Pub Date : 2024-08-15DOI: 10.1103/physrevx.14.031027
Chantal Nguyen, Imri Dromi, Ahron Kempinski, Gabriella E. C. Gall, Orit Peleg, Yasmine Meroz
Circumnutations are widespread in plants and typically associated with exploratory movements; however, a quantitative understanding of their role remains elusive. In this study we report, for the first time, the role of noisy circumnutations in facilitating an optimal growth pattern within a crowded group of mutually shading plants. We revisit the problem of self-organization observed for sunflowers, mediated by shade response interactions. Our analysis reveals that circumnutation movements conform to a bounded random walk characterized by a remarkably broad distribution of velocities, covering 3 orders of magnitude. In motile animal systems such wide distributions of movement velocities are frequently identified with enhancement of behavioral processes, suggesting that circumnutations may serve as a source of functional noise. To test our hypothesis, we developed a Langevin-type parsimonious model of interacting growing disks, informed by experiments, successfully capturing the characteristic dynamics of individual and multiple interacting plants. Employing our simulation framework we examine the role of circumnutations in the system, and find that the observed breadth of the velocity distribution represents a sharp transition in the force-noise ratio, conferring advantageous effects by facilitating exploration of potential configurations, leading to an optimized arrangement with minimal shading. These findings represent the first report of functional noise in plant movements and establish a theoretical foundation for investigating how plants navigate their environment by employing computational processes such as task-oriented processes, optimization, and active sensing. Since plants move by growing, space and time are coupled, and dynamics of self-organization lead to emergent 3D patterns. As such, this system provides conceptual insight for other interacting growth-driven systems such as fungal hyphae, neurons and self-growing robots, as well as active matter systems where agents interact with past trajectories of their counterparts, such as stigmergy in social insects. This foundational insight has implications in statistical physics, ecological dynamics, agriculture, and even swarm robotics.
{"title":"Noisy Circumnutations Facilitate Self-Organized Shade Avoidance in Sunflowers","authors":"Chantal Nguyen, Imri Dromi, Ahron Kempinski, Gabriella E. C. Gall, Orit Peleg, Yasmine Meroz","doi":"10.1103/physrevx.14.031027","DOIUrl":"https://doi.org/10.1103/physrevx.14.031027","url":null,"abstract":"Circumnutations are widespread in plants and typically associated with exploratory movements; however, a quantitative understanding of their role remains elusive. In this study we report, for the first time, the role of noisy circumnutations in facilitating an optimal growth pattern within a crowded group of mutually shading plants. We revisit the problem of self-organization observed for sunflowers, mediated by shade response interactions. Our analysis reveals that circumnutation movements conform to a bounded random walk characterized by a remarkably broad distribution of velocities, covering 3 orders of magnitude. In motile animal systems such wide distributions of movement velocities are frequently identified with enhancement of behavioral processes, suggesting that circumnutations may serve as a source of functional noise. To test our hypothesis, we developed a Langevin-type parsimonious model of interacting growing disks, informed by experiments, successfully capturing the characteristic dynamics of individual and multiple interacting plants. Employing our simulation framework we examine the role of circumnutations in the system, and find that the observed breadth of the velocity distribution represents a sharp transition in the force-noise ratio, conferring advantageous effects by facilitating exploration of potential configurations, leading to an optimized arrangement with minimal shading. These findings represent the first report of functional noise in plant movements and establish a theoretical foundation for investigating how plants navigate their environment by employing computational processes such as task-oriented processes, optimization, and active sensing. Since plants move by growing, space and time are coupled, and dynamics of self-organization lead to emergent 3D patterns. As such, this system provides conceptual insight for other interacting growth-driven systems such as fungal hyphae, neurons and self-growing robots, as well as active matter systems where agents interact with past trajectories of their counterparts, such as stigmergy in social insects. This foundational insight has implications in statistical physics, ecological dynamics, agriculture, and even swarm robotics.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1103/physrevx.14.031025
Alexander Steinhoff, Edith Wietek, Matthias Florian, Tommy Schulz, Takashi Taniguchi, Kenji Watanabe, Shen Zhao, Alexander Högele, Frank Jahnke, Alexey Chernikov
Exciton-exciton interactions are key to understanding nonlinear optical and transport phenomena in van der Waals heterobilayers, which emerged as versatile platforms to study correlated electronic states. We present a combined theory-experiment study of excitonic many-body effects based on first-principle band structures and Coulomb interaction matrix elements. Key to our approach is the explicit treatment of the fermionic substructure of excitons and dynamical screening effects for density-induced energy renormalization and dissipation. We demonstrate that dipolar blueshifts are almost perfectly compensated by many-body effects, mainly by screening-induced self-energy corrections. Moreover, we identify a crossover between attractive and repulsive behavior at elevated exciton densities. Theoretical findings are supported by experimental studies of spectrally narrow, mobile interlayer excitons in atomically reconstructed, -BN-encapsulated heterobilayers. Both theory and experiment show energy renormalization on a scale of a few meV even for high injection densities in the vicinity of the Mott transition. Our results revise the established picture of dipolar repulsion dominating exciton-exciton interactions in van der Waals heterostructures and open up opportunities for their external design.
{"title":"Exciton-Exciton Interactions in Van der Waals Heterobilayers","authors":"Alexander Steinhoff, Edith Wietek, Matthias Florian, Tommy Schulz, Takashi Taniguchi, Kenji Watanabe, Shen Zhao, Alexander Högele, Frank Jahnke, Alexey Chernikov","doi":"10.1103/physrevx.14.031025","DOIUrl":"https://doi.org/10.1103/physrevx.14.031025","url":null,"abstract":"Exciton-exciton interactions are key to understanding nonlinear optical and transport phenomena in van der Waals heterobilayers, which emerged as versatile platforms to study correlated electronic states. We present a combined theory-experiment study of excitonic many-body effects based on first-principle band structures and Coulomb interaction matrix elements. Key to our approach is the explicit treatment of the fermionic substructure of excitons and dynamical screening effects for density-induced energy renormalization and dissipation. We demonstrate that dipolar blueshifts are almost perfectly compensated by many-body effects, mainly by screening-induced self-energy corrections. Moreover, we identify a crossover between attractive and repulsive behavior at elevated exciton densities. Theoretical findings are supported by experimental studies of spectrally narrow, mobile interlayer excitons in atomically reconstructed, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math>-BN-encapsulated <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>MoSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>/</mo><msub><mi>WSe</mi><mn>2</mn></msub></math> heterobilayers. Both theory and experiment show energy renormalization on a scale of a few meV even for high injection densities in the vicinity of the Mott transition. Our results revise the established picture of dipolar repulsion dominating exciton-exciton interactions in van der Waals heterostructures and open up opportunities for their external design.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1103/physrevx.14.031026
Roberto Morán-Tovar, Michael Lässig
The initial immune response to an acute primary infection is a coupled process of antigen proliferation, molecular recognition by naive B cells, and their subsequent clonal expansion. This process contains a fundamental problem: the recognition of an exponentially time-dependent antigen signal. Here, we show that an efficient immune response must be stringently constrained to B-cell lineages with high antigen binding affinity. We propose a tuned proofreading mechanism for primary recognition of new antigens, where the molecular recognition machinery is adapted to the complexity of the immune repertoire. We show that this process produces potent, specific, and fast recognition of antigens, maintaining a spectrum of genetically distinct B-cell lineages as input for affinity maturation. Our analysis maps the proliferation-recognition dynamics of a primary infection to a generalized Luria-Delbrück process, akin to the dynamics of the classic fluctuation experiment. This map establishes a link between signal recognition dynamics and evolution. We derive the resulting statistics of the activated immune repertoire: Antigen binding affinity, expected size, and frequency of active B-cell clones are related by power laws, which define the class of generalized Luria-Delbrück processes. Their exponents depend on the antigen and B-cell proliferation rate, the number of proofreading steps, and the lineage density of the naive repertoire. We extend the model to include spatiotemporal processes, including the diffusion-recognition dynamics of a vaccination. Empirical data of activated mouse immune repertoires are found to be consistent with activation involving about three proofreading steps. The model predicts key clinical characteristics of acute infections and vaccinations, including the emergence of elite neutralizers and the effects of immune aging. More broadly, our results establish infections and vaccinations as a new probe into the global architecture and functional principles of immune repertoires.
对急性原发性感染的最初免疫反应是一个抗原增殖、幼稚 B 细胞分子识别及其随后克隆扩增的耦合过程。这一过程包含一个基本问题:识别指数随时间变化的抗原信号。在这里,我们表明,高效的免疫反应必须严格限制在具有高抗原结合亲和力的 B 细胞系中。我们提出了一种调整校对机制,用于对新抗原的初级识别,其中的分子识别机制适应了免疫库的复杂性。我们的研究表明,这一过程能对抗原进行有效、特异和快速的识别,并保持基因上不同的 B 细胞系谱,作为亲和力成熟的输入。我们的分析将原发性感染的增殖-识别动态映射为一个广义的 Luria-Delbrück 过程,类似于经典波动实验的动态。这一映射建立了信号识别动态与进化之间的联系。我们由此推导出活化免疫复合物的统计数据:抗原结合亲和力、预期大小和活性 B 细胞克隆的频率都与幂律有关,它们定义了广义 Luria-Delbrück 过程的类别。它们的指数取决于抗原和 B 细胞的增殖率、校对步骤的数量以及幼稚细胞群的系谱密度。我们将模型扩展到时空过程,包括疫苗接种的扩散-识别动态过程。我们发现,激活小鼠免疫复合物的经验数据与涉及大约三个校对步骤的激活相一致。该模型预测了急性感染和疫苗接种的关键临床特征,包括精英中和者的出现和免疫老化的影响。更广泛地说,我们的研究结果将感染和疫苗接种确立为探究免疫复合物的全球结构和功能原理的新方法。
{"title":"Nonequilibrium Antigen Recognition during Infections and Vaccinations","authors":"Roberto Morán-Tovar, Michael Lässig","doi":"10.1103/physrevx.14.031026","DOIUrl":"https://doi.org/10.1103/physrevx.14.031026","url":null,"abstract":"The initial immune response to an acute primary infection is a coupled process of antigen proliferation, molecular recognition by naive B cells, and their subsequent clonal expansion. This process contains a fundamental problem: the recognition of an exponentially time-dependent antigen signal. Here, we show that an efficient immune response must be stringently constrained to B-cell lineages with high antigen binding affinity. We propose a tuned proofreading mechanism for primary recognition of new antigens, where the molecular recognition machinery is adapted to the complexity of the immune repertoire. We show that this process produces potent, specific, and fast recognition of antigens, maintaining a spectrum of genetically distinct B-cell lineages as input for affinity maturation. Our analysis maps the proliferation-recognition dynamics of a primary infection to a generalized Luria-Delbrück process, akin to the dynamics of the classic fluctuation experiment. This map establishes a link between signal recognition dynamics and evolution. We derive the resulting statistics of the activated immune repertoire: Antigen binding affinity, expected size, and frequency of active B-cell clones are related by power laws, which define the class of generalized Luria-Delbrück processes. Their exponents depend on the antigen and B-cell proliferation rate, the number of proofreading steps, and the lineage density of the naive repertoire. We extend the model to include spatiotemporal processes, including the diffusion-recognition dynamics of a vaccination. Empirical data of activated mouse immune repertoires are found to be consistent with activation involving about three proofreading steps. The model predicts key clinical characteristics of acute infections and vaccinations, including the emergence of elite neutralizers and the effects of immune aging. More broadly, our results establish infections and vaccinations as a new probe into the global architecture and functional principles of immune repertoires.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1103/physrevx.14.031024
M. Coraiola, D. Z. Haxell, D. Sabonis, M. Hinderling, S. C. ten Kate, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, F. Nichele
Hybrid Josephson junctions (JJs) realized in superconductor-semiconductor heterostructures host fermionic modes known as Andreev bound states (ABSs). In these structures, a promising and yet unexplored avenue for harnessing spin and parity degrees of freedom is offered by JJs with three or more superconducting terminals, where phase-induced spin polarization and transitions of the ground state to an odd parity were predicted to arise. Here we spectroscopically probe the two-dimensional band structure of ABSs in a phase-controlled three-terminal JJ. Andreev bands show signatures of spin-degeneracy breaking, with level splitting in excess of , and zero-energy crossings associated to ground state fermion parity transitions. Spin splitting and parity transitions are enabled and controlled by locally applied magnetic fluxes, in the absence of Zeeman effect or Coulomb blockade. Our results underscore the potential of multiterminal hybrid devices for phase engineering ABSs, with significant implications for spin- and parity-based quantum devices.
{"title":"Spin-Degeneracy Breaking and Parity Transitions in Three-Terminal Josephson Junctions","authors":"M. Coraiola, D. Z. Haxell, D. Sabonis, M. Hinderling, S. C. ten Kate, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, F. Nichele","doi":"10.1103/physrevx.14.031024","DOIUrl":"https://doi.org/10.1103/physrevx.14.031024","url":null,"abstract":"Hybrid Josephson junctions (JJs) realized in superconductor-semiconductor heterostructures host fermionic modes known as Andreev bound states (ABSs). In these structures, a promising and yet unexplored avenue for harnessing spin and parity degrees of freedom is offered by JJs with three or more superconducting terminals, where phase-induced spin polarization and transitions of the ground state to an odd parity were predicted to arise. Here we spectroscopically probe the two-dimensional band structure of ABSs in a phase-controlled <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>InAs</mi><mo>/</mo><mi>Al</mi></mrow></math> three-terminal JJ. Andreev bands show signatures of spin-degeneracy breaking, with level splitting in excess of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mrow><mn>9</mn><mtext> </mtext><mtext> </mtext><mi>GHz</mi></mrow></math>, and zero-energy crossings associated to ground state fermion parity transitions. Spin splitting and parity transitions are enabled and controlled by locally applied magnetic fluxes, in the absence of Zeeman effect or Coulomb blockade. Our results underscore the potential of multiterminal hybrid devices for phase engineering ABSs, with significant implications for spin- and parity-based quantum devices.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1103/physrevx.14.031023
Saebyeok Ahnet al.
We report an extensive high-sensitivity search for axion dark matter above 1 GHz at the Center for Axion and Precision Physics Research (CAPP). The cavity resonant search, exploiting the coupling between axions and photons, explored the frequency (mass) range of 1.025 GHz () to 1.185 GHz (). We have introduced a number of innovations in this field, demonstrating the practical approach of optimizing all the relevant parameters of axion haloscopes, extending presently available technology. The CAPP 12 T magnet with an aperture of 320 mm made of and NbTi superconductors surrounding a 37 l ultralight-weight copper cavity is expected to convert Dine-Fischler-Srednicki-Zhitnitsky axions into approximately microwave photons per second. A powerful dilution refrigerator, capable of keeping the core system below 40 mK, combined with quantum-noise-limited readout electronics, achieved a total system noise of about 200 mK or below, which corresponds to a background of roughly photons per second within the axion bandwidth. The combination of all those improvements provides unprecedented search performance, imposing the most stringent exclusion limits on axion-photon coupling in this frequency range to date. These results also suggest an experimental capability suitable for highly sensitive searches for axion dark matter above 1 GHz.
{"title":"Extensive Search for Axion Dark Matter over 1 GHz with CAPP’S Main Axion Experiment","authors":"Saebyeok Ahnet al.","doi":"10.1103/physrevx.14.031023","DOIUrl":"https://doi.org/10.1103/physrevx.14.031023","url":null,"abstract":"We report an extensive high-sensitivity search for axion dark matter above 1 GHz at the Center for Axion and Precision Physics Research (CAPP). The cavity resonant search, exploiting the coupling between axions and photons, explored the frequency (mass) range of 1.025 GHz (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4.24</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi>eV</mi></mrow></math>) to 1.185 GHz (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4.91</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi>eV</mi></mrow></math>). We have introduced a number of innovations in this field, demonstrating the practical approach of optimizing all the relevant parameters of axion haloscopes, extending presently available technology. The CAPP 12 T magnet with an aperture of 320 mm made of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>Nb</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>Sn</mi></mrow></math> and NbTi superconductors surrounding a 37 l ultralight-weight copper cavity is expected to convert Dine-Fischler-Srednicki-Zhitnitsky axions into approximately <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>2</mn></msup></math> microwave photons per second. A powerful dilution refrigerator, capable of keeping the core system below 40 mK, combined with quantum-noise-limited readout electronics, achieved a total system noise of about 200 mK or below, which corresponds to a background of roughly <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></math> photons per second within the axion bandwidth. The combination of all those improvements provides unprecedented search performance, imposing the most stringent exclusion limits on axion-photon coupling in this frequency range to date. These results also suggest an experimental capability suitable for highly sensitive searches for axion dark matter above 1 GHz.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrically controlled photonic circuits hold promise for information technologies with greatly improved energy efficiency and quantum information processing capabilities. However, weak nonlinearity and electrical response of typical photonic materials have been two critical challenges. Therefore, hybrid electronic-photonic systems, such as semiconductor exciton polaritons, have been intensely investigated for their potential to allow higher nonlinearity and electrical control, with limited success so far. Here we demonstrate an electrically gated waveguide architecture for field induced dipolar polaritons that allows enhanced and electrically controllable polariton nonlinearities, enabling an electrically tuned reflecting switch (mirror) and transistor of the dipolar polaritons. The polariton transistor displays blockade and antiblockade by compressing a dilute dipolar-polariton pulse exhibiting very strong dipolar interactions. The large nonlinearities are explained using a simple density-dependent dipolar polarization field that very effectively screens the external electric field. We project that a quantum blockade at the single polariton level is feasible in such a device.
{"title":"Electrically Controlled Photonic Circuits of Field-Induced Dipolaritons with Huge Nonlinearities","authors":"Dror Liran, Ronen Rapaport, Jiaqi Hu, Nathanial Lydick, Hui Deng, Loren Pfeiffer","doi":"10.1103/physrevx.14.031022","DOIUrl":"https://doi.org/10.1103/physrevx.14.031022","url":null,"abstract":"Electrically controlled photonic circuits hold promise for information technologies with greatly improved energy efficiency and quantum information processing capabilities. However, weak nonlinearity and electrical response of typical photonic materials have been two critical challenges. Therefore, hybrid electronic-photonic systems, such as semiconductor exciton polaritons, have been intensely investigated for their potential to allow higher nonlinearity and electrical control, with limited success so far. Here we demonstrate an electrically gated waveguide architecture for field induced dipolar polaritons that allows enhanced and electrically controllable polariton nonlinearities, enabling an electrically tuned reflecting switch (mirror) and transistor of the dipolar polaritons. The polariton transistor displays blockade and antiblockade by compressing a dilute dipolar-polariton pulse exhibiting very strong dipolar interactions. The large nonlinearities are explained using a simple density-dependent dipolar polarization field that very effectively screens the external electric field. We project that a quantum blockade at the single polariton level is feasible in such a device.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1103/physrevx.14.031021
Brendan Harris, Leonardo L. Gollo, Ben D. Fulcher
Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often with dramatic and irreversible consequences. Much existing theory on identifying the time-series signatures of nearby critical points, such as increased signal variance and slower timescales, is derived from analytically tractable systems, typically considering the case of fixed, low-amplitude noise. However, real-world systems are often corrupted by unknown levels of noise that can distort these temporal signatures. Here we aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. We present a highly comparative approach to this problem that compares the ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf bifurcation. Our method recapitulates existing theory in the fixed-noise case, highlighting conventional time-series features that accurately track the DTC. But in the variable-noise setting, where these conventional indicators perform poorly, we highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). We introduce a new high-performing time-series statistic, the rescaled autodensity (RAD), that combines these two algorithmic components. We then use RAD to provide new evidence that brain regions higher in the visual hierarchy are positioned closer to criticality, supporting existing hypotheses about patterns of brain organization that are not detected using conventional metrics of the DTC. Our results demonstrate how large-scale algorithmic comparison can yield theoretical insights that can motivate new theory and interpretable algorithms for solving important real-world problems.
{"title":"Tracking the Distance to Criticality in Systems with Unknown Noise","authors":"Brendan Harris, Leonardo L. Gollo, Ben D. Fulcher","doi":"10.1103/physrevx.14.031021","DOIUrl":"https://doi.org/10.1103/physrevx.14.031021","url":null,"abstract":"Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often with dramatic and irreversible consequences. Much existing theory on identifying the time-series signatures of nearby critical points, such as increased signal variance and slower timescales, is derived from analytically tractable systems, typically considering the case of fixed, low-amplitude noise. However, real-world systems are often corrupted by unknown levels of noise that can distort these temporal signatures. Here we aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. We present a highly comparative approach to this problem that compares the ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf bifurcation. Our method recapitulates existing theory in the fixed-noise case, highlighting conventional time-series features that accurately track the DTC. But in the variable-noise setting, where these conventional indicators perform poorly, we highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). We introduce a new high-performing time-series statistic, the rescaled autodensity (RAD), that combines these two algorithmic components. We then use RAD to provide new evidence that brain regions higher in the visual hierarchy are positioned closer to criticality, supporting existing hypotheses about patterns of brain organization that are not detected using conventional metrics of the DTC. Our results demonstrate how large-scale algorithmic comparison can yield theoretical insights that can motivate new theory and interpretable algorithms for solving important real-world problems.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1103/physrevx.14.031020
Alexios A. Michailidis, Dmitry A. Abanin, Luca V. Delacrétaz
The approach to equilibrium in interacting classical and quantum systems is a challenging problem of both theoretical and experimental interest. One useful organizing principle characterizing equilibration is the dissipative universality class, the most prevalent one being diffusion. In this paper, we use the effective field theory (EFT) of diffusion to systematically obtain universal power-law corrections to diffusion. We then employ large-scale simulations of classical and quantum systems to explore their validity. In particular, we find universal scaling functions for the corrections to the dynamical structure factor , in the presence of a single or charge in systems with and without particle-hole symmetry, and present the framework to generalize the calculation to multiple charges. Classical simulations show remarkable agreement with EFT predictions for subleading corrections, pushing precision tests of effective theories for thermalizing systems to an unprecedented level. Moving to quantum systems, we perform large-scale tensor-network simulations in unitary and noisy 1D Floquet systems with conserved magnetization. We find a qualitative agreement with EFT, which becomes quantitative in the case of noisy systems. Additionally, we show how the knowledge of EFT corrections allows for fitting methods, which can improve the estimation of transport parameters at the intermediate times accessible by simulations and experiments. Finally, we explore nonlinear response in quantum systems and find that EFT provides an accurate prediction for its behavior. Our results provide a basis for a better understanding of the nonlinear phenomena present in thermalizing systems.
{"title":"Corrections to Diffusion in Interacting Quantum Systems","authors":"Alexios A. Michailidis, Dmitry A. Abanin, Luca V. Delacrétaz","doi":"10.1103/physrevx.14.031020","DOIUrl":"https://doi.org/10.1103/physrevx.14.031020","url":null,"abstract":"The approach to equilibrium in interacting classical and quantum systems is a challenging problem of both theoretical and experimental interest. One useful organizing principle characterizing equilibration is the dissipative universality class, the most prevalent one being diffusion. In this paper, we use the effective field theory (EFT) of diffusion to systematically obtain universal power-law corrections to diffusion. We then employ large-scale simulations of classical and quantum systems to explore their validity. In particular, we find universal scaling functions for the corrections to the dynamical structure factor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><mi>n</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mi>n</mi><mo stretchy=\"false\">⟩</mo></math>, in the presence of a single <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">SU</mi><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> charge in systems with and without particle-hole symmetry, and present the framework to generalize the calculation to multiple charges. Classical simulations show remarkable agreement with EFT predictions for subleading corrections, pushing precision tests of effective theories for thermalizing systems to an unprecedented level. Moving to quantum systems, we perform large-scale tensor-network simulations in unitary and noisy 1D Floquet systems with conserved magnetization. We find a qualitative agreement with EFT, which becomes quantitative in the case of noisy systems. Additionally, we show how the knowledge of EFT corrections allows for fitting methods, which can improve the estimation of transport parameters at the intermediate times accessible by simulations and experiments. Finally, we explore nonlinear response in quantum systems and find that EFT provides an accurate prediction for its behavior. Our results provide a basis for a better understanding of the nonlinear phenomena present in thermalizing systems.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1103/physrevx.14.031019
Sergei B. Rochal, Aleksey S. Roshal, Olga V. Konevtsova, Rudolf Podgornik
Among various proteinaceous nanocontainers and nanoparticles, the most promising ones for various applications in nano- and medical science appear to be those whose structures differ fundamentally from icosahedral viral capsids described by the paradigmatic Caspar-Klug model. By analyzing such anomalous assemblies represented in the Protein Data Bank, we identify a series of shells with square-triangular local order and find that most of them originate from short-period approximants of a dodecagonal tiling consisting of square and triangular tiles. Examining the nonequilibrium assembly of such packings, we propose a new method for obtaining periodic square-triangle approximants and then construct the simplest models of tetragonal, octahedral, and icosahedral shells based on cubic and icosahedral nets cut from the approximant structures. Since gluing the nets can change the distances between adjacent vertices of the resulting shell, we introduce an effective energy, the minimization of which equalizes these distances. While the obtained spherical polyhedra reproduce the structures of experimentally observed protein shells and nanoparticles, the principles of protein organization that we lay out, and the ensuing structural models, can help to discover and investigate similar systems in the future.
在各种蛋白质纳米容器和纳米粒子中,最有希望应用于纳米和医学领域的似乎是那些其结构与典型的卡斯帕-克鲁格(Caspar-Klug)模型所描述的二十面体病毒外壳有着本质区别的纳米容器和纳米粒子。通过分析蛋白质数据库(Protein Data Bank)中的此类反常组装体,我们确定了一系列具有正方形-三角形局部阶次的壳,并发现其中大多数壳源自由正方形和三角形瓦片组成的十二边形瓦片的短周期近似物。通过研究此类堆积的非平衡组装,我们提出了一种获得周期性方三角近似值的新方法,然后根据从近似值结构上切割的立方体和二十面体网,构建了最简单的四方、八方和二十面体壳模型。由于粘合网会改变所得到的壳的相邻顶点之间的距离,因此我们引入了有效能量,通过最小化有效能量来均衡这些距离。虽然所得到的球形多面体再现了实验观察到的蛋白质外壳和纳米粒子的结构,但我们所阐述的蛋白质组织原理以及随之而来的结构模型有助于今后发现和研究类似的系统。
{"title":"Proteinaceous Nanoshells with Quasicrystalline Local Order","authors":"Sergei B. Rochal, Aleksey S. Roshal, Olga V. Konevtsova, Rudolf Podgornik","doi":"10.1103/physrevx.14.031019","DOIUrl":"https://doi.org/10.1103/physrevx.14.031019","url":null,"abstract":"Among various proteinaceous nanocontainers and nanoparticles, the most promising ones for various applications in nano- and medical science appear to be those whose structures differ fundamentally from icosahedral viral capsids described by the paradigmatic Caspar-Klug model. By analyzing such anomalous assemblies represented in the Protein Data Bank, we identify a series of shells with square-triangular local order and find that most of them originate from short-period approximants of a dodecagonal tiling consisting of square and triangular tiles. Examining the nonequilibrium assembly of such packings, we propose a new method for obtaining periodic square-triangle approximants and then construct the simplest models of tetragonal, octahedral, and icosahedral shells based on cubic and icosahedral nets cut from the approximant structures. Since gluing the nets can change the distances between adjacent vertices of the resulting shell, we introduce an effective energy, the minimization of which equalizes these distances. While the obtained spherical polyhedra reproduce the structures of experimentally observed protein shells and nanoparticles, the principles of protein organization that we lay out, and the ensuing structural models, can help to discover and investigate similar systems in the future.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1103/physrevx.14.031018
Benjamin A. Foutty, Vladimir Calvera, Zhaoyu Han, Carlos R. Kometter, Song Liu, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Steven A. Kivelson, Benjamin E. Feldman
First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.
{"title":"Anomalous Landau Level Gaps Near Magnetic Transitions in Monolayer WSe2","authors":"Benjamin A. Foutty, Vladimir Calvera, Zhaoyu Han, Carlos R. Kometter, Song Liu, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Steven A. Kivelson, Benjamin E. Feldman","doi":"10.1103/physrevx.14.031018","DOIUrl":"https://doi.org/10.1103/physrevx.14.031018","url":null,"abstract":"First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>WSe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math> realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}