Plasma, owing to its reactivity and nonequilibrium properties, is a unique field commonly used in material processing. In recent years, plasma processing with a liquid phase has attracted considerable attention owing to its important advantages, such as high electron density and the availability of a wide variety of reactions in solutions. However, plasma-in-liquid material synthesis is occasionally difficult to control and guidelines are lacking. In this study, we investigated whether the hard-soft acid–base (HSAB) principle, which is often applied in material synthesis, is applicable to the plasma-in-liquid process and demonstrated that organic solvent-derived substances produced by plasma-in-liquid processing reacted with solutes according to the HSAB principle. These results suggest that the HSAB principle may apply to plasma-in-liquid processing.
{"title":"Application of the hard-soft acid–base principle in plasma-in-liquid processing","authors":"Moriyuki Kanno, Tsuyohito Ito, Kazuo Terashima","doi":"10.1002/ppap.202300156","DOIUrl":"https://doi.org/10.1002/ppap.202300156","url":null,"abstract":"Plasma, owing to its reactivity and nonequilibrium properties, is a unique field commonly used in material processing. In recent years, plasma processing with a liquid phase has attracted considerable attention owing to its important advantages, such as high electron density and the availability of a wide variety of reactions in solutions. However, plasma-in-liquid material synthesis is occasionally difficult to control and guidelines are lacking. In this study, we investigated whether the hard-soft acid–base (HSAB) principle, which is often applied in material synthesis, is applicable to the plasma-in-liquid process and demonstrated that organic solvent-derived substances produced by plasma-in-liquid processing reacted with solutes according to the HSAB principle. These results suggest that the HSAB principle may apply to plasma-in-liquid processing.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"162 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lars Bröcker, Tristan Winzer, Nickolas Steppan, Jan Benedikt, Claus-Peter Klages
Atmospheric-pressure plasma-enhanced film deposition with single-filament dielectric-barrier discharges (DBDs) in argon was investigated using allyltrimethylsilane (ATMS) as a precursor. Nonionic deposition in the discharge zone is largely precluded by a rapid cross-flow of the source gas, containing between 50 and 2000 ppm of ATMS. The performed experimental studies show a surprisingly large deposited film mass per transferred elementary charge between 220 and 540 amu. Film growth experiments, mass-spectrometric studies, and kinetic considerations led to the conclusion that the deposition process is a cationic surface polymerization, initiated by ions produced in the DBD by energy transfer from long-lived excited Ar species and propagated by addition of ATMS monomer molecules.
{"title":"Plasma polymerization of allyltrimethylsilane with single-filament dielectric-barrier discharges—Evidence of cationic surface processes","authors":"Lars Bröcker, Tristan Winzer, Nickolas Steppan, Jan Benedikt, Claus-Peter Klages","doi":"10.1002/ppap.202300177","DOIUrl":"https://doi.org/10.1002/ppap.202300177","url":null,"abstract":"Atmospheric-pressure plasma-enhanced film deposition with single-filament dielectric-barrier discharges (DBDs) in argon was investigated using allyltrimethylsilane (ATMS) as a precursor. Nonionic deposition in the discharge zone is largely precluded by a rapid cross-flow of the source gas, containing between 50 and 2000 ppm of ATMS. The performed experimental studies show a surprisingly large deposited film mass per transferred elementary charge between 220 and 540 amu. Film growth experiments, mass-spectrometric studies, and kinetic considerations led to the conclusion that the deposition process is a cationic surface polymerization, initiated by ions produced in the DBD by energy transfer from long-lived excited Ar species and propagated by addition of ATMS monomer molecules.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"42 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138576072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina Canal, Albert Espona-Noguera, Francesco Tampieri
Outside Front Cover: This second part of the special issue on Plasma Medicine focuses on the interdisciplinary that is intrinsic in this field. At its heart, plasma medicine combines elements of physics, chemistry, biology, and engineering.
{"title":"Outside Front Cover: Plasma Process. Polym. 12/2023","authors":"Cristina Canal, Albert Espona-Noguera, Francesco Tampieri","doi":"10.1002/ppap.202370025","DOIUrl":"https://doi.org/10.1002/ppap.202370025","url":null,"abstract":"<b>Outside Front Cover</b>: This second part of the special issue on Plasma Medicine focuses on the interdisciplinary that is intrinsic in this field. At its heart, plasma medicine combines elements of physics, chemistry, biology, and engineering.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"100 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanglin Yu, Bangfa Peng, Nan Jiang, Ronggang Wang, Haoyang Sun, Junwen He, Kefeng Shang, Na Lu, Jie Li
Enhancing discharge energy in dielectric barrier discharge (DBD) is vital for various applications. This study establishes a theoretical formula for predicting enhanced discharge in multi-needle-plate (MP) DBD, accounting for factors like needle count, rotation speed, and voltage frequency. Experiments validate the formula's accuracy, showing that precisely matched parameters result in enhanced discharge power, heightened streamer luminosity, and curved streamer channels. Lissajous figures in MP DBD exhibit elliptical shapes due to residual discharges during voltage fall. Statistical analysis of current pulses and discharge images confirms that dielectric plate rotation increases discharges and extends their duration during voltage fall. Numerical simulations highlight surface charge movement's role in enhancing the electric field and affecting streamer propagation direction in the air gap.
{"title":"Influence of rotating dielectric barrier on discharge characteristics in multi-needle-plate DBD","authors":"Guanglin Yu, Bangfa Peng, Nan Jiang, Ronggang Wang, Haoyang Sun, Junwen He, Kefeng Shang, Na Lu, Jie Li","doi":"10.1002/ppap.202300176","DOIUrl":"https://doi.org/10.1002/ppap.202300176","url":null,"abstract":"Enhancing discharge energy in dielectric barrier discharge (DBD) is vital for various applications. This study establishes a theoretical formula for predicting enhanced discharge in multi-needle-plate (MP) DBD, accounting for factors like needle count, rotation speed, and voltage frequency. Experiments validate the formula's accuracy, showing that precisely matched parameters result in enhanced discharge power, heightened streamer luminosity, and curved streamer channels. Lissajous figures in MP DBD exhibit elliptical shapes due to residual discharges during voltage fall. Statistical analysis of current pulses and discharge images confirms that dielectric plate rotation increases discharges and extends their duration during voltage fall. Numerical simulations highlight surface charge movement's role in enhancing the electric field and affecting streamer propagation direction in the air gap.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"33 1-2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomohiro Nozaki, Leon Lefferts, Jonas Baltrusaitis
<p>This special issue highlights renewable energies (REs). Among them, renewable electricity is becoming the most accessible and flexible low-carbon energy source. It can potentially allow achieving a drastic reduction of CO<sub>2</sub> emissions that will contribute to our future sustainable society. RE is not limited to the development of high-performance energy devices, such as photovoltaics, fuel cells, and secondary batteries. Importantly, the utilization of RE in sustainable transformation and valorization of widely available yet hard-to-activate small carbon and hydrogen-containing molecules, such as CO<sub>2</sub>, CH<sub>4</sub>, and H<sub>2</sub>O, are vital for the production of low-carbon e-fuels and sustainable chemicals.</p>