 had the maximum total carotenoids levels in leaves. RLC-2 was characterized by maximum values for chlorophyll a, chlorophyll b, and total chlorophyll in the siliques. The low irradiance, short days, and moderate to high temperatures (E2) seemed perfect for the synthesis of photosynthetic pigments. NPJ-182 shows the maximum concentrations of chlorophyll 'a', total chlorophyll, and total carotenoids in leaves. Conversely, IC-597869, RE-389, and IC-597894 exhibited the highest concentrations of chlorophyll 'b' under an environment characterized by low light intensity, shorter daylights, and low temperatures (E3) during flowering and siliqua formation stages. The combined analysis found NPJ-182, NC-533728, CN-105233, RLC-2, CN-101846, JA-96, PBR-357, JM-3, and DTM-34 as top performers with high stability. Comparative transcriptome analysis with two stable and high-performing genotypes (PBR-357 and DTM-34) and two average performers revealed upregulation of critical photosynthesis-related genes (ELIP1, CAB3.1, ELIP1.5, and LHCB5) in top performers. This study identified promising trait donors for use in breeding programs aimed at improving the mustard crop's photosynthetic efficiency, productivity, and stability.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"63-74"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-22DOI: 10.1007/s11120-024-01111-8
David J Vinyard, Govindjee Govindjee
Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.
{"title":"Bicarbonate is a key regulator but not a substrate for O<sub>2</sub> evolution in Photosystem II.","authors":"David J Vinyard, Govindjee Govindjee","doi":"10.1007/s11120-024-01111-8","DOIUrl":"10.1007/s11120-024-01111-8","url":null,"abstract":"<p><p>Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O<sub>2</sub> is produced as a byproduct. While most members of the PSII research community agree that O<sub>2</sub> originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O<sub>2</sub> evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O<sub>2</sub> evolution is challenged.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"93-99"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}