首页 > 最新文献

Physical Review X最新文献

英文 中文
Dynamics of Active Defects on the Anisotropic Surface of an Ellipsoidal Droplet 椭圆形液滴各向异性表面上活性缺陷的动力学特性
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1103/physrevx.14.031049
Martina Clairand, Ali Mozaffari, Jerôme Hardoüin, Rui Zhang, Claire Doré, Jordi Ignés-Mullol, Francesc Sagués, Juan J. de Pablo, Teresa Lopez-Leon
We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines.
我们利用实验和数值模拟研究了椭圆形活性向列壳的稳定状态。我们通过在微小的椭圆形液滴上涂覆基于蛋白质的活性细胞骨架凝胶来制造壳,从而获得椭圆形核壳结构。该系统提供了适当的约束条件和几何形状,可用于研究非均匀曲率对有序活性向列流体的影响,该流体具有拓扑所需的最小缺陷数。我们发现了新的随时间变化的状态,其中拓扑缺陷周期性地在平移和旋转状态之间摆动,从而导致手性的自发出现。我们对活性线粒体流体力学的模拟表明,除了拓扑结构和活性之外,活性材料的动力学还受到底层液滴的局部曲率和粘性各向异性以及由缺陷的自持旋转运动产生的外部流体动力的深刻影响。这些结果说明了如何将曲率梯度纳入活性向列外壳,从而协调出非凡的时空模式,为了解生物过程提供了新的视角,并为设计生物启发微型机械提供了令人信服的前景。
{"title":"Dynamics of Active Defects on the Anisotropic Surface of an Ellipsoidal Droplet","authors":"Martina Clairand, Ali Mozaffari, Jerôme Hardoüin, Rui Zhang, Claire Doré, Jordi Ignés-Mullol, Francesc Sagués, Juan J. de Pablo, Teresa Lopez-Leon","doi":"10.1103/physrevx.14.031049","DOIUrl":"https://doi.org/10.1103/physrevx.14.031049","url":null,"abstract":"We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anderson Localization of Walking Droplets 行走水滴的安德森定位
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1103/physrevx.14.031047
Abel J. Abraham, Stepan Malkov, Frane A. Ljubetic, Matthew Durey, Pedro J. Sáenz
Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter.
了解粒子在无序环境中的运动能力,是从活性物质、生物学到电子学等众多领域的核心问题。当宏观粒子的能量超过随机景观的特征势垒时,它们最终会表现出扩散运动。与此形成鲜明对比的是,波粒二象性导致无序介质中的电子即使在势能很弱的情况下也会静止--这就是著名的安德森局域化现象。在这里,我们展示了一个具有波粒特征的流体动力活动系统,即一个由自身波场在浸没的随机地形上自我引导的毫米液滴,其动力学表现出与电子系统类似的局部统计。对粒子轨迹集合的研究表明,当引导波场延伸至无序地形时,扩散会受到抑制。我们从机理上合理解释了液滴和地形之间由波介导的共振耦合所产生的统计现象,这种耦合会在局部区域产生一个有吸引力的波势。这一流体力学类似物展示了经典粒子如何像波一样局部化,为未来各领域的研究提出了新方向,包括活性物质、波局部化、多体局部化和拓扑物质。
{"title":"Anderson Localization of Walking Droplets","authors":"Abel J. Abraham, Stepan Malkov, Frane A. Ljubetic, Matthew Durey, Pedro J. Sáenz","doi":"10.1103/physrevx.14.031047","DOIUrl":"https://doi.org/10.1103/physrevx.14.031047","url":null,"abstract":"Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"53 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistics of Matrix Elements of Local Operators in Integrable Models 可积分模型中局部算子的矩阵元素统计
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1103/physrevx.14.031048
F. H. L. Essler, A. J. J. M. de Klerk
We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements μ|O|λ in the same macrostate scale as exp(cOLln(L)LMμ,λO), where the probability distribution function for Mμ,λO is well described by Fréchet distributions and cO depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as exp(dOL2), where dO depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.
我们研究了一个典型的、可积分的多粒子量子理论--具有排斥性三角函数相互作用的玻色子的利布-利尼格模型--中的能量特征状态基础上的局部算子矩阵元素的统计。利用量子可积分性方法,我们确定了矩阵元素随系统规模的缩放。由于存在大量的守恒定律,矩阵元素的结构与一般模型的特征态热化假说的预测有着本质的区别,而且更为复杂。我们发现了相互作用可积分模型中局部算子的这种结构与自由理论中与基本激元无关的局部算子的这种结构之间的有趣联系。我们发现,典型的非对角矩阵元素⟨μ|O|λ⟩在同一宏观状态尺度上与exp(-cOLln(L)-LMμ,λO)相同,其中Mμ,λO的概率分布函数由弗雷谢特分布很好地描述,而cO只取决于宏观状态信息。相反,两个不同宏观状态之间的典型非对角矩阵元素的规模为 exp(-dOL2),其中 dO 仅取决于宏观状态信息。对角线矩阵元素只取决于宏观状态信息,直至有限尺寸修正。
{"title":"Statistics of Matrix Elements of Local Operators in Integrable Models","authors":"F. H. L. Essler, A. J. J. M. de Klerk","doi":"10.1103/physrevx.14.031048","DOIUrl":"https://doi.org/10.1103/physrevx.14.031048","url":null,"abstract":"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><mi mathvariant=\"bold-italic\">μ</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"script\">O</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"bold-italic\">λ</mi><mo stretchy=\"false\">⟩</mo></math> in the same macrostate scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>exp</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msubsup><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math>, where the probability distribution function for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>M</mi><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mi mathvariant=\"script\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>c</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>exp</mi><mo stretchy=\"false\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and Exploitation of the Rotational Memory Effect in Multimode Fibers 多模光纤旋转记忆效应的表征与利用
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1103/physrevx.14.031046
Rodrigo Gutiérrez-Cuevas, Arthur Goetschy, Yaron Bromberg, Guy Pelc, Esben Ravn Andresen, Laurent Bigot, Yves Quiquempois, Maroun Bsaibes, Pierre Sillard, Marianne Bigot, Ori Katz, Julien de Rosny, Sébastien M. Popoff
In an ideal perfectly straight multimode fiber with a circular core, the symmetry ensures that rotating the input wave front leads to a corresponding rotation of the output wave front. This invariant property, known as the rotational memory effect (RME), remains independent of the typically unknown output profile. The RME thus offers significant potential for imaging and telecommunication applications. However, in real-life fibers, this effect is degraded by intrinsic imperfections and external perturbations, and is challenging to observe because of its acute sensitivity to misalignments and aberrations in the optical setup. Building on a previously established method for precisely estimating fiber transmission properties, we demonstrate an accurate extraction of RME properties. Additionally, we introduce a comprehensive theoretical framework for both qualitative and quantitative analysis, which specifically links the angular-dependent correlation of the RME to the core deformation’s geometrical properties and the fiber’s mode characteristics. Our theoretical predictions align well with experimental data and simulations for various amounts of fiber distorsion. Finally, we demonstrate the ability to engineer wave fronts with significantly enhanced correlation across all rotation angles. This work enables accurate characterization of distributed disorder from the fabrication process and facilitates calibration-free imaging in multimode fibers.
在理想的具有圆形纤芯的完全笔直多模光纤中,对称性确保了输入波前的旋转会导致输出波前的相应旋转。这一不变特性被称为旋转记忆效应(RME),与通常未知的输出轮廓无关。因此,RME 为成像和电信应用提供了巨大的潜力。然而,在现实生活中的光纤中,这种效应会受到内在缺陷和外部扰动的影响,而且由于其对光学装置中的错位和像差非常敏感,因此观察起来非常困难。基于之前建立的精确估算光纤传输特性的方法,我们展示了精确提取 RME 特性的方法。此外,我们还为定性和定量分析引入了一个全面的理论框架,该框架将 RME 随角度变化的相关性与纤芯变形的几何特性和光纤的模式特性具体联系起来。我们的理论预测与各种光纤扭曲量的实验数据和模拟结果非常吻合。最后,我们展示了在所有旋转角度下设计相关性显著增强的波前的能力。这项工作能够准确表征制造过程中的分布式失调,并促进多模光纤的免校准成像。
{"title":"Characterization and Exploitation of the Rotational Memory Effect in Multimode Fibers","authors":"Rodrigo Gutiérrez-Cuevas, Arthur Goetschy, Yaron Bromberg, Guy Pelc, Esben Ravn Andresen, Laurent Bigot, Yves Quiquempois, Maroun Bsaibes, Pierre Sillard, Marianne Bigot, Ori Katz, Julien de Rosny, Sébastien M. Popoff","doi":"10.1103/physrevx.14.031046","DOIUrl":"https://doi.org/10.1103/physrevx.14.031046","url":null,"abstract":"In an ideal perfectly straight multimode fiber with a circular core, the symmetry ensures that rotating the input wave front leads to a corresponding rotation of the output wave front. This invariant property, known as the rotational memory effect (RME), remains independent of the typically unknown output profile. The RME thus offers significant potential for imaging and telecommunication applications. However, in real-life fibers, this effect is degraded by intrinsic imperfections and external perturbations, and is challenging to observe because of its acute sensitivity to misalignments and aberrations in the optical setup. Building on a previously established method for precisely estimating fiber transmission properties, we demonstrate an accurate extraction of RME properties. Additionally, we introduce a comprehensive theoretical framework for both qualitative and quantitative analysis, which specifically links the angular-dependent correlation of the RME to the core deformation’s geometrical properties and the fiber’s mode characteristics. Our theoretical predictions align well with experimental data and simulations for various amounts of fiber distorsion. Finally, we demonstrate the ability to engineer wave fronts with significantly enhanced correlation across all rotation angles. This work enables accurate characterization of distributed disorder from the fabrication process and facilitates calibration-free imaging in multimode fibers.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"44 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical Correlations and Order in Magic-Angle Twisted Bilayer Graphene 魔角扭曲双层石墨烯中的动态相关性和有序性
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1103/physrevx.14.031045
Gautam Rai, Lorenzo Crippa, Dumitru Călugăru, Haoyu Hu, Francesca Paoletti, Luca de’ Medici, Antoine Georges, B. Andrei Bernevig, Roser Valentí, Giorgio Sangiovanni, Tim Wehling
The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase diagrams of correlated quantum materials. In magic-angle twisted bilayer graphene, transport, thermodynamic, and spectroscopic experiments pinpoint a competition between distinct low-energy states with and without electronic order, as well as between localized and delocalized charge carriers. In this study, we utilize dynamical mean-field theory on the topological heavy fermion model of twisted bilayer graphene to investigate the emergence of electronic correlations and long-range order in the absence of strain. We contrast moment formation, Kondo screening, and ordering on a temperature basis and explain the nature of emergent correlated states based on three central phenomena: (i) the formation of local spin and valley isospin moments around 100 K, (ii) the ordering of the local isospin moments around 10 K preempting Kondo screening, and (iii) a cascadic redistribution of charge between localized and delocalized electronic states upon doping. At integer fillings, we find that low-energy spectral weight is depleted in the symmetric phase, while we find insulating states with gaps enhanced by exchange coupling in the zero-strain ordered phases. Doping away from integer filling results in distinct metallic states: a “bad metal” above the ordering temperature, where scattering off the disordered local moments suppresses electronic coherence, and a “good metal” in the ordered states with coherence of quasiparticles facilitated by isospin order. This finding reveals coherence from order as the microscopic mechanism behind the Pomeranchuk effect observed experimentally by Rozen et al. [Nature (London) 592, 214 (2021)] and by Saito et al. [Nature (London) 592, 220 (2021)]. Upon doping, there is a periodic charge reshuffling between localized and delocalized electronic orbitals leading to cascades of doping-induced Lifshitz transitions, local spectral weight redistributions, and periodic variations of the electronic compressibility ranging from nearly incompressible to negative. Our findings highlight the essential role of charge transfer, hybridization, and ordering in shaping the electronic excitations and thermodynamic properties in twisted bilayer graphene and provide a unified understanding of the most puzzling aspects of scanning tunneling spectroscopy, transport, and compressibility experiments.
动力学相关性和电子有序性的相互作用在形成相关量子材料的相图方面起着关键作用。在魔角扭曲双层石墨烯中,输运、热力学和光谱实验指出了有电子有序和无电子有序的不同低能态之间的竞争,以及局部电荷载流子和非局部电荷载流子之间的竞争。在本研究中,我们利用扭曲双层石墨烯拓扑重费米子模型的动态均场理论,研究了在无应变情况下电子关联和长程有序的出现。我们在温度基础上对比了矩的形成、Kondo 筛选和有序化,并根据三个核心现象解释了出现的相关态的性质:(i) 100 K 左右形成的局部自旋和谷等空间矩;(ii) 10 K 左右局部等空间矩的有序化抢先了 Kondo 筛选;(iii) 掺杂后局部和非局部电子态之间电荷的级联再分布。在整数填充时,我们发现对称相中的低能谱权重被耗尽,而在零应变有序相中,我们发现了间隙通过交换耦合而增强的绝缘态。远离整数填充的掺杂会导致截然不同的金属态:在有序温度之上的 "坏金属",无序局部矩的散射抑制了电子相干性;而在有序态中的 "好金属",等空间有序促进了准粒子的相干性。这一发现揭示了 Rozen 等人[《自然》(伦敦)592, 214 (2021)]和 Saito 等人[《自然》(伦敦)592, 220 (2021)]在实验中观察到的波美兰丘克效应背后的微观机制--有序相干性。掺杂后,局部电子轨道和非局部电子轨道之间会出现周期性的电荷重组,从而导致掺杂诱导的级联利夫希茨跃迁、局部光谱重量重新分布以及电子可压缩性的周期性变化(从几乎不可压缩到负可压缩)。我们的发现凸显了电荷转移、杂化和有序化在形成扭曲双层石墨烯的电子激发和热力学性质中的重要作用,并为扫描隧道光谱、传输和可压缩性实验中最令人困惑的方面提供了统一的理解。
{"title":"Dynamical Correlations and Order in Magic-Angle Twisted Bilayer Graphene","authors":"Gautam Rai, Lorenzo Crippa, Dumitru Călugăru, Haoyu Hu, Francesca Paoletti, Luca de’ Medici, Antoine Georges, B. Andrei Bernevig, Roser Valentí, Giorgio Sangiovanni, Tim Wehling","doi":"10.1103/physrevx.14.031045","DOIUrl":"https://doi.org/10.1103/physrevx.14.031045","url":null,"abstract":"The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase diagrams of correlated quantum materials. In magic-angle twisted bilayer graphene, transport, thermodynamic, and spectroscopic experiments pinpoint a competition between distinct low-energy states with and without electronic order, as well as between localized and delocalized charge carriers. In this study, we utilize dynamical mean-field theory on the topological heavy fermion model of twisted bilayer graphene to investigate the emergence of electronic correlations and long-range order in the absence of strain. We contrast moment formation, Kondo screening, and ordering on a temperature basis and explain the nature of emergent correlated states based on three central phenomena: (i) the formation of local spin and valley isospin moments around 100 K, (ii) the ordering of the local isospin moments around 10 K preempting Kondo screening, and (iii) a cascadic redistribution of charge between localized and delocalized electronic states upon doping. At integer fillings, we find that low-energy spectral weight is depleted in the symmetric phase, while we find insulating states with gaps enhanced by exchange coupling in the zero-strain ordered phases. Doping away from integer filling results in distinct metallic states: a “bad metal” above the ordering temperature, where scattering off the disordered local moments suppresses electronic coherence, and a “good metal” in the ordered states with coherence of quasiparticles facilitated by isospin order. This finding reveals coherence from order as the microscopic mechanism behind the Pomeranchuk effect observed experimentally by Rozen <i>et al.</i> [<span>Nature (London)</span> <b>592</b>, 214 (2021)] and by Saito <i>et al.</i> [<span>Nature (London)</span> <b>592</b>, 220 (2021)]. Upon doping, there is a periodic charge reshuffling between localized and delocalized electronic orbitals leading to cascades of doping-induced Lifshitz transitions, local spectral weight redistributions, and periodic variations of the electronic compressibility ranging from nearly incompressible to negative. Our findings highlight the essential role of charge transfer, hybridization, and ordering in shaping the electronic excitations and thermodynamic properties in twisted bilayer graphene and provide a unified understanding of the most puzzling aspects of scanning tunneling spectroscopy, transport, and compressibility experiments.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed-State Quantum Phases: Renormalization and Quantum Error Correction 混合态量子相:重正化和量子纠错
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1103/physrevx.14.031044
Shengqi Sang, Yijian Zou, Timothy H. Hsieh
Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.
开放系统量子动力学可以产生各种长程纠缠混合态,但它们在何种意义上构成物质相却一直不清楚。为了确定两个混合态处于同一相位(由它们通过局部量子通道的双向连通性定义),我们使用了重正化群(RG)和量子纠错码的解码器。我们引入了一种基于局部通道的混合态实空间 RG 方案,该方案在理想情况下保持了与互补系统的相关性,我们证明这等同于通道作用的可逆性。作为应用,我们演示了有限温度环形编码在二维到无限温度的精确 RG 流,从而证明它处于三相阶段。相反,对于受局部去相的环形码,我们利用截断 RG 型解码器和最小权重完全匹配解码器得到的局部信道,建立了混合状态环形码阶段。我们还发现了混合状态相位与可解码性之间的精确关系,证明了作用于环形码的局部噪声不会破坏逻辑信息,也不会使状态脱离环形码相位。
{"title":"Mixed-State Quantum Phases: Renormalization and Quantum Error Correction","authors":"Shengqi Sang, Yijian Zou, Timothy H. Hsieh","doi":"10.1103/physrevx.14.031044","DOIUrl":"https://doi.org/10.1103/physrevx.14.031044","url":null,"abstract":"Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"103 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Coherent Quantum Feedback with Time Delays: Tensor Network Solution 具有时间延迟的连续相干量子反馈:张量网络解决方案
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1103/physrevx.14.031043
Kseniia Vodenkova, Hannes Pichler
In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.
在本文中,我们开发了一种新方法来解决涉及与具有时间延迟特征的相干量子反馈回路耦合的量子光学系统的问题。我们的方法基于此类非马尔可夫问题与等效马尔可夫驱动耗散量子多体问题的精确映射。在这项工作中,我们展示了所产生的马尔可夫量子多体问题可以用张量网络方法精确、高效地求解(数值),求解的一系列范例包括在几个远点耦合到波导的驱动量子系统。我们特别指出,我们的方法可以解决迄今为止无法解决的问题,包括具有任意长时间延迟和延迟线中任意数量激励的问题。我们获得了所有这些状态下的全实时动态和稳态的解。最后,在我们研究结果的激励下,我们开发了一种新颖的平均场方法,它允许我们以半解析的方式求解,并且我们确定了这种近似方法与我们的张量网络结果非常一致的参数区。
{"title":"Continuous Coherent Quantum Feedback with Time Delays: Tensor Network Solution","authors":"Kseniia Vodenkova, Hannes Pichler","doi":"10.1103/physrevx.14.031043","DOIUrl":"https://doi.org/10.1103/physrevx.14.031043","url":null,"abstract":"In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric Field of DNA in Solution: Who Is in Charge? 溶液中 DNA 的电场:谁说了算?
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1103/physrevx.14.031042
Jonathan G. Hedley, Kush Coshic, Aleksei Aksimentiev, Alexei A. Kornyshev
In solution, DNA, the “most important molecule of life,” is a highly charged macromolecule that bears a unit of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric field is experienced by any charged or dipolar species approaching and interacting with the DNA. So far, such a field has been explored predominantly within the scope of a primitive model of the electrolytic solution, not considering more complicated structural effects of the water solvent. In this paper, we investigate the distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for helix-specific charge distributions, and compare the predictions of such a theory with specially performed, fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role of the structure of water at close distances to and within the grooves of a DNA molecule in the formation of the electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening effect of structured water. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt these oscillations and are rather distributed according to these oscillating patterns, indicating that water structural effects dominate the short-range electrostatics. We also show that (i) structured water adsorbed in the grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some 10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics when considering solvent effects in molecular processes in biology.
在溶液中,"生命中最重要的分子 "DNA 是一种高电荷大分子,其糖-磷酸骨架的每个磷酸根都带有一个单位的负电荷。尽管 DNA 被吸附在其上或在其附近凝结的反离子(溶液中的阳离子)部分补偿,但仍会在其附近产生一个巨大的电场,该电场被距离 DNA 较远的缓冲电解质所屏蔽。任何接近 DNA 并与之相互作用的带电或偶极物种都会感受到这种电场。迄今为止,人们主要是在电解溶液的原始模型范围内探索这种电场,而没有考虑水溶剂更复杂的结构效应。在本文中,我们利用线性响应非局部静电理论研究了 DNA 周围的电场分布,并将这种理论的预测结果与专门进行的完全原子化的大规模分子动力学模拟进行了比较。这两种方法都用于揭示 DNA 分子沟槽内近距离水的结构在电场形成中的作用。正如理论所预测和模拟所报告的那样,本研究的主要发现是 DNA 周围存在静电势分布振荡,这是由于结构水的超屏蔽效应造成的。令人惊讶的是,生理浓度的电解质离子并没有强烈干扰这些振荡,而是按照这些振荡模式分布,这表明水的结构效应主导了短程静电。我们还表明:(i) DNA 沟槽中吸附的结构水导致了相对于主体的正静电位核;(ii) 距离 DNA 表面约 10 Å 的德拜长度减小了,这实际上是 DNA 分子螺旋间距的重新规范化;(iii) 水的非局部介电函数的洛伦兹贡献有效地减小了靠近 DNA 表面的介电常数,从而增强了整体电场。原子模拟与所建立的理论之间令人印象深刻的一致性证明,在考虑生物分子过程中的溶剂效应时,可以使用非局部静电。
{"title":"Electric Field of DNA in Solution: Who Is in Charge?","authors":"Jonathan G. Hedley, Kush Coshic, Aleksei Aksimentiev, Alexei A. Kornyshev","doi":"10.1103/physrevx.14.031042","DOIUrl":"https://doi.org/10.1103/physrevx.14.031042","url":null,"abstract":"In solution, DNA, the “most important molecule of life,” is a highly charged macromolecule that bears a unit of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric field is experienced by any charged or dipolar species approaching and interacting with the DNA. So far, such a field has been explored predominantly within the scope of a primitive model of the electrolytic solution, not considering more complicated structural effects of the water solvent. In this paper, we investigate the distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for helix-specific charge distributions, and compare the predictions of such a theory with specially performed, fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role of the structure of water at close distances to and within the grooves of a DNA molecule in the formation of the electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening effect of structured water. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt these oscillations and are rather distributed according to these oscillating patterns, indicating that water structural effects dominate the short-range electrostatics. We also show that (i) structured water adsorbed in the grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some 10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics when considering solvent effects in molecular processes in biology.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"52 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to Measure the Controllability of an Infectious Disease? 如何衡量传染病的可控性?
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1103/physrevx.14.031041
Kris V. Parag
Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number R or growth rate r are universally assumed to measure controllability because R=1 and r=0 define when infections stop growing and hence the state of critical stability. Outbreaks with larger R or r are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that R and r measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.
量化控制新发传染病的难度对于公共卫生决策至关重要,它提供了有价值的证据,说明检疫和隔离等有针对性的干预措施是否能遏制传播,或何时需要进行全人群控制,如封锁。疾病繁殖数 R 或增长率 r 被普遍假定为衡量可控性的指标,因为 R=1 和 r=0 定义了感染停止增长的时间,也就是临界稳定状态。因此,R 或 r 越大的疫情被解释为可控性越差,需要更严格的干预措施。我们证明了这种常见的解释是不切实际和不全面的。我们确定了疾病传播内在的感染之间的正反馈循环,并从干预措施如何破坏这一循环来评估可控性。流行病增益边际和延迟边际分别定义了在失去稳定性之前,我们能在多大程度上扩大感染规模(这种扩大被称为增益)或延迟对这一循环的干预,它们为可控性提供了严格的衡量标准。裕度越小的疫情爆发越需要更多的控制努力。利用这些边际值,我们量化了无症状传播、监控限制、变异动态和超级传播是如何影响可控性的,并证明只有当干预措施不改变感染之间的时间间隔且无延迟实施时,R 和 r 才能衡量可控性。我们的边际值易于计算和解释,并能反映干预措施、其实施和流行病学动态之间的复杂关系。
{"title":"How to Measure the Controllability of an Infectious Disease?","authors":"Kris V. Parag","doi":"10.1103/physrevx.14.031041","DOIUrl":"https://doi.org/10.1103/physrevx.14.031041","url":null,"abstract":"Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or growth rate <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are universally assumed to measure controllability because <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mn>1</mn></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math> define when infections stop growing and hence the state of critical stability. Outbreaks with larger <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Pairwise Level Degeneracies and the Quantum Regime of the Arrhenius Law in a Double-Well Parametric Oscillator 双阱参量振荡器中的成对电平退变性和阿伦尼乌斯定律的量子态观测
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1103/physrevx.14.031040
Nicholas E. Frattini, Rodrigo G. Cortiñas, Jayameenakshi Venkatraman, Xu Xiao, Qile Su, Chan U. Lei, Benjamin J. Chapman, Vidul R. Joshi, S. M. Girvin, Robert J. Schoelkopf, Shruti Puri, Michel H. Devoret
By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.
通过对专门设计的约瑟夫森电路施加微波驱动,我们实现了一个双阱模型系统:一个受挤压力作用的克尔振荡器。我们首次观察到了量子双阱哈密顿的光谱指纹,当其势垒高度增加时:激发态在势垒下沉时,与隧道分裂的指数减少相对应的成对水平亲吻(凝聚)。井中的离散能级还表现在穿越势垒的活化时间上,它不是作为势垒高度的函数平滑增加,而是每当一对激发态被井捕获时就会出现阶跃。这一实验说明了阿伦尼乌斯定律的量子机制,而低耗散、时间分辨状态控制、98.5% 的量子非拆迁单次测量保真度以及对量子机制中所有哈密顿参数的完全微波控制等前所未有的组合使这一观察成为可能。本文讨论了量子计算和模拟的直接应用。
{"title":"Observation of Pairwise Level Degeneracies and the Quantum Regime of the Arrhenius Law in a Double-Well Parametric Oscillator","authors":"Nicholas E. Frattini, Rodrigo G. Cortiñas, Jayameenakshi Venkatraman, Xu Xiao, Qile Su, Chan U. Lei, Benjamin J. Chapman, Vidul R. Joshi, S. M. Girvin, Robert J. Schoelkopf, Shruti Puri, Michel H. Devoret","doi":"10.1103/physrevx.14.031040","DOIUrl":"https://doi.org/10.1103/physrevx.14.031040","url":null,"abstract":"By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1