Osama A. Shabaek, Mohammad A. Kher‐Elden, Zakaria M. Abd El‐Fattah, Farouk F. Elakshar, Osama Yassin
Plasma‐based technologies offer environmentally friendly means of effective water purification. Here, we present a discharge system with He + 1% . Tunable amounts of were introduced to control the yield of reactive species. Detailed exploration of the system provides a deeper understanding of some of the fundamental chemical kinetics related to plasma‐based wastewater treatment. A global model was used to investigate the effect of additions on the yield of some important reactive species for advanced oxidation treatment of wastewater. Humidity leakage was considered to simulate the effect of humidified environments. The pathway analysis module provides deeper insight into chemical kinetics. It was concluded that additives can be used in tailoring plasma yield for water treatment applications.
基于等离子体的技术为有效净化水提供了环保手段。在这里,我们介绍了一种 He + 1% 的放电系统。我们引入了可调量的氦气来控制反应物的产量。通过对该系统的详细探索,我们可以更深入地了解与基于等离子体的废水处理相关的一些基本化学动力学。我们使用了一个全局模型来研究添加物对一些重要反应物产量的影响,这些反应物可用于废水的高级氧化处理。考虑了湿度泄漏,以模拟潮湿环境的影响。路径分析模块对化学动力学有更深入的了解。结论是,添加剂可用于调整水处理应用中的等离子产率。
{"title":"Theoretical investigation on the influence of H2 ${{rm{H}}}_{2}$ additions on the He + 1% O2 ${{rm{O}}}_{2}$ plasma reactivity for water treatment applications","authors":"Osama A. Shabaek, Mohammad A. Kher‐Elden, Zakaria M. Abd El‐Fattah, Farouk F. Elakshar, Osama Yassin","doi":"10.1002/ppap.202400105","DOIUrl":"https://doi.org/10.1002/ppap.202400105","url":null,"abstract":"Plasma‐based technologies offer environmentally friendly means of effective water purification. Here, we present a discharge system with He + 1% . Tunable amounts of were introduced to control the yield of reactive species. Detailed exploration of the system provides a deeper understanding of some of the fundamental chemical kinetics related to plasma‐based wastewater treatment. A global model was used to investigate the effect of additions on the yield of some important reactive species for advanced oxidation treatment of wastewater. Humidity leakage was considered to simulate the effect of humidified environments. The pathway analysis module provides deeper insight into chemical kinetics. It was concluded that additives can be used in tailoring plasma yield for water treatment applications.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"31 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pyrolysis of methane is a promising, new, greenhouse gas‐free production method of hydrogen. Here, we present optical emission spectra of a microwave plasma torch operated in an argon–methane mixture. Detailed spatial resolution is achieved by means of Abel inversion. The emission spectra are dominated by dicarbon Swan bands and black body radiation from carbon nanoparticles. Both spectral features are utilized to estimate the gas temperature. In the center of the plasma, gas temperatures of up to 4300 K are reached with large gradients (500 Kmm‐1) in the radial direction. The thermal equilibrium chemistry and the kinetics of methane pyrolysis are analyzed to explain the observed coupling between the local gas temperature and the local emission.
{"title":"Space‐resolved gas temperature of a microwave plasma torch used for hydrogen production via methane pyrolysis","authors":"Simon Kreuznacht, Marc Böke, Achim von Keudell","doi":"10.1002/ppap.202400089","DOIUrl":"https://doi.org/10.1002/ppap.202400089","url":null,"abstract":"Pyrolysis of methane is a promising, new, greenhouse gas‐free production method of hydrogen. Here, we present optical emission spectra of a microwave plasma torch operated in an argon–methane mixture. Detailed spatial resolution is achieved by means of Abel inversion. The emission spectra are dominated by dicarbon Swan bands and black body radiation from carbon nanoparticles. Both spectral features are utilized to estimate the gas temperature. In the center of the plasma, gas temperatures of up to 4300 K are reached with large gradients (500 Kmm<jats:sup>‐1</jats:sup>) in the radial direction. The thermal equilibrium chemistry and the kinetics of methane pyrolysis are analyzed to explain the observed coupling between the local gas temperature and the local emission.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"40 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plasma‐activated mist (PAM) has seen increasingly widespread applications in areas such as surface disinfection and fog cultivation. The high‐resolution time diagnostics of ns pulse plasma interacting with micron‐sized droplets under high‐humidity conditions is challenging to achieve with existing experimental methods. This paper employs a global model to study the interaction between plasma and droplets, offering a detailed analysis of the plasma's transition from the gas phase to the liquid phase. It was discovered that in high‐humidity environments, hydrated ions become the predominant ion species. These acidic active substances in PAM droplets are the primary factors in the mist's ability to kill bacteria. The paper further examines how variations in droplet size and discharge voltage influence the PAM's activity.
{"title":"Nanosecond pulse plasma activation of micron‐sized mist droplets","authors":"Cuntao lan, Yuran Yin, Dawei Liu, Xin Lu","doi":"10.1002/ppap.202400113","DOIUrl":"https://doi.org/10.1002/ppap.202400113","url":null,"abstract":"Plasma‐activated mist (PAM) has seen increasingly widespread applications in areas such as surface disinfection and fog cultivation. The high‐resolution time diagnostics of ns pulse plasma interacting with micron‐sized droplets under high‐humidity conditions is challenging to achieve with existing experimental methods. This paper employs a global model to study the interaction between plasma and droplets, offering a detailed analysis of the plasma's transition from the gas phase to the liquid phase. It was discovered that in high‐humidity environments, hydrated ions become the predominant ion species. These acidic active substances in PAM droplets are the primary factors in the mist's ability to kill bacteria. The paper further examines how variations in droplet size and discharge voltage influence the PAM's activity.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"57 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camilo Rendon Piedrahita, Kamal Baba, Robert Quintana, Patrick Choquet
1,2,3,4,5,6,7,8‐Octamethylcyclotetrasilazane (OTMSD), a cyclic silazane precursor, is deposited via atmospheric pressure plasma onto a substrate. The resulting coating exhibits a dual surface roughness, contributing to a significant reduction of surface wettability. Notably, the coating exhibits superhydrophobic characteristics, proven by a water contact angle of approximately 170°, hysteresis angle below 10°, very low tilting angle (<10°), and droplet‐bouncing effect. Importantly, this superhydrophobicity is achieved using OTMSD as fluorine‐free precursor with low reactivity to water. Furthermore, the deposition process is carried out using a commercially available plasma device highlighting its practicality and scalability for large‐scale production.
{"title":"Superhydrophobic surface development via atmospheric pressure plasma deposition of cyclic silazane","authors":"Camilo Rendon Piedrahita, Kamal Baba, Robert Quintana, Patrick Choquet","doi":"10.1002/ppap.202400097","DOIUrl":"https://doi.org/10.1002/ppap.202400097","url":null,"abstract":"1,2,3,4,5,6,7,8‐Octamethylcyclotetrasilazane (OTMSD), a cyclic silazane precursor, is deposited via atmospheric pressure plasma onto a substrate. The resulting coating exhibits a dual surface roughness, contributing to a significant reduction of surface wettability. Notably, the coating exhibits superhydrophobic characteristics, proven by a water contact angle of approximately 170°, hysteresis angle below 10°, very low tilting angle (<10°), and droplet‐bouncing effect. Importantly, this superhydrophobicity is achieved using OTMSD as fluorine‐free precursor with low reactivity to water. Furthermore, the deposition process is carried out using a commercially available plasma device highlighting its practicality and scalability for large‐scale production.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"35 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cold atmospheric plasma (CAP) therapy has been proven to effectively inhibit the growth of subcutaneous tumors. However, there is no research to explain how plasma‐induced anticancer effects can be transmitted to cancer cells through normal cells. Here, we monitored the effects of plasma‐irradiated HaCaT cells on nonirradiated A375 and HaCaT cells in terms of cell viability and intracellular reactive oxygen species levels in vitro. The experimental results indicated that plasma irradiation may induce plasma‐irradiated HaCaT cells to release soluble factors into the cell culture medium, thereby selectively killing nonirradiated A375 cells. The plasma‐generated short‐lived species play a crucial role in the release of soluble factors. Our research showed that plasma‐induced anticancer effects can be transmitted to deep nonirradiated cancer cells through plasma‐irradiated normal cells.
{"title":"Study on the anticancer effects of cold atmospheric plasma on deep subcutaneous tumor cells","authors":"Jishen Zhang, Shengduo Xu, Jinkun Chen, Weiji Yang, Tong Wu, Zifeng Wang, Li Guo, Dingxin Liu, Hao Zhang, Yujing Xu, Mingzhe Rong","doi":"10.1002/ppap.202400108","DOIUrl":"https://doi.org/10.1002/ppap.202400108","url":null,"abstract":"Cold atmospheric plasma (CAP) therapy has been proven to effectively inhibit the growth of subcutaneous tumors. However, there is no research to explain how plasma‐induced anticancer effects can be transmitted to cancer cells through normal cells. Here, we monitored the effects of plasma‐irradiated HaCaT cells on nonirradiated A375 and HaCaT cells in terms of cell viability and intracellular reactive oxygen species levels in vitro. The experimental results indicated that plasma irradiation may induce plasma‐irradiated HaCaT cells to release soluble factors into the cell culture medium, thereby selectively killing nonirradiated A375 cells. The plasma‐generated short‐lived species play a crucial role in the release of soluble factors. Our research showed that plasma‐induced anticancer effects can be transmitted to deep nonirradiated cancer cells through plasma‐irradiated normal cells.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"32 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Lv, Chuansheng Zhang, Cheng Zhang, Shaojun Xu, Zhaoliang Xing, Tao Shao
Polymer film capacitors experience a sharp decrease in charge–discharge efficiency and energy density under high‐temperature environments, which remains an urgent issue to address. In this article, atmospheric pressure plasma jet (APPJ) is used to deposit TiO2 to improve the energy storage performance of biaxially oriented polypropylene (BOPP) film in high‐temperature environment. The APPJ uses argon as the working gas and adopts a multielectrode grounding configuration to obtain the stable jet state. The precursor solution is prepared using tetraethyl titanate (TET) mixed with ethanol in a ratio of 5:3. The results show that the charge–discharge efficiency and discharge energy density (from 3.1 to 5.7 J cm–3) of BOPP films deposited by APPJ are improved at 120°C.
{"title":"Improving high‐temperature capacitive energy storage of biaxially oriented polypropylene through titanium dioxide deposition layer by atmospheric pressure plasma jets","authors":"Li Lv, Chuansheng Zhang, Cheng Zhang, Shaojun Xu, Zhaoliang Xing, Tao Shao","doi":"10.1002/ppap.202400122","DOIUrl":"https://doi.org/10.1002/ppap.202400122","url":null,"abstract":"Polymer film capacitors experience a sharp decrease in charge–discharge efficiency and energy density under high‐temperature environments, which remains an urgent issue to address. In this article, atmospheric pressure plasma jet (APPJ) is used to deposit TiO<jats:sub>2</jats:sub> to improve the energy storage performance of biaxially oriented polypropylene (BOPP) film in high‐temperature environment. The APPJ uses argon as the working gas and adopts a multielectrode grounding configuration to obtain the stable jet state. The precursor solution is prepared using tetraethyl titanate (TET) mixed with ethanol in a ratio of 5:3. The results show that the charge–discharge efficiency and discharge energy density (from 3.1 to 5.7 J cm<jats:sup>–3</jats:sup>) of BOPP films deposited by APPJ are improved at 120°C.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cold atmospheric plasma has selective anticancer effects, while limited penetration depth and lifetime of reactive species restrict its usage. Herein, we adopt saline and hydrogel as carriers of plasma‐induced reactive species, and link reactive species accumulation, attenuation, storage, and slow‐release to anticancer effects of plasma‐activated media. Results reveal that plasma‐activated hydrogel (PAH) has a sustained anticancer effect and prolongs the storage duration of reactive species, thus causing more intracellular oxidative species accumulation and inducing melanoma cell apoptosis with reactive species continuously released to cell medium. In contrast, plasma‐activated saline has an attenuated anticancer effect with decline in reactive species. Therefore, PAH serves as a useful reactive species carrier and has potential for further anticancer research.
{"title":"The sustained and effective anticancer effect of plasma‐activated hydrogel on melanoma cells","authors":"Shengduo Xu, Shiyao Wang, Tong Wu, Jishen Zhang, Xixi Jing, Jiao Lin, Hao Zhang, Dingxin Liu, Xianzhen Jin, Zifeng Wang, Xiaohua Wang, Mingzhe Rong","doi":"10.1002/ppap.202400004","DOIUrl":"https://doi.org/10.1002/ppap.202400004","url":null,"abstract":"Cold atmospheric plasma has selective anticancer effects, while limited penetration depth and lifetime of reactive species restrict its usage. Herein, we adopt saline and hydrogel as carriers of plasma‐induced reactive species, and link reactive species accumulation, attenuation, storage, and slow‐release to anticancer effects of plasma‐activated media. Results reveal that plasma‐activated hydrogel (PAH) has a sustained anticancer effect and prolongs the storage duration of reactive species, thus causing more intracellular oxidative species accumulation and inducing melanoma cell apoptosis with reactive species continuously released to cell medium. In contrast, plasma‐activated saline has an attenuated anticancer effect with decline in reactive species. Therefore, PAH serves as a useful reactive species carrier and has potential for further anticancer research.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"30 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Liu, Jianping Liang, Hongli Wang, Ke Lu, Zikai Zhou, Hongwei Shen, Yihao Xu, Kun Yang, Dezheng Yang
In this study, gas–liquid discharge plasma excited by nanosecond pulsed voltage is used to efficiently remove tiamulin (TIA) from water. The discharge produces a large number of reactive species (H2O2, OH radicals, NO3−, etc.) that can attack the TIA molecules. The effects of peak pulse voltage, initial TIA concentration, gas composition, and the addition of ferrous sulfate and persulfate on TIA removal were mainly investigated. The results showed that the oxygen plasma could approach 100% removal within 30 min of treatment time. The addition of the catalyst increased the TIA removal efficiency by approximately 15% during the 10‐min discharge treatment time. The toxicity of 12 intermediates was analyzed and the degradation mechanism of TIA was investigated.
在这项研究中,利用纳秒脉冲电压激发的气液放电等离子体可有效去除水中的替姆林(TIA)。放电产生的大量活性物种(H2O2、OH 自由基、NO3- 等)可攻击 TIA 分子。主要研究了峰值脉冲电压、TIA 初始浓度、气体成分以及硫酸亚铁和过硫酸盐的添加对去除 TIA 的影响。结果表明,氧等离子体可在 30 分钟的处理时间内达到 100% 的去除率。在 10 分钟的放电处理时间内,催化剂的加入使 TIA 的去除率提高了约 15%。分析了 12 种中间产物的毒性,并研究了 TIA 的降解机理。
{"title":"A study of tiamulin removal by nanosecond pulsed gas–liquid discharge underwater","authors":"Yang Liu, Jianping Liang, Hongli Wang, Ke Lu, Zikai Zhou, Hongwei Shen, Yihao Xu, Kun Yang, Dezheng Yang","doi":"10.1002/ppap.202400013","DOIUrl":"https://doi.org/10.1002/ppap.202400013","url":null,"abstract":"In this study, gas–liquid discharge plasma excited by nanosecond pulsed voltage is used to efficiently remove tiamulin (TIA) from water. The discharge produces a large number of reactive species (H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, OH radicals, NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>, etc.) that can attack the TIA molecules. The effects of peak pulse voltage, initial TIA concentration, gas composition, and the addition of ferrous sulfate and persulfate on TIA removal were mainly investigated. The results showed that the oxygen plasma could approach 100% removal within 30 min of treatment time. The addition of the catalyst increased the TIA removal efficiency by approximately 15% during the 10‐min discharge treatment time. The toxicity of 12 intermediates was analyzed and the degradation mechanism of TIA was investigated.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"7 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}