Pub Date : 2024-11-06DOI: 10.1103/physrevx.14.041034
Thibaut Arnoulx de Pirey, Yariv Kafri, Sriram Ramaswamy
We show that an inclusion placed inside a dilute Stokesian suspension of microswimmers induces power-law number-density modulations and flows. These take a different form depending on whether the inclusion is held fixed by an external force—for example, an optical tweezer—or if it is free. When the inclusion is held in place, the far-field fluid flow is a Stokeslet, while the microswimmer density decays as <mjx-container ctxtmenu_counter="31" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-children="0,7" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 7" data-semantic-role="division" data-semantic-speech="1 divided by r Superscript 2 plus epsilon" data-semantic-structure="(8 0 1 (7 2 (6 3 4 5)))" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="8" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-msup data-semantic-children="2,6" data-semantic- data-semantic-owns="2 6" data-semantic-parent="8" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑟</mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mrow data-semantic-children="3,5" data-semantic-content="4" data-semantic- data-semantic-owns="3 4 5" data-semantic-parent="7" data-semantic-role="addition" data-semantic-type="infixop" size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="6" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>+</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c>𝜀</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>, with <mjx-container ctxtmenu_counter="32" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="r" data-semantic-type="identifier"><mjx-c>𝑟</mjx-c></mjx-mi></mjx-math></mjx-container> the distance from the inclusion and <mjx-container ctxtmenu
{"title":"Anomalous Long-Ranged Influence of an Inclusion in Momentum-Conserving Active Fluids","authors":"Thibaut Arnoulx de Pirey, Yariv Kafri, Sriram Ramaswamy","doi":"10.1103/physrevx.14.041034","DOIUrl":"https://doi.org/10.1103/physrevx.14.041034","url":null,"abstract":"We show that an inclusion placed inside a dilute Stokesian suspension of microswimmers induces power-law number-density modulations and flows. These take a different form depending on whether the inclusion is held fixed by an external force—for example, an optical tweezer—or if it is free. When the inclusion is held in place, the far-field fluid flow is a Stokeslet, while the microswimmer density decays as <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,7\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 7\" data-semantic-role=\"division\" data-semantic-speech=\"1 divided by r Superscript 2 plus epsilon\" data-semantic-structure=\"(8 0 1 (7 2 (6 3 4 5)))\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,6\" data-semantic- data-semantic-owns=\"2 6\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑟</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"3 4 5\" data-semantic-parent=\"7\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜀</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup></mjx-math></mjx-container>, with <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\"><mjx-c>𝑟</mjx-c></mjx-mi></mjx-math></mjx-container> the distance from the inclusion and <mjx-container ctxtmenu","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"86 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1103/physrevx.14.041032
Emanuel Hubenschmid, Thiago L. M. Guedes, Guido Burkard
Following recent progress in the experimental application of electro-optic sampling to the detection of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a free-space quantum state directly in the time domain. By combining two recently developed methods to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count probability distribution of the electro-optic signal to a transformed phase-space quasiprobability distribution of the sampled quantum state as a function of the time delay between the sampled midinfrared pulsed state and an ultrabroadband near-infrared probe pulse. We catalog and analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband probe pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of the thermalization noise enables a tomographic reconstruction of broadband quantum states while granting access to its dynamics on a subcycle scale.
{"title":"Optical Time-Domain Quantum State Tomography on a Subcycle Scale","authors":"Emanuel Hubenschmid, Thiago L. M. Guedes, Guido Burkard","doi":"10.1103/physrevx.14.041032","DOIUrl":"https://doi.org/10.1103/physrevx.14.041032","url":null,"abstract":"Following recent progress in the experimental application of electro-optic sampling to the detection of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a free-space quantum state directly in the time domain. By combining two recently developed methods to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count probability distribution of the electro-optic signal to a transformed phase-space quasiprobability distribution of the sampled quantum state as a function of the time delay between the sampled midinfrared pulsed state and an ultrabroadband near-infrared probe pulse. We catalog and analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband probe pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of the thermalization noise enables a tomographic reconstruction of broadband quantum states while granting access to its dynamics on a subcycle scale.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"47 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1103/physrevx.14.041030
Xuntao Wu, Haoxiong Yan, Gustav Andersson, Alexander Anferov, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Shiheng Li, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Andrew N. Cleland
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-<mjx-container ctxtmenu_counter="131" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="upper Z" data-semantic-type="identifier"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-math></mjx-container> gates across all qubit pairs, with a benchmarked average fidelity of <mjx-container ctxtmenu_counter="132" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-children="0,1,5,4" data-semantic-content="1,4" data-semantic- data-semantic-owns="0 1 5 4" data-semantic-role="sequence" data-semantic-speech="96.00 percent sign plus or minus 0.08 percent sign" data-semantic-structure="(6 0 1 (5 2 3) 4)" data-semantic-type="punctuated"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.646em;">9</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">6</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">0</mjx-c><mjx-c style="padding-top: 0.646em;">0</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="6" data-semantic-role="unknown" data-semantic-type="punctuation"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="3" data-semantic-content="2" data-semantic- data-semantic-owns="2 3" data-semantic-parent="6" data-semantic-role="addition" data-semantic-type="prefixop" space="3"><mjx-mo data-semantic- data-semantic-operator="prefixop,±" data-semantic-parent="5" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-
{"title":"Modular Quantum Processor with an All-to-All Reconfigurable Router","authors":"Xuntao Wu, Haoxiong Yan, Gustav Andersson, Alexander Anferov, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Yash J. Joshi, Shiheng Li, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Andrew N. Cleland","doi":"10.1103/physrevx.14.041030","DOIUrl":"https://doi.org/10.1103/physrevx.14.041030","url":null,"abstract":"Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-<mjx-container ctxtmenu_counter=\"131\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-math></mjx-container> gates across all qubit pairs, with a benchmarked average fidelity of <mjx-container ctxtmenu_counter=\"132\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"0,1,5,4\" data-semantic-content=\"1,4\" data-semantic- data-semantic-owns=\"0 1 5 4\" data-semantic-role=\"sequence\" data-semantic-speech=\"96.00 percent sign plus or minus 0.08 percent sign\" data-semantic-structure=\"(6 0 1 (5 2 3) 4)\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">0</mjx-c><mjx-c style=\"padding-top: 0.646em;\">0</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"prefixop\" space=\"3\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,±\" data-semantic-parent=\"5\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- ","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"67 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1103/physrevx.14.041031
Tibor Rakovszky, Sarang Gopalakrishnan, Curt von Keyserlingk
The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: Informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and we provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.
{"title":"Defining Stable Phases of Open Quantum Systems","authors":"Tibor Rakovszky, Sarang Gopalakrishnan, Curt von Keyserlingk","doi":"10.1103/physrevx.14.041031","DOIUrl":"https://doi.org/10.1103/physrevx.14.041031","url":null,"abstract":"The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: Informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and we provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"90 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1103/physrevx.14.041028
Robert D. Delaney, Lucas R. Sletten, Matthew J. Cich, Brian Estey, Maya I. Fabrikant, David Hayes, Ian M. Hoffman, James Hostetter, Christopher Langer, Steven A. Moses, Abigail R. Perry, Timothy A. Peterson, Andrew Schaffer, Curtis Volin, Grahame Vittorini, William Cody Burton
Quantum processors based on linear arrays of trapped ions have achieved exceptional performance, but scaling to large qubit numbers requires realizing two-dimensional ion arrays as envisioned in the quantum charge-coupled device (QCCD) architecture. Here, we present a scalable method for the control of ion crystals in a grid-based surface-electrode Paul trap and characterize it in the context of transport operations that sort and reorder multispecies crystals. By combining cowiring of control electrodes at translationally symmetric locations in each grid site with the sitewise ability to exchange the voltages applied to two special electrodes gated by a binary input, site-dependent operations can be achieved using only a fixed number of analog voltage signals and a single digital input per site. In two separate experimental systems containing nominally identical grid traps, one using <mjx-container ctxtmenu_counter="21" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(17 (7 (2 0 1) 3 4 5 6) 8 (16 (11 9 10) 12 13 14 15))"><mjx-mrow data-semantic-children="7,16" data-semantic-content="8" data-semantic- data-semantic-owns="7 8 16" data-semantic-role="subtraction" data-semantic-speech="Superscript 171 Baseline upper Y b Superscript plus minus Superscript 138 Baseline upper B a Superscript plus" data-semantic-type="infixop"><mjx-mmultiscripts data-semantic-children="2,3,4,5,6" data-semantic-collapsed="(7 2 3 4 5 6)" data-semantic- data-semantic-owns="2 3 4 5 6" data-semantic-parent="17" data-semantic-role="unknown" data-semantic-type="tensor"><mjx-prescripts style="vertical-align: 0.555em;"><mjx-row><mjx-cell><mjx-mrow size="s"><mjx-mn data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="leftsuper" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.639em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.639em;">7</mjx-c><mjx-c style="padding-top: 0.639em;">1</mjx-c></mjx-mn></mjx-mrow></mjx-cell></mjx-row><mjx-row style="height: 0.796em;"></mjx-row><mjx-row><mjx-cell><mjx-none data-semantic- data-semantic-parent="7" data-semantic-role="leftsub" data-semantic-type="empty" size="s"></mjx-none></mjx-cell></mjx-row></mjx-prescripts><mjx-mrow><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="superscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">Y</mjx-c><mjx-c style="padding-top: 0.706em;">b</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: 0.433em;"><mjx-mrow size="s"><mjx-mo data-semantic- data-semantic-parent="2" data-semantic-role="addition" data-semantic-type="operator"><mjx-c>+</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx
{"title":"Scalable Multispecies Ion Transport in a Grid-Based Surface-Electrode Trap","authors":"Robert D. Delaney, Lucas R. Sletten, Matthew J. Cich, Brian Estey, Maya I. Fabrikant, David Hayes, Ian M. Hoffman, James Hostetter, Christopher Langer, Steven A. Moses, Abigail R. Perry, Timothy A. Peterson, Andrew Schaffer, Curtis Volin, Grahame Vittorini, William Cody Burton","doi":"10.1103/physrevx.14.041028","DOIUrl":"https://doi.org/10.1103/physrevx.14.041028","url":null,"abstract":"Quantum processors based on linear arrays of trapped ions have achieved exceptional performance, but scaling to large qubit numbers requires realizing two-dimensional ion arrays as envisioned in the quantum charge-coupled device (QCCD) architecture. Here, we present a scalable method for the control of ion crystals in a grid-based surface-electrode Paul trap and characterize it in the context of transport operations that sort and reorder multispecies crystals. By combining cowiring of control electrodes at translationally symmetric locations in each grid site with the sitewise ability to exchange the voltages applied to two special electrodes gated by a binary input, site-dependent operations can be achieved using only a fixed number of analog voltage signals and a single digital input per site. In two separate experimental systems containing nominally identical grid traps, one using <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(17 (7 (2 0 1) 3 4 5 6) 8 (16 (11 9 10) 12 13 14 15))\"><mjx-mrow data-semantic-children=\"7,16\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 16\" data-semantic-role=\"subtraction\" data-semantic-speech=\"Superscript 171 Baseline upper Y b Superscript plus minus Superscript 138 Baseline upper B a Superscript plus\" data-semantic-type=\"infixop\"><mjx-mmultiscripts data-semantic-children=\"2,3,4,5,6\" data-semantic-collapsed=\"(7 2 3 4 5 6)\" data-semantic- data-semantic-owns=\"2 3 4 5 6\" data-semantic-parent=\"17\" data-semantic-role=\"unknown\" data-semantic-type=\"tensor\"><mjx-prescripts style=\"vertical-align: 0.555em;\"><mjx-row><mjx-cell><mjx-mrow size=\"s\"><mjx-mn data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"leftsuper\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">7</mjx-c><mjx-c style=\"padding-top: 0.639em;\">1</mjx-c></mjx-mn></mjx-mrow></mjx-cell></mjx-row><mjx-row style=\"height: 0.796em;\"></mjx-row><mjx-row><mjx-cell><mjx-none data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"leftsub\" data-semantic-type=\"empty\" size=\"s\"></mjx-none></mjx-cell></mjx-row></mjx-prescripts><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">Y</mjx-c><mjx-c style=\"padding-top: 0.706em;\">b</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.433em;\"><mjx-mrow size=\"s\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"><mjx-c>+</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"16 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1103/physrevx.14.041029
E. M. Stoudenmire, Xavier Waintal
Grover’s algorithm is one of the primary algorithms offered as evidence that quantum computers can provide an advantage over classical computers. It involves an “oracle” (external quantum subroutine), which must be specified for a given application and whose internal structure is not part of the formal scaling of the quadratic quantum speedup guaranteed by the algorithm. Grover’s algorithm also requires exponentially many calls to the quantum oracle (approximately <mjx-container ctxtmenu_counter="41" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 (2 0 1))"><mjx-msqrt data-semantic-children="2" data-semantic- data-semantic-owns="2" data-semantic-role="unknown" data-semantic-speech="StartRoot 2 Superscript n Baseline EndRoot" data-semantic-type="sqrt"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c>√</mjx-c></mjx-mo></mjx-surd><mjx-box style="padding-top: 0.28em; border-top-width: 0.085em;"><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="superscript"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-script style="vertical-align: 0.289em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-script></mjx-msup></mjx-box></mjx-sqrt></mjx-msqrt></mjx-math></mjx-container> calls where n is the number of qubits) to succeed, raising the question of its implementation on both noisy and error-corrected quantum computers. In this work, we construct a quantum-inspired algorithm executable on a classical computer that performs Grover’s task in a linear number of calls to (simulations of) the oracle—an exponentially smaller number than Grover’s algorithm—and demonstrate this algorithm explicitly for Boolean satisfiability problems. The complexity of our algorithm depends on the cost to simulate the oracle once, which may or may not be exponential, depending on its internal structure. Indeed, Grover’s algorithm does not have an <i>a priori</i> quantum speedup as soon as one is given access to the “source code” of the oracle, which may reveal an internal structure of the problem. Our findings illustrate this point explicitly, as our algorithm exploits the structure of the quantum circuit used to program the quantum computer to speed up the search. There are still problems where Grover’s algorithm would provide an asymptotic speedup if it could be run accurately for large enough sizes. Our quantum-inspired algorithm provides lower bounds, in terms of the quantum-circuit complexity, for the quantum hardware to beat classical approaches
格罗弗算法是证明量子计算机比经典计算机更具优势的主要算法之一。该算法涉及一个 "oracle"(外部量子子程序),必须针对给定的应用进行指定,其内部结构不属于该算法所保证的四次量子加速的形式缩放的一部分。格罗弗的算法还需要指数级地多次调用量子神谕(大约 √2𝑛 次调用,其中 n 是量子比特数)才能成功,这就提出了在噪声量子计算机和纠错量子计算机上实现该算法的问题。在这项工作中,我们构建了一种可在经典计算机上执行的量子启发算法,该算法只需线性调用(模拟)神谕次数即可完成格罗弗的任务--比格罗弗算法的调用次数少得多。我们算法的复杂度取决于模拟一次甲骨文的成本,这可能是也可能不是指数级的,取决于甲骨文的内部结构。事实上,只要能够访问甲骨文的 "源代码",格罗弗算法就不会有先验的量子提速,因为 "源代码 "可能会揭示问题的内部结构。我们的研究结果明确地说明了这一点,因为我们的算法利用了量子电路的结构来为量子计算机编程,从而加快了搜索速度。如果格罗弗算法能在足够大的规模下精确运行,那么它仍能在一些问题上提供渐进式加速。我们的量子启发算法提供了量子电路复杂度的下限,使量子硬件在处理这些问题时能够击败经典方法。这些估计值,再加上格罗弗算法成功概率的不利缩放(在存在噪声的情况下,成功概率以量子比特数的指数衰减),使得即使在对硬件质量和可用性的演化持极为乐观的假设下,实际的速度提升也是不现实的。
{"title":"Opening the Black Box inside Grover’s Algorithm","authors":"E. M. Stoudenmire, Xavier Waintal","doi":"10.1103/physrevx.14.041029","DOIUrl":"https://doi.org/10.1103/physrevx.14.041029","url":null,"abstract":"Grover’s algorithm is one of the primary algorithms offered as evidence that quantum computers can provide an advantage over classical computers. It involves an “oracle” (external quantum subroutine), which must be specified for a given application and whose internal structure is not part of the formal scaling of the quadratic quantum speedup guaranteed by the algorithm. Grover’s algorithm also requires exponentially many calls to the quantum oracle (approximately <mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 (2 0 1))\"><mjx-msqrt data-semantic-children=\"2\" data-semantic- data-semantic-owns=\"2\" data-semantic-role=\"unknown\" data-semantic-speech=\"StartRoot 2 Superscript n Baseline EndRoot\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c>√</mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.28em; border-top-width: 0.085em;\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.289em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑛</mjx-c></mjx-mi></mjx-script></mjx-msup></mjx-box></mjx-sqrt></mjx-msqrt></mjx-math></mjx-container> calls where n is the number of qubits) to succeed, raising the question of its implementation on both noisy and error-corrected quantum computers. In this work, we construct a quantum-inspired algorithm executable on a classical computer that performs Grover’s task in a linear number of calls to (simulations of) the oracle—an exponentially smaller number than Grover’s algorithm—and demonstrate this algorithm explicitly for Boolean satisfiability problems. The complexity of our algorithm depends on the cost to simulate the oracle once, which may or may not be exponential, depending on its internal structure. Indeed, Grover’s algorithm does not have an <i>a priori</i> quantum speedup as soon as one is given access to the “source code” of the oracle, which may reveal an internal structure of the problem. Our findings illustrate this point explicitly, as our algorithm exploits the structure of the quantum circuit used to program the quantum computer to speed up the search. There are still problems where Grover’s algorithm would provide an asymptotic speedup if it could be run accurately for large enough sizes. Our quantum-inspired algorithm provides lower bounds, in terms of the quantum-circuit complexity, for the quantum hardware to beat classical approaches","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"79 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1103/physrevx.14.041027
Philipp Strasberg, Teresa E. Reinhard, Joseph Schindler
Within the histories formalism the decoherence functional is a formal tool to investigate the emergence of classicality in isolated quantum systems, yet an explicit evaluation of it from first principles has not been reported. We provide such an evaluation for up to five-time histories based on exact numerical diagonalization of the Schrödinger equation. We find a robust emergence of decoherence for slow and coarse observables of a generic random matrix model and extract a finite-size scaling law by varying the Hilbert space dimension over 4 orders of magnitude. Specifically, we conjecture and observe an exponential suppression of coherent effects as a function of the particle number of the system. This suggests a solution to the preferred basis problem of the many-worlds interpretation (or the set selection problem of the histories formalism) within a minimal theoretical framework without relying on environmentally induced decoherence, quantum Darwinism, Markov approximations, low-entropy initial states, or ensemble averages.
{"title":"First Principles Numerical Demonstration of Emergent Decoherent Histories","authors":"Philipp Strasberg, Teresa E. Reinhard, Joseph Schindler","doi":"10.1103/physrevx.14.041027","DOIUrl":"https://doi.org/10.1103/physrevx.14.041027","url":null,"abstract":"Within the histories formalism the decoherence functional is a formal tool to investigate the emergence of classicality in isolated quantum systems, yet an explicit evaluation of it from first principles has not been reported. We provide such an evaluation for up to five-time histories based on exact numerical diagonalization of the Schrödinger equation. We find a robust emergence of decoherence for slow and coarse observables of a generic random matrix model and extract a finite-size scaling law by varying the Hilbert space dimension over 4 orders of magnitude. Specifically, we conjecture and observe an exponential suppression of coherent effects as a function of the particle number of the system. This suggests a solution to the preferred basis problem of the many-worlds interpretation (or the set selection problem of the histories formalism) within a minimal theoretical framework without relying on environmentally induced decoherence, quantum Darwinism, Markov approximations, low-entropy initial states, or ensemble averages.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"7 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In chemical reactions, the nuclear motion of the molecules plays a crucial role in determining the reaction rates and outcomes. Employing the cold target recoil ion momentum spectroscopy and femtosecond pump-probe techniques, we perform a molecular-level study into the influence of nuclear vibrations on light-induced bimolecular reactions within dimers. The study focuses on the formation dynamics of and cations, shedding light on the interplay between translational and vibrational motions of the nuclei steering the bimolecular reactions. Our observations reveal a notable yield ratio of between and channels, accompanied with a faster formation of compared to . Molecular dynamics simulations unveil that the faster vibrational motion of than that of upon single ionization within the dimer accounts for these differences. Our findings provide new insight into the time-resolved kinetic isotope effect on the bimolecular reactions, highlighting the critical relationship between nuclear vibrational motions and reaction dynamics.
{"title":"Impact of Nuclear Motion on Light-Induced Bimolecular Interaction Dynamics","authors":"Menghang Shi, Hao Huang, Chenxu Lu, Shengzhe Pan, Lianrong Zhou, Zhejun Jiang, Hongcheng Ni, Wenbin Zhang, Jian Wu","doi":"10.1103/physrevx.14.041001","DOIUrl":"https://doi.org/10.1103/physrevx.14.041001","url":null,"abstract":"In chemical reactions, the nuclear motion of the molecules plays a crucial role in determining the reaction rates and outcomes. Employing the cold target recoil ion momentum spectroscopy and femtosecond pump-probe techniques, we perform a molecular-level study into the influence of nuclear vibrations on light-induced bimolecular reactions within <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi mathvariant=\"normal\">H</mi></mrow><mrow><mn>2</mn></mrow></msub><mtext>−</mtext><msub><mrow><mi mathvariant=\"normal\">D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> dimers. The study focuses on the formation dynamics of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">D</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">H</mi><mo>+</mo></msup></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">D</mi><mo>+</mo></msup></mrow></math> cations, shedding light on the interplay between translational and vibrational motions of the nuclei steering the bimolecular reactions. Our observations reveal a notable yield ratio of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>:</mo><mn>1.6</mn></mrow></math> between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">D</mi><mo>+</mo></msup></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">D</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">H</mi><mo>+</mo></msup></mrow></math> channels, accompanied with a faster formation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">D</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">H</mi><mo>+</mo></msup></mrow></math> compared to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><msup><mi mathvariant=\"normal\">D</mi><mo>+</mo></msup></mrow></math>. Molecular dynamics simulations unveil that the faster vibrational motion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msubsup><mrow><mi mathvariant=\"normal\">H</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math> than that of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msubsup><mrow><mi mathvariant=\"normal\">D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math> upon single ionization within the dimer accounts for these differences. Our findings provide new insight into the time-resolved kinetic isotope effect on the bimolecular reactions, highlighting the critical relationship between nuclear vibrational motions and reaction dynamics.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"4 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1103/physrevx.14.031055
Srujan Meesala, David Lake, Steven Wood, Piero Chiappina, Changchun Zhong, Andrew D. Beyer, Matthew D. Shaw, Liang Jiang, Oskar Painter
Entanglement is an extraordinary feature of quantum mechanics. Sources of entangled optical photons were essential to test the foundations of quantum physics through violations of Bell’s inequalities. More recently, entangled many-body states have been realized via strong nonlinear interactions in microwave circuits with superconducting qubits. Here, we demonstrate a chip-scale source of entangled optical and microwave photonic qubits. Our device platform integrates a piezo-optomechanical transducer with a superconducting resonator which is robust under optical illumination. We drive a photon-pair generation process and employ a dual-rail encoding intrinsic to our system to prepare entangled states of microwave and optical photons. We place a lower bound on the fidelity of the entangled state by measuring microwave and optical photons in two orthogonal bases. This entanglement source can directly interface telecom wavelength time-bin qubits and gigahertz frequency superconducting qubits, two well-established platforms for quantum communication and computation, respectively.
{"title":"Quantum Entanglement between Optical and Microwave Photonic Qubits","authors":"Srujan Meesala, David Lake, Steven Wood, Piero Chiappina, Changchun Zhong, Andrew D. Beyer, Matthew D. Shaw, Liang Jiang, Oskar Painter","doi":"10.1103/physrevx.14.031055","DOIUrl":"https://doi.org/10.1103/physrevx.14.031055","url":null,"abstract":"Entanglement is an extraordinary feature of quantum mechanics. Sources of entangled optical photons were essential to test the foundations of quantum physics through violations of Bell’s inequalities. More recently, entangled many-body states have been realized via strong nonlinear interactions in microwave circuits with superconducting qubits. Here, we demonstrate a chip-scale source of entangled optical and microwave photonic qubits. Our device platform integrates a piezo-optomechanical transducer with a superconducting resonator which is robust under optical illumination. We drive a photon-pair generation process and employ a dual-rail encoding intrinsic to our system to prepare entangled states of microwave and optical photons. We place a lower bound on the fidelity of the entangled state by measuring microwave and optical photons in two orthogonal bases. This entanglement source can directly interface telecom wavelength time-bin qubits and gigahertz frequency superconducting qubits, two well-established platforms for quantum communication and computation, respectively.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"4 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}