Pub Date : 2024-12-05DOI: 10.1103/physrevx.14.041056
Uri Goldblatt, Nitzan Kahn, Sergey Hazanov, Ofir Milul, Barkay Guttel, Lalit M. Joshi, Daniel Chausovsky, Fabien Lafont, Serge Rosenblum
Decoherence in qubits, caused by their interaction with a noisy environment, poses a significant challenge to the development of reliable quantum processors. A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits. By actively monitoring these noisy ancillas, it is possible to not only identify qubit decoherence events but also to correct these errors in real time. This approach is particularly beneficial for bosonic qubits, where the interaction with ancillas is a dominant source of decoherence. In this work, we uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla. By tracking the noisy ancilla trajectory and using real-time feedback, we successfully recover the lost coherence of the cavity qubit, achieving a fivefold increase in its pure dephasing time. Additionally, by detecting ancilla errors and converting them into erasures, we improve the pure dephasing time by more than an order of magnitude. These advances are essential for realizing long-lived cavity qubits with high-fidelity gates, and they pave the way for more efficient bosonic quantum error-correction codes. Published by the American Physical Society2024
{"title":"Recovering Quantum Coherence of a Cavity Qubit Coupled to a Noisy Ancilla through Real-Time Feedback","authors":"Uri Goldblatt, Nitzan Kahn, Sergey Hazanov, Ofir Milul, Barkay Guttel, Lalit M. Joshi, Daniel Chausovsky, Fabien Lafont, Serge Rosenblum","doi":"10.1103/physrevx.14.041056","DOIUrl":"https://doi.org/10.1103/physrevx.14.041056","url":null,"abstract":"Decoherence in qubits, caused by their interaction with a noisy environment, poses a significant challenge to the development of reliable quantum processors. A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits. By actively monitoring these noisy ancillas, it is possible to not only identify qubit decoherence events but also to correct these errors in real time. This approach is particularly beneficial for bosonic qubits, where the interaction with ancillas is a dominant source of decoherence. In this work, we uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla. By tracking the noisy ancilla trajectory and using real-time feedback, we successfully recover the lost coherence of the cavity qubit, achieving a fivefold increase in its pure dephasing time. Additionally, by detecting ancilla errors and converting them into erasures, we improve the pure dephasing time by more than an order of magnitude. These advances are essential for realizing long-lived cavity qubits with high-fidelity gates, and they pave the way for more efficient bosonic quantum error-correction codes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1103/physrevx.14.041055
Maximilian Pallmann, Kerim Köster, Yuan Zhang, Julia Heupel, Timon Eichhorn, Cyril Popov, Klaus Mølmer, David Hunger
When an ensemble of quantum emitters couples to a common radiation field, their polarizations can synchronize and a collective emission termed superfluorescence can occur. Entering this regime in a free-space setting requires a large number of emitters with a high spatial density as well as coherent optical transitions with small inhomogeneity. Here, we show that, by coupling nitrogen-vacancy centers in a diamond membrane to a high-finesse microcavity, also few, incoherent, inhomogeneous, and spatially separated emitters—as are typical for solid state systems—can enter the regime of collective emission. We observe a superlinear power dependence of the emission rate as a hallmark of collective emission. Furthermore, we find simultaneous photon bunching and antibunching on different timescales in the second-order autocorrelation function, revealing cavity-induced interference in the quantized emission from about 15 emitters. We develop theoretical models for mesoscopic emitter numbers to analyze the behavior in the Dicke state basis and find that the population of collective states together with cavity enhancement and filtering can explain the observations. Such a system has prospects for the generation of multiphoton quantum states, the preparation of entanglement in few-emitter systems, and enhancement of signals in quantum sensing. Published by the American Physical Society2024
{"title":"Cavity-Mediated Collective Emission from Few Emitters in a Diamond Membrane","authors":"Maximilian Pallmann, Kerim Köster, Yuan Zhang, Julia Heupel, Timon Eichhorn, Cyril Popov, Klaus Mølmer, David Hunger","doi":"10.1103/physrevx.14.041055","DOIUrl":"https://doi.org/10.1103/physrevx.14.041055","url":null,"abstract":"When an ensemble of quantum emitters couples to a common radiation field, their polarizations can synchronize and a collective emission termed superfluorescence can occur. Entering this regime in a free-space setting requires a large number of emitters with a high spatial density as well as coherent optical transitions with small inhomogeneity. Here, we show that, by coupling nitrogen-vacancy centers in a diamond membrane to a high-finesse microcavity, also few, incoherent, inhomogeneous, and spatially separated emitters—as are typical for solid state systems—can enter the regime of collective emission. We observe a superlinear power dependence of the emission rate as a hallmark of collective emission. Furthermore, we find simultaneous photon bunching and antibunching on different timescales in the second-order autocorrelation function, revealing cavity-induced interference in the quantized emission from about 15 emitters. We develop theoretical models for mesoscopic emitter numbers to analyze the behavior in the Dicke state basis and find that the population of collective states together with cavity enhancement and filtering can explain the observations. Such a system has prospects for the generation of multiphoton quantum states, the preparation of entanglement in few-emitter systems, and enhancement of signals in quantum sensing. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"223 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1103/physrevx.14.041054
Daniel Pęcak, Agata Zdanowicz, Nicolas Chamel, Piotr Magierski, Gabriel Wlazłowski
We present a new numerical tool designed to probe the dense layers of neutron star crusts. It is based on the time-dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear energy-density functionals of the Brussels-Montreal family. We use it to study the time evolution of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star. We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. These microscopic effects are of key importance for understanding various neutron star phenomena. Moreover, the mechanisms we describe are general and apply also to other fermionic superfluids interacting with obstacles like liquid helium or ultracold gases. Published by the American Physical Society2024
{"title":"Time-Dependent Nuclear Energy-Density Functional Theory Toolkit for Neutron Star Crust: Dynamics of a Nucleus in a Neutron Superfluid","authors":"Daniel Pęcak, Agata Zdanowicz, Nicolas Chamel, Piotr Magierski, Gabriel Wlazłowski","doi":"10.1103/physrevx.14.041054","DOIUrl":"https://doi.org/10.1103/physrevx.14.041054","url":null,"abstract":"We present a new numerical tool designed to probe the dense layers of neutron star crusts. It is based on the time-dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear energy-density functionals of the Brussels-Montreal family. We use it to study the time evolution of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star. We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. These microscopic effects are of key importance for understanding various neutron star phenomena. Moreover, the mechanisms we describe are general and apply also to other fermionic superfluids interacting with obstacles like liquid helium or ultracold gases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"26 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1103/physrevx.14.041053
Zheting Jin, Sohrab Ismail-Beigi
Materials-realistic microscopic theoretical descriptions of copper-based superconductors are challenging due to their complex crystal structures combined with strong electron interactions. Here, we demonstrate how density functional theory can accurately describe key structural, electronic, and magnetic properties of the normal state of the prototypical cuprate Bi2Sr2CaCu2O8+x (Bi-2212). We emphasize the importance of accounting for energy-lowering structural distortions, which then allows us to (a) accurately describe the insulating antiferromagnetic (AFM) ground state of the undoped parent compound (in contrast to the metallic state predicted by previous studies); (b) identify numerous low-energy competing spin and charge stripe orders in the hole-overdoped material nearly degenerate in energy with the AFM ordered state, indicating strong spin fluctuations; (c) predict the lowest-energy hole-doped crystal structure including its long-range structural distortions and oxygen dopant positions that match high-resolution scanning transmission electron microscopy measurements; and (d) describe electronic bands near the Fermi energy with flat antinodal dispersions and Fermi surfaces that are in agreement with angle-resolved photoemission spectroscopy (ARPES) measurements and provide a clear explanation for the structural origins of the so-called “shadow bands.” We also show how one must go beyond band theory and include fully dynamic spin fluctuations via a many-body approach when aiming to make quantitative predictions to measure the ARPES spectra in the overdoped material. Finally, regarding spatial inhomogeneity, we show that the local structure at the CuO2 layer, rather than dopant electrostatic effects, modulates the local charge-transfer gaps, local correlation strengths, and by extension the local superconducting gaps. Published by the American Physical Society2024
{"title":"First-Principles Prediction of Structural Distortions in the Cuprates and Their Impact on the Electronic Structure","authors":"Zheting Jin, Sohrab Ismail-Beigi","doi":"10.1103/physrevx.14.041053","DOIUrl":"https://doi.org/10.1103/physrevx.14.041053","url":null,"abstract":"Materials-realistic microscopic theoretical descriptions of copper-based superconductors are challenging due to their complex crystal structures combined with strong electron interactions. Here, we demonstrate how density functional theory can accurately describe key structural, electronic, and magnetic properties of the normal state of the prototypical cuprate Bi</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>Sr</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>CaCu</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>O</a:mi></a:mrow>8</a:mn>+</a:mo>x</a:mi></a:mrow></a:msub></a:mrow></a:math> (Bi-2212). We emphasize the importance of accounting for energy-lowering structural distortions, which then allows us to (a) accurately describe the insulating antiferromagnetic (AFM) ground state of the undoped parent compound (in contrast to the metallic state predicted by previous studies); (b) identify numerous low-energy competing spin and charge stripe orders in the hole-overdoped material nearly degenerate in energy with the AFM ordered state, indicating strong spin fluctuations; (c) predict the lowest-energy hole-doped crystal structure including its long-range structural distortions and oxygen dopant positions that match high-resolution scanning transmission electron microscopy measurements; and (d) describe electronic bands near the Fermi energy with flat antinodal dispersions and Fermi surfaces that are in agreement with angle-resolved photoemission spectroscopy (ARPES) measurements and provide a clear explanation for the structural origins of the so-called “shadow bands.” We also show how one must go beyond band theory and include fully dynamic spin fluctuations via a many-body approach when aiming to make quantitative predictions to measure the ARPES spectra in the overdoped material. Finally, regarding spatial inhomogeneity, we show that the local structure at the <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:msub><d:mrow><d:mi>CuO</d:mi></d:mrow><d:mrow><d:mn>2</d:mn></d:mrow></d:msub></d:mrow></d:math> layer, rather than dopant electrostatic effects, modulates the local charge-transfer gaps, local correlation strengths, and by extension the local superconducting gaps. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"46 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1103/physrevx.14.041052
Edoardo Zatterin, Petr Ondrejkovic, Louis Bastogne, Céline Lichtensteiger, Ludovica Tovaglieri, Daniel A. Chaney, Alireza Sasani, Tobias Schülli, Alexei Bosak, Steven Leake, Pavlo Zubko, Philippe Ghosez, Jirka Hlinka, Jean-Marc Triscone, Marios Hadjimichael
The observation of unexpected polarization textures such as vortices, skyrmions, and merons in various oxide heterostructures has challenged the widely accepted picture of ferroelectric domain walls as being Ising-like. Bloch components in the 180° domain walls of PbTiO</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math> have recently been reported in <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:msub><c:mrow><c:mi>PbTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub><c:mo stretchy="false">/</c:mo><c:msub><c:mrow><c:mi>SrTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub></c:mrow></c:math> superlattices and linked to domain wall chirality. While this opens exciting perspectives, the ubiquity of this Bloch component remains to be further explored. In this work, we present a comprehensive investigation of domain walls in <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mrow><f:msub><f:mrow><f:mi>PbTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub><f:mo stretchy="false">/</f:mo><f:msub><f:mrow><f:mi>SrTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub></f:mrow></f:math> superlattices, involving a combination of first- and second-principles calculations, phase-field simulations, diffuse scattering calculations, and synchrotron-based diffuse x-ray scattering. Our theoretical calculations highlight that the previously predicted Bloch polarization in the 180° domain walls in <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:msub><i:mrow><i:mi>PbTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub><i:mo stretchy="false">/</i:mo><i:msub><i:mrow><i:mi>SrTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub></i:mrow></i:math> superlattices might be more sensitive to the boundary conditions than initially thought and is not always expected to appear. Employing diffuse scattering calculations for larger systems, we develop a method to probe the complex structure of domain walls in these superlattices via diffuse x-ray scattering measurements. Through this approach, we investigate depolarization-driven ferroelectric polarization rotation at the domain walls. Our experimental findings, consistent with our theoretical predictions for realistic domain periods, do not reveal any signatures of a Bloch component in the centers of the 180° domain walls of <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mrow><l:msub><l:mrow><l:mi>PbTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub><l:mo stretchy="false">/</l:mo><l:msub><l:mrow><l:mi>SrTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub></l:mrow></l:math> superlattices, suggesting that the precise nature of domain walls in the ultrathin <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:mrow><o:msub><o:mrow><o:mi>PbTiO</o:mi></o:mrow><o:mn>3</o:mn></o:msub></o:mrow></o:math> layers is more intricate than previously thought and deserves further attention. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:co
{"title":"Assessing the Ubiquity of Bloch Domain Walls in Ferroelectric Lead Titanate Superlattices","authors":"Edoardo Zatterin, Petr Ondrejkovic, Louis Bastogne, Céline Lichtensteiger, Ludovica Tovaglieri, Daniel A. Chaney, Alireza Sasani, Tobias Schülli, Alexei Bosak, Steven Leake, Pavlo Zubko, Philippe Ghosez, Jirka Hlinka, Jean-Marc Triscone, Marios Hadjimichael","doi":"10.1103/physrevx.14.041052","DOIUrl":"https://doi.org/10.1103/physrevx.14.041052","url":null,"abstract":"The observation of unexpected polarization textures such as vortices, skyrmions, and merons in various oxide heterostructures has challenged the widely accepted picture of ferroelectric domain walls as being Ising-like. Bloch components in the 180° domain walls of PbTiO</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math> have recently been reported in <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>PbTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub><c:mo stretchy=\"false\">/</c:mo><c:msub><c:mrow><c:mi>SrTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub></c:mrow></c:math> superlattices and linked to domain wall chirality. While this opens exciting perspectives, the ubiquity of this Bloch component remains to be further explored. In this work, we present a comprehensive investigation of domain walls in <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:msub><f:mrow><f:mi>PbTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub><f:mo stretchy=\"false\">/</f:mo><f:msub><f:mrow><f:mi>SrTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub></f:mrow></f:math> superlattices, involving a combination of first- and second-principles calculations, phase-field simulations, diffuse scattering calculations, and synchrotron-based diffuse x-ray scattering. Our theoretical calculations highlight that the previously predicted Bloch polarization in the 180° domain walls in <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>PbTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub><i:mo stretchy=\"false\">/</i:mo><i:msub><i:mrow><i:mi>SrTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub></i:mrow></i:math> superlattices might be more sensitive to the boundary conditions than initially thought and is not always expected to appear. Employing diffuse scattering calculations for larger systems, we develop a method to probe the complex structure of domain walls in these superlattices via diffuse x-ray scattering measurements. Through this approach, we investigate depolarization-driven ferroelectric polarization rotation at the domain walls. Our experimental findings, consistent with our theoretical predictions for realistic domain periods, do not reveal any signatures of a Bloch component in the centers of the 180° domain walls of <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mrow><l:msub><l:mrow><l:mi>PbTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub><l:mo stretchy=\"false\">/</l:mo><l:msub><l:mrow><l:mi>SrTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub></l:mrow></l:math> superlattices, suggesting that the precise nature of domain walls in the ultrathin <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:msub><o:mrow><o:mi>PbTiO</o:mi></o:mrow><o:mn>3</o:mn></o:msub></o:mrow></o:math> layers is more intricate than previously thought and deserves further attention. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:co","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"116 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1103/physrevx.14.041039
C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang
Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from 𝐸F, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.
{"title":"Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors","authors":"C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang","doi":"10.1103/physrevx.14.041039","DOIUrl":"https://doi.org/10.1103/physrevx.14.041039","url":null,"abstract":"Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from <mjx-container ctxtmenu_counter=\"342\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper E Subscript normal upper F\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐸</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.016em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>F</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"196 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1103/physrevx.14.041038
Matthew P. Leighton, Jannik Ehrich, David A. Sivak
Heat engines and information engines have each historically served as motivating examples for the development of thermodynamics. While these two types of systems are typically thought of as two separate kinds of machines, recent empirical studies of specific systems have hinted at possible connections between the two. Inspired by molecular machines in the cellular environment, which in many cases have separate components in contact with distinct sources of fluctuations, we study bipartite heat engines. We show that a bipartite heat engine can produce net output work only by acting as an information engine. Conversely, information engines can extract more work than the work consumed to power them only if they have access to different sources of fluctuations, i.e., act as heat engines. We illustrate these findings first through an analogy to economics and a cyclically controlled 2D ideal gas. We then explore two analytically tractable model systems in more detail: a Brownian-gyrator heat engine, which we show can be reinterpreted as a feedback-cooling information engine, and a quantum-dot information engine, which can be reinterpreted as a thermoelectric heat engine. Our results suggest design principles for both heat engines and information engines at the nanoscale and ultimately imply constraints on how free-energy transduction is carried out in biological molecular machines.
{"title":"Information Arbitrage in Bipartite Heat Engines","authors":"Matthew P. Leighton, Jannik Ehrich, David A. Sivak","doi":"10.1103/physrevx.14.041038","DOIUrl":"https://doi.org/10.1103/physrevx.14.041038","url":null,"abstract":"Heat engines and information engines have each historically served as motivating examples for the development of thermodynamics. While these two types of systems are typically thought of as two separate kinds of machines, recent empirical studies of specific systems have hinted at possible connections between the two. Inspired by molecular machines in the cellular environment, which in many cases have separate components in contact with distinct sources of fluctuations, we study bipartite heat engines. We show that a bipartite heat engine can produce net output work only by acting as an information engine. Conversely, information engines can extract more work than the work consumed to power them only if they have access to different sources of fluctuations, i.e., act as heat engines. We illustrate these findings first through an analogy to economics and a cyclically controlled 2D ideal gas. We then explore two analytically tractable model systems in more detail: a Brownian-gyrator heat engine, which we show can be reinterpreted as a feedback-cooling information engine, and a quantum-dot information engine, which can be reinterpreted as a thermoelectric heat engine. Our results suggest design principles for both heat engines and information engines at the nanoscale and ultimately imply constraints on how free-energy transduction is carried out in biological molecular machines.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevx.14.041036
Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft
We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant <mjx-container ctxtmenu_counter="273" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="c" data-semantic-type="identifier"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons hybridizing with a lattice of localized <mjx-container ctxtmenu_counter="274" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of <mjx-container ctxtmenu_counter="275" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> spins by <mjx-container ctxtmenu_counter="276" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="c" data-semantic-type="identifier"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons breaks down, so that <mjx-container ctxtmenu_counter="277" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="f" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> excitations change their character from somewhat itinerant to mainly localized, while <mjx-container ctxtmenu_counter="278" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree
{"title":"Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality","authors":"Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft","doi":"10.1103/physrevx.14.041036","DOIUrl":"https://doi.org/10.1103/physrevx.14.041036","url":null,"abstract":"We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant <mjx-container ctxtmenu_counter=\"273\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons hybridizing with a lattice of localized <mjx-container ctxtmenu_counter=\"274\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of <mjx-container ctxtmenu_counter=\"275\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> spins by <mjx-container ctxtmenu_counter=\"276\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons breaks down, so that <mjx-container ctxtmenu_counter=\"277\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> excitations change their character from somewhat itinerant to mainly localized, while <mjx-container ctxtmenu_counter=\"278\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"105 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevx.14.041037
Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer
The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter="12" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper C d 3 upper A s 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">C</mjx-c><mjx-c style="padding-top: 0.706em;">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop," data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.662em;">A</mjx-c><mjx-c style="padding-top: 0.662em;">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the
{"title":"Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide","authors":"Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer","doi":"10.1103/physrevx.14.041037","DOIUrl":"https://doi.org/10.1103/physrevx.14.041037","url":null,"abstract":"The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C d 3 upper A s 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.662em;\">A</mjx-c><mjx-c style=\"padding-top: 0.662em;\">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"95 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1103/physrevx.14.041035
Fabian H. L. Essler, Werner Krauth
Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.
{"title":"Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains","authors":"Fabian H. L. Essler, Werner Krauth","doi":"10.1103/physrevx.14.041035","DOIUrl":"https://doi.org/10.1103/physrevx.14.041035","url":null,"abstract":"Virtually all Markov-chain Monte Carlo algorithms used for sampling a given distribution are reversible, and they satisfy the detailed-balance condition. For local chains, this leads to a slow, diffusive exploration of sample space. Significant speedups can be achieved through nonreversible algorithms with the given distribution as a targeted steady state. However, nonreversible algorithms for sampling are difficult to set up and to analyze, and exact speedup results for interacting many-particle systems are very rare. Here, we introduce the “lifted” totally asymmetric simple exclusion process (TASEP) as an exactly solvable paradigm for nonreversible many-particle Markov chains. It samples the same hard-sphere distribution as the Metropolis algorithm for symmetrically diffusing hard-core particles on a one-dimensional lattice. We solve the lifted TASEP by an unusual kind of coordinate Bethe ansatz and show that it exhibits polynomial (in particle number) speedups in the relaxation time for the asymptotic approach of the steady state, as well as the nonasymptotic mixing time, compared to both Metropolis and Kardar-Parisi-Zhang-based dynamics. The lifted TASEP is the reduction onto the one-dimensional lattice of the successful hard-sphere event-chain Monte Carlo algorithm, and we discuss that it can likewise be generalized to soft interaction potentials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"69 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}