首页 > 最新文献

Photosynthesis Research最新文献

英文 中文
Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift. 对一种远红异藻花青素进行晶体学和生物化学分析,以解决超红移的机制问题。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-06 DOI: 10.1007/s11120-023-01066-2
Li-Juan Zhou, Astrid Höppner, Yi-Qing Wang, Jian-Yun Hou, Hugo Scheer, Kai-Hong Zhao

Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.

远红吸收异藻蓝蛋白(APC)是在能够进行远红光光螯合(FaRLiP)和弱光光螯合(LoLiP)的蓝藻中发现的,它吸收远红光,作为光收集蛋白在能量转移中发挥作用。我们报告了一种优化的方法,通过在大肠杆菌中合成和改进的纯化方案,获得了高纯度的Chroococcidiopsis thermalis sp.三聚体(PCB-ApcD5/PCB-ApcB2)3 的晶体结构已解析到 2.8 Å。与吸收波长范围在 650-670 nm 的传统 APC 相比,其主要区别在于发色团大体平坦,共平面性特别是从 BCD 环延伸到 A 环。在与β亚基复配时,它甚至会进一步红移(λmax,吸收 = 707 nm,λmax,发射 = 721 nm)。诱变数据证实了环 A 与这种偏移的相关性。已生成的 α 亚基变体 I123M 在没有 β 亚基的情况下已显示出强烈的 FR 波段,我们讨论了一个可能的模型。已知还有两种机制可以使发色团光谱发生红移:内酰胺-内酰胺同分异构和发色团的去质子化。
{"title":"Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift.","authors":"Li-Juan Zhou, Astrid Höppner, Yi-Qing Wang, Jian-Yun Hou, Hugo Scheer, Kai-Hong Zhao","doi":"10.1007/s11120-023-01066-2","DOIUrl":"https://doi.org/10.1007/s11120-023-01066-2","url":null,"abstract":"<p><p>Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)<sub>3</sub>, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λ<sub>max</sub> = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λ<sub>max, absorption</sub> = 707 nm, λ<sub>max, emission</sub> = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii. 莱茵衣藻在强光适应过程中的类囊体结构的宏观变化
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-05 DOI: 10.1007/s11120-023-01067-1
Mimi Broderson, Krishna K Niyogi, Masakazu Iwai

Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.

光保护机制在光合生物中无处不在。绿藻莱茵衣藻的光保护能力与应激相关的光收获复合物(LHCSR)蛋白水平相关,而高光(HL)会强烈诱导LHCSR蛋白。然而,人们尚未完全了解在适应强光生长过程中整个类木质结构的动态响应。在这里,我们结合了活细胞超分辨显微镜和分析膜亚分馏技术,研究了衣藻在适应高光照过程中类囊体膜的宏观结构变化。亚衍射分辨活细胞成像显示,在HL适应过程中,整个类囊体结构变薄和收缩。焦磷酸周围的基质空间也变大了。依赖密度的膜分离分析表明,结构变化的部分原因是膜未堆叠。对 LHCSR 功能缺失突变体 npq4 lhcsr1 和过度表达 LHCSR 的调控突变体 spa1-1 的分析表明,结构变化的发生与 LHCSR 蛋白水平无关,这表明 LHCSR 既不是诱导与 HL 适应相关的类囊体结构变化的必要条件,也不是充分条件。相反,stt7-9(一种缺乏主要采光天线蛋白激酶的突变体)与所有其他受试品系相比,其对 HL 的青体结构反应较慢,但仍表现出膜解叠现象。这些结果表明,在HL条件下观察到的类囊体膜宏观结构变化既不需要LHCSR,也不需要天线磷酸化依赖性HL适应。
{"title":"Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii.","authors":"Mimi Broderson, Krishna K Niyogi, Masakazu Iwai","doi":"10.1007/s11120-023-01067-1","DOIUrl":"https://doi.org/10.1007/s11120-023-01067-1","url":null,"abstract":"<p><p>Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinvestigation on primary processes of PSII-dimer from Thermosynechococcus vulcanus by femtosecond pump-probe spectroscopy. 利用飞秒泵浦探针光谱重新研究火山热球藻 PSII 二聚体的初级过程。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-01 Epub Date: 2024-02-16 DOI: 10.1007/s11120-024-01076-8
Daisuke Kosumi, Miki Bandou-Uotani, Shunya Kato, Keisuke Kawakami, Koji Yonekura, Nobuo Kamiya

Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested "transfer-to-trapped limit" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor ChlD1 with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (PheoD1-) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Qy band of chlorophyll a at 670 nm. The secondary electron transfer to quinone QA: PheoD1-QA → PheoD1QA- is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient β-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S2 state of β-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.

蓝藻光合作用装置能有效捕获阳光,随后将能量转移到光系统 I(PSI)和 II(PSII),产生电化学势。PSII 是一种独特的膜蛋白复合体,可对水的氧化进行光催化,主要含有叶绿素 a 和类胡萝卜素等光合色素。本研究通过飞秒泵浦探针光谱测量,在低温和弱强度激发条件下重新研究了嗜热蓝藻 Thermosynechococcus vulcanus 的 PSII 的超快能量转移和电荷分离动力学。结果表明,PSII 中的能量转移和随后的电荷分离有两种可能的模式。一种是之前提出的 "转移到俘获极限 "模型。另一种模型认为,能量从核心 CP43 和 CP47 天线转移到初级电子供体 ChlD1,其时间常数在 140 K 时分别为 0.71 ps 和 3.28 ps(在 296 K 时分别为 0.17 和 1.33 ps);在 670 nm 波长处激发叶绿素 a 的 Qy 波段时,产生叶绿素阴离子(PheoD1-),其时间常数在 140 K 时为 43.0 ps(在 296 K 时为 14.8 ps)。二次电子转移到醌 QA:另一方面,在 500 纳米波长处,β-胡萝卜素的 S2 状态被激发后,β-胡萝卜素→叶绿素 a 的能量转移效率很低(33%)。相反,类胡萝卜素三重态在 500 纳米波长激发后以超快的时间尺度出现。
{"title":"Reinvestigation on primary processes of PSII-dimer from Thermosynechococcus vulcanus by femtosecond pump-probe spectroscopy.","authors":"Daisuke Kosumi, Miki Bandou-Uotani, Shunya Kato, Keisuke Kawakami, Koji Yonekura, Nobuo Kamiya","doi":"10.1007/s11120-024-01076-8","DOIUrl":"10.1007/s11120-024-01076-8","url":null,"abstract":"<p><p>Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested \"transfer-to-trapped limit\" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor Chl<sub>D1</sub> with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (Pheo<sub>D1</sub><sup>-</sup>) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Q<sub>y</sub> band of chlorophyll a at 670 nm. The secondary electron transfer to quinone Q<sub>A</sub>: Pheo<sub>D1</sub><sup>-</sup>Q<sub>A</sub> → Pheo<sub>D1</sub>Q<sub>A</sub><sup>-</sup> is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient β-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S<sub>2</sub> state of β-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin. 地中海盆地14个主要橄榄品种抗旱性的生理生化研究。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-01 Epub Date: 2023-11-04 DOI: 10.1007/s11120-023-01052-8
Elena Illana Rico, Genoveva Carmen Martos de la Fuente, Ainhoa Ortega Morillas, Ana Maria Fernández Ocaña

A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.

对14个具有重要经济价值的橄榄品种进行了全面研究。这些品种是Arbequina、Arbosana、Chemlali、Cornicabra、Cornezuelo de Jaén、Empeltre、Frantoio、Hojiblanca、Koroneiki、Manzanilla de Sevilla、Martina、Picual、Sikiita1和Sikiita2。所有这些都通过了科尔多瓦(西班牙)世界橄榄种质库的认证。它们是整个地中海盆地不同位置橄榄林中的主要品种,在本研究中,它们遭受了至少14天和最多42天的完全缺水。收集了叶绿素含量、土壤水分和比叶面积等数据。还分析了每个品种在各自饱和辐照度下测得的光合参数:同化率、蒸腾作用、气孔导度、光合效率、光化学和非光化学猝灭、光子通量密度、电子传递率、水分的有效利用以及脯氨酸和丙二醛的量作为氧化应激的指标。除对照外,还分析了两种不同的实验条件:在缺乏灌溉14天后的中度干旱和在完全缺乏灌溉28-42天后的重度干旱,这取决于每个品种的耐受性。根据这些结果,对这些品种进行了鉴定,并根据其耐旱性将其分为四组:耐干旱、中等耐受、中等敏感和对干旱敏感。这项工作代表了相当多的橄榄品种对耐旱性的首次贡献,所有这些品种都受到相同的标准和实验条件的分类。
{"title":"Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin.","authors":"Elena Illana Rico, Genoveva Carmen Martos de la Fuente, Ainhoa Ortega Morillas, Ana Maria Fernández Ocaña","doi":"10.1007/s11120-023-01052-8","DOIUrl":"10.1007/s11120-023-01052-8","url":null,"abstract":"<p><p>A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extra O2 evolution reveals an O2-independent alternative electron sink in photosynthesis of marine diatoms. 额外的 O2 进化揭示了海洋硅藻光合作用中不依赖 O2 的替代电子汇。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-01 Epub Date: 2024-02-05 DOI: 10.1007/s11120-023-01073-3
Ginga Shimakawa, Yusuke Matsuda

Following the principle of oxygenic photosynthesis, electron transport in the thylakoid membranes (i.e., light reaction) generates ATP and NADPH from light energy, which is subsequently utilized for CO2 fixation in the Calvin-Benson-Bassham cycle (i.e., dark reaction). However, light and dark reactions could discord when an alternative electron flow occurs with a rate comparable to the linear electron flow. Here, we quantitatively monitored O2 and total dissolved inorganic carbon (DIC) during photosynthesis in the pennate diatom Phaeodactylum tricornutum, and found that evolved O2 was larger than the consumption of DIC, which was consistent with 14CO2 measurements in literature. In our measurements, the stoichiometry of O2 evolution to DIC consumption was always around 1.5 during photosynthesis at different DIC concentrations. The same stoichiometry was observed in the cells grown under different CO2 concentrations and nitrogen sources except for the nitrogen-starved cells showing O2 evolution 2.5 times larger than DIC consumption. An inhibitor to nitrogen assimilation did not affect the extra O2 evolution. Further, the same physiological phenomenon was observed in the centric diatom Thalassiosira pseudonana. Based on the present dataset, we propose that the marine diatoms possess the metabolic pathway(s) functioning as the O2-independent electron sink under steady state photosynthesis that reaches nearly half of electron flux of the Calvin-Benson-Bassham cycle.

按照含氧光合作用的原理,类木质膜中的电子传递(即光反应)利用光能产生 ATP 和 NADPH,然后在卡尔文-本森-巴塞尔循环(即暗反应)中用于固定 CO2。然而,当另一种电子流以与线性电子流相当的速度出现时,光反应和暗反应可能会不一致。在此,我们定量监测了五棘皮硅藻 Phaeodactylum tricornutum 光合作用过程中的 O2 和总溶解无机碳(DIC),发现 O2 的进化量大于 DIC 的消耗量,这与文献中 14CO2 的测量结果一致。在我们的测量中,在不同的 DIC 浓度下,光合作用过程中 O2 进化与 DIC 消耗的比例始终在 1.5 左右。在不同 CO2 浓度和氮源条件下生长的细胞也观察到了相同的比例,只有缺氮细胞的 O2 演化比 DIC 消耗大 2.5 倍。氮同化抑制剂不会影响额外的氧气进化。此外,在中心硅藻 Thalassiosira pseudonana 中也观察到了相同的生理现象。根据目前的数据集,我们认为海洋硅藻在稳态光合作用下具有作为不依赖于 O2 的电子汇的代谢途径,其电子通量几乎达到卡尔文-本森-巴萨姆循环电子通量的一半。
{"title":"Extra O<sub>2</sub> evolution reveals an O<sub>2</sub>-independent alternative electron sink in photosynthesis of marine diatoms.","authors":"Ginga Shimakawa, Yusuke Matsuda","doi":"10.1007/s11120-023-01073-3","DOIUrl":"10.1007/s11120-023-01073-3","url":null,"abstract":"<p><p>Following the principle of oxygenic photosynthesis, electron transport in the thylakoid membranes (i.e., light reaction) generates ATP and NADPH from light energy, which is subsequently utilized for CO<sub>2</sub> fixation in the Calvin-Benson-Bassham cycle (i.e., dark reaction). However, light and dark reactions could discord when an alternative electron flow occurs with a rate comparable to the linear electron flow. Here, we quantitatively monitored O<sub>2</sub> and total dissolved inorganic carbon (DIC) during photosynthesis in the pennate diatom Phaeodactylum tricornutum, and found that evolved O<sub>2</sub> was larger than the consumption of DIC, which was consistent with <sup>14</sup>CO<sub>2</sub> measurements in literature. In our measurements, the stoichiometry of O<sub>2</sub> evolution to DIC consumption was always around 1.5 during photosynthesis at different DIC concentrations. The same stoichiometry was observed in the cells grown under different CO<sub>2</sub> concentrations and nitrogen sources except for the nitrogen-starved cells showing O<sub>2</sub> evolution 2.5 times larger than DIC consumption. An inhibitor to nitrogen assimilation did not affect the extra O<sub>2</sub> evolution. Further, the same physiological phenomenon was observed in the centric diatom Thalassiosira pseudonana. Based on the present dataset, we propose that the marine diatoms possess the metabolic pathway(s) functioning as the O<sub>2</sub>-independent electron sink under steady state photosynthesis that reaches nearly half of electron flux of the Calvin-Benson-Bassham cycle.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress. 在干旱和盐度联合胁迫下,茉莉酸通过一个可能的调控模块 MYC2-RcaA 提高大麦的光合效率。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-01 Epub Date: 2024-02-08 DOI: 10.1007/s11120-023-01074-2
Massume Aliakbari, Sirous Tahmasebi, Javad Nouripour Sisakht

The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.

干旱和盐碱的综合胁迫在世界各地普遍存在,影响作物的多个生理和生化过程,并导致作物减产。光合作用是受联合胁迫干扰的主要过程之一。因此,提高农作物的光合作用效率是克服环境胁迫的最有前途的策略之一,这使得研究光合作用调控的分子基础成为必要。在本研究中,我们寻找了调控重要作物大麦(Hordeum vulgare L.)联合胁迫响应的一个主要成分--Rubisco 激活酶 A(RcaA)基因的潜在机制。通过对 RcaA 基因的启动子分析,发现了茉莉酸(JA)反应元件的高出现率。特别是,骨髓细胞瘤病致癌基因 2(MYC2)转录因子结合位点被强调为一个可信的功能性启动子基序。我们用对非生物胁迫敏感的大麦基因型进行了温室对照实验,评估了在 JA、干旱和盐度胁迫(CS)以及 JA + CS 处理下 RcaA 和 MYC2 基因的表达谱、光合作用参数、植物水分状态和细胞膜损伤。我们的研究结果表明,施用 JA 能提高大麦的光合效率和水分关系,并能在很大程度上补偿联合胁迫的不利影响。基因表达谱与所评估的理化特性之间存在显著关联。研究结果表明,通过依赖于 JA 的 MYC2-RcaA 模块参与光合作用调控和综合胁迫耐受性的调控途径是可信的。这些发现为进一步开展非生物胁迫下光合作用调控的功能研究提供了宝贵的知识,有助于开发耐多种胁迫的作物。
{"title":"Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress.","authors":"Massume Aliakbari, Sirous Tahmasebi, Javad Nouripour Sisakht","doi":"10.1007/s11120-023-01074-2","DOIUrl":"10.1007/s11120-023-01074-2","url":null,"abstract":"<p><p>The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. 喜马拉雅山西部沿海拔梯度广泛分布的物种的生态生理特征变异揭示了它们在应激条件下的高适应潜力。
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1007/s11120-023-01071-5
Nandita Mehta, Amit Chawla

Species distributed across a wide elevation range have broad environmental tolerance and adopt specific adaptation strategies to cope with varying climatic conditions. The aim of this study is to understand the patterns of variation in leaf eco-physiological traits that are related to the adaptation of species with a wide distribution in different climatic conditions. We studied the variability in eco-physiological traits of two co-occurring species of Western Himalaya (Rumex nepalensis and Taraxacum officinale), along elevational gradients. We conducted our study in elevations ranging from 1000 to 4000 m a.s.l. in three transects separated in an eco-region spanning 2.5° latitudes and 2.3° longitudes in the Western Himalaya. We hypothesized substantial variation in eco-physiological traits, especially increased net rate of photosynthesis (PN), Rubisco specific activity (RSA), and biochemicals at higher elevations, enabling species to adapt to varying environmental conditions. Therefore, the photosynthetic measurements along with leaf sampling were carried out during the months of June-August and the variations in photosynthetic performance and other leaf traits were assessed. Data was analyzed using a linear mixed effect model with 'species,' 'elevation' as fixed and 'transect' as random factor. Elevation had a significant effect on majority of traits. It was found that PN and maximum carboxylation rate of Rubisco (Vcmax) have unimodal or declining trend along increasing elevations. High RSA was observed at higher elevations in all the three transects. Trends for biochemical traits such as total soluble sugars, total soluble proteins, proline, and total phenolics content suggested an increase in these traits for the survival of plants in harsh environments of higher elevations. Our study reveals that although there is considerable variation in the eco-physiological traits of the two species across elevational gradients of different transects, there are certain similarities in the patterns that depict their high adaptive potential in varying climatic conditions.

分布在广阔海拔范围内的物种具有广泛的环境耐受性,并采用特定的适应策略来应对不同的气候条件。本研究旨在了解叶片生态生理特征的变异模式,这与分布广泛的物种在不同气候条件下的适应性有关。我们研究了喜马拉雅西部两个共生物种(Rumex nepalensis 和 Taraxacum officinale)的生态生理特征在海拔梯度上的变异。我们在西喜马拉雅山脉纬度为 2.5°、经度为 2.3°的生态区域内海拔 1000 米至 4000 米的三个横断面上进行了研究。我们假设生态生理特征会有很大变化,尤其是在海拔较高的地方,光合作用净速率(PN)、Rubisco 比活度(RSA)和生化物质会增加,从而使物种能够适应不同的环境条件。因此,在 6 月至 8 月期间进行了光合作用测量和叶片取样,并评估了光合作用性能和其他叶片性状的变化。数据采用线性混合效应模型进行分析,"物种"、"海拔 "为固定因子,"横断面 "为随机因子。海拔对大多数性状都有明显影响。研究发现,PN 和 Rubisco 的最大羧化率(Vcmax)呈单峰或随海拔升高而下降的趋势。在所有三个横断面上,海拔越高,RSA 越高。总可溶性糖、总可溶性蛋白质、脯氨酸和总酚含量等生化性状的变化趋势表明,这些性状的增加有利于植物在海拔较高的恶劣环境中生存。我们的研究表明,虽然在不同断面的海拔梯度上,这两个物种的生态生理特征存在很大差异,但它们在不同气候条件下的适应潜力却有某些相似之处。
{"title":"Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions.","authors":"Nandita Mehta, Amit Chawla","doi":"10.1007/s11120-023-01071-5","DOIUrl":"10.1007/s11120-023-01071-5","url":null,"abstract":"<p><p>Species distributed across a wide elevation range have broad environmental tolerance and adopt specific adaptation strategies to cope with varying climatic conditions. The aim of this study is to understand the patterns of variation in leaf eco-physiological traits that are related to the adaptation of species with a wide distribution in different climatic conditions. We studied the variability in eco-physiological traits of two co-occurring species of Western Himalaya (Rumex nepalensis and Taraxacum officinale), along elevational gradients. We conducted our study in elevations ranging from 1000 to 4000 m a.s.l. in three transects separated in an eco-region spanning 2.5° latitudes and 2.3° longitudes in the Western Himalaya. We hypothesized substantial variation in eco-physiological traits, especially increased net rate of photosynthesis (P<sub>N</sub>), Rubisco specific activity (RSA), and biochemicals at higher elevations, enabling species to adapt to varying environmental conditions. Therefore, the photosynthetic measurements along with leaf sampling were carried out during the months of June-August and the variations in photosynthetic performance and other leaf traits were assessed. Data was analyzed using a linear mixed effect model with 'species,' 'elevation' as fixed and 'transect' as random factor. Elevation had a significant effect on majority of traits. It was found that P<sub>N</sub> and maximum carboxylation rate of Rubisco (V<sub>cmax</sub>) have unimodal or declining trend along increasing elevations. High RSA was observed at higher elevations in all the three transects. Trends for biochemical traits such as total soluble sugars, total soluble proteins, proline, and total phenolics content suggested an increase in these traits for the survival of plants in harsh environments of higher elevations. Our study reveals that although there is considerable variation in the eco-physiological traits of the two species across elevational gradients of different transects, there are certain similarities in the patterns that depict their high adaptive potential in varying climatic conditions.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association study of leaf photosynthesis using a high-throughput gas exchange system in rice 利用高通量气体交换系统对水稻叶片光合作用进行全基因组关联研究
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-12-19 DOI: 10.1007/s11120-023-01065-3

Abstract

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.

摘要 提高叶片光合能力对提高水稻(Oryza sativa L.)产量至关重要。尽管利用天然遗传资源被认为是提高光合能力的一种有前途的方法,但由于测量效率的限制,与叶片光合能力遗传多样性相关的基因组因素尚未完全阐明。本研究旨在结合全基因组关联研究(GWAS)和新开发的快速封闭气体交换系统 MIC-100,鉴定净二氧化碳同化率(A)的新基因组区域。我们使用三套 MIC-100 系统,在田间无性期测量了 168 个温带粳稻品种三年的净二氧化碳同化率,共六个重复。我们发现,现代品种的A值高于陆稻品种,而在现代品种中,发布年份与A值之间没有显著关系。我们的 GWAS 扫描发现了位于 4 号和 8 号染色体上的两个主要峰值,这两个峰值在不同的实验和广义线性建模方法中被反复检测到。我们认为,高通量气体交换测量结合 GWAS 是了解作物物种光合作用多样性遗传机制的可靠方法。
{"title":"Genome-wide association study of leaf photosynthesis using a high-throughput gas exchange system in rice","authors":"","doi":"10.1007/s11120-023-01065-3","DOIUrl":"https://doi.org/10.1007/s11120-023-01065-3","url":null,"abstract":"<h3>Abstract</h3> <p>Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (<em>Oryza sativa</em> L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO<sub>2</sub> assimilation rate (<em>A</em>) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured <em>A</em> of 168 temperate <em>japonica</em> rice varieties with six replicates for three years. We found that the modern varieties exhibited higher <em>A</em> than the landraces, while there was no significant relationship between the release year and <em>A</em> among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis 通过嵌入超薄绝缘膜的分子线控制电子转移,驱动氧化还原催化反应
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-12-18 DOI: 10.1007/s11120-023-01061-7
Heinz Frei

Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.

厚度仅为几纳米的有机双层膜或无定形二氧化硅膜具有嵌入式分子线的特点,这为化学分离同时以电子方式连接光催化或电催化元件提供了机会。这种超薄薄膜可将直接耦合效率不高或不稳定的元件整合在一起。用于产生或利用可再生能源的光电催化系统是最突出的系统之一,超薄分离层为其开辟了组件集成的新方法,从而提高了效率。最近在组装和光谱、显微镜以及光电化学特性分析方面取得的进展,使得嵌入式分子线的结构、能量学和密度得到了系统优化,从而实现了最大的电荷转移效率。这些进展使人工光系统和用于可再生能源的微生物(或生物分子)-生物系统的不相容氧化和还原催化环境的纳米级集成界面设计成为可能。
{"title":"Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis","authors":"Heinz Frei","doi":"10.1007/s11120-023-01061-7","DOIUrl":"https://doi.org/10.1007/s11120-023-01061-7","url":null,"abstract":"<p>Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The response of LncRNAs associated with photosynthesis-and pigment synthesis-related genes to green light in Chlamydomonas reinhardtii 衣藻中与光合作用和色素合成相关基因有关的 LncRNA 对绿光的响应
IF 3.7 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-12-18 DOI: 10.1007/s11120-023-01062-6
Menghua Liu, Longxin Wang, Qianqian Yu, Jialin Song, Lixia Zhu, Kai-Hua Jia, Xiaochun Qin

The quality of light is an important abiotic factor that affects the growth and development of green plants. Ultraviolet, red, blue, and far-red light all have demonstrated roles in regulating green plant growth and development, as well as light morphogenesis. However, the mechanism underlying photosynthetic organism responses to green light throughout the life of them are not clear. In this study, we exposed the unicellular green alga Chlamydomonas reinhardtii to green light and analyzed the dynamics of transcriptome changes. Based on the whole transcriptome data from C. reinhardtii, a total of 9974 differentially expressed genes (DEGs) were identified under green light. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were mainly related to “carboxylic acid metabolic process,” “enzyme activity,” “carbon metabolism,” and “photosynthesis and other processes.” At the same time, 253 differentially expressed long non-coding RNAs (DELs) were characterized as green light responsive. We also made a detailed analysis of the responses of photosynthesis- and pigment synthesis-related genes in C. reinhardtii to green light and found that these genes exhibited obvious dynamic expression. Lastly, we constructed a co-expression regulatory network, comprising 49 long non-coding RNAs (lncRNAs) and 20 photosynthesis and pigment related genes, of which 9 mRNAs were also the predicted trans/cis-targets of 8 lncRNAs, these results suggested that lncRNAs may affect the expression of mRNAs related to photosynthesis and pigment synthesis. Our findings give a preliminary explanation of the response mechanism of C. reinhardtii to green light at the transcriptional level.

光的质量是影响绿色植物生长和发育的重要非生物因素。紫外线、红光、蓝光和远红光在调节绿色植物的生长和发育以及光的形态发生方面都有明显的作用。然而,光合生物一生中对绿光反应的机制尚不清楚。在本研究中,我们将单细胞绿藻莱茵衣藻暴露于绿光中,并分析了其转录组的动态变化。基于 C. reinhardtii 的全转录组数据,共鉴定出 9974 个绿光下差异表达基因(DEGs)。基因本体(GO)和京都基因组百科全书(KEGG)富集分析表明,这些差异表达基因主要与 "羧酸代谢过程"、"酶活性"、"碳代谢 "和 "光合作用及其他过程 "有关。同时,有 253 个差异表达的长非编码 RNA(DELs)具有绿光响应特征。我们还详细分析了与光合作用和色素合成相关的 C. reinhardtii 基因对绿光的响应,发现这些基因表现出明显的动态表达。最后,我们构建了一个由49个长非编码RNA(lncRNA)和20个光合作用和色素相关基因组成的共表达调控网络,其中9个mRNA同时也是8个lncRNA的反式/顺式靶标,这些结果表明lncRNA可能会影响光合作用和色素合成相关mRNA的表达。我们的研究结果从转录水平上初步解释了C. reinhardtii对绿光的响应机制。
{"title":"The response of LncRNAs associated with photosynthesis-and pigment synthesis-related genes to green light in Chlamydomonas reinhardtii","authors":"Menghua Liu, Longxin Wang, Qianqian Yu, Jialin Song, Lixia Zhu, Kai-Hua Jia, Xiaochun Qin","doi":"10.1007/s11120-023-01062-6","DOIUrl":"https://doi.org/10.1007/s11120-023-01062-6","url":null,"abstract":"<p>The quality of light is an important abiotic factor that affects the growth and development of green plants. Ultraviolet, red, blue, and far-red light all have demonstrated roles in regulating green plant growth and development, as well as light morphogenesis. However, the mechanism underlying photosynthetic organism responses to green light throughout the life of them are not clear. In this study, we exposed the unicellular green alga <i>Chlamydomonas reinhardtii</i> to green light and analyzed the dynamics of transcriptome changes. Based on the whole transcriptome data from <i>C. reinhardtii,</i> a total of 9974 differentially expressed genes (DEGs) were identified under green light<i>.</i> The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were mainly related to “carboxylic acid metabolic process,” “enzyme activity,” “carbon metabolism,” and “photosynthesis and other processes.” At the same time, 253 differentially expressed long non-coding RNAs (DELs) were characterized as green light responsive. We also made a detailed analysis of the responses of photosynthesis- and pigment synthesis-related genes in <i>C. reinhardtii</i> to green light and found that these genes exhibited obvious dynamic expression. Lastly, we constructed a co-expression regulatory network, comprising 49 long non-coding RNAs (lncRNAs) and 20 photosynthesis and pigment related genes, of which 9 mRNAs were also the predicted trans/cis-targets of 8 lncRNAs, these results suggested that lncRNAs may affect the expression of mRNAs related to photosynthesis and pigment synthesis. Our findings give a preliminary explanation of the response mechanism of <i>C. reinhardtii</i> to green light at the transcriptional level.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photosynthesis Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1