Pub Date : 2024-09-09DOI: 10.1103/physrevx.14.031043
Kseniia Vodenkova, Hannes Pichler
In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.
{"title":"Continuous Coherent Quantum Feedback with Time Delays: Tensor Network Solution","authors":"Kseniia Vodenkova, Hannes Pichler","doi":"10.1103/physrevx.14.031043","DOIUrl":"https://doi.org/10.1103/physrevx.14.031043","url":null,"abstract":"In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1103/physrevx.14.031042
Jonathan G. Hedley, Kush Coshic, Aleksei Aksimentiev, Alexei A. Kornyshev
In solution, DNA, the “most important molecule of life,” is a highly charged macromolecule that bears a unit of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric field is experienced by any charged or dipolar species approaching and interacting with the DNA. So far, such a field has been explored predominantly within the scope of a primitive model of the electrolytic solution, not considering more complicated structural effects of the water solvent. In this paper, we investigate the distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for helix-specific charge distributions, and compare the predictions of such a theory with specially performed, fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role of the structure of water at close distances to and within the grooves of a DNA molecule in the formation of the electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening effect of structured water. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt these oscillations and are rather distributed according to these oscillating patterns, indicating that water structural effects dominate the short-range electrostatics. We also show that (i) structured water adsorbed in the grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some 10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics when considering solvent effects in molecular processes in biology.
在溶液中,"生命中最重要的分子 "DNA 是一种高电荷大分子,其糖-磷酸骨架的每个磷酸根都带有一个单位的负电荷。尽管 DNA 被吸附在其上或在其附近凝结的反离子(溶液中的阳离子)部分补偿,但仍会在其附近产生一个巨大的电场,该电场被距离 DNA 较远的缓冲电解质所屏蔽。任何接近 DNA 并与之相互作用的带电或偶极物种都会感受到这种电场。迄今为止,人们主要是在电解溶液的原始模型范围内探索这种电场,而没有考虑水溶剂更复杂的结构效应。在本文中,我们利用线性响应非局部静电理论研究了 DNA 周围的电场分布,并将这种理论的预测结果与专门进行的完全原子化的大规模分子动力学模拟进行了比较。这两种方法都用于揭示 DNA 分子沟槽内近距离水的结构在电场形成中的作用。正如理论所预测和模拟所报告的那样,本研究的主要发现是 DNA 周围存在静电势分布振荡,这是由于结构水的超屏蔽效应造成的。令人惊讶的是,生理浓度的电解质离子并没有强烈干扰这些振荡,而是按照这些振荡模式分布,这表明水的结构效应主导了短程静电。我们还表明:(i) DNA 沟槽中吸附的结构水导致了相对于主体的正静电位核;(ii) 距离 DNA 表面约 10 Å 的德拜长度减小了,这实际上是 DNA 分子螺旋间距的重新规范化;(iii) 水的非局部介电函数的洛伦兹贡献有效地减小了靠近 DNA 表面的介电常数,从而增强了整体电场。原子模拟与所建立的理论之间令人印象深刻的一致性证明,在考虑生物分子过程中的溶剂效应时,可以使用非局部静电。
{"title":"Electric Field of DNA in Solution: Who Is in Charge?","authors":"Jonathan G. Hedley, Kush Coshic, Aleksei Aksimentiev, Alexei A. Kornyshev","doi":"10.1103/physrevx.14.031042","DOIUrl":"https://doi.org/10.1103/physrevx.14.031042","url":null,"abstract":"In solution, DNA, the “most important molecule of life,” is a highly charged macromolecule that bears a unit of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric field is experienced by any charged or dipolar species approaching and interacting with the DNA. So far, such a field has been explored predominantly within the scope of a primitive model of the electrolytic solution, not considering more complicated structural effects of the water solvent. In this paper, we investigate the distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for helix-specific charge distributions, and compare the predictions of such a theory with specially performed, fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role of the structure of water at close distances to and within the grooves of a DNA molecule in the formation of the electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening effect of structured water. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt these oscillations and are rather distributed according to these oscillating patterns, indicating that water structural effects dominate the short-range electrostatics. We also show that (i) structured water adsorbed in the grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some 10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics when considering solvent effects in molecular processes in biology.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"52 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1103/physrevx.14.031041
Kris V. Parag
Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number or growth rate are universally assumed to measure controllability because and define when infections stop growing and hence the state of critical stability. Outbreaks with larger or are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that and measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.
量化控制新发传染病的难度对于公共卫生决策至关重要,它提供了有价值的证据,说明检疫和隔离等有针对性的干预措施是否能遏制传播,或何时需要进行全人群控制,如封锁。疾病繁殖数 R 或增长率 r 被普遍假定为衡量可控性的指标,因为 R=1 和 r=0 定义了感染停止增长的时间,也就是临界稳定状态。因此,R 或 r 越大的疫情被解释为可控性越差,需要更严格的干预措施。我们证明了这种常见的解释是不切实际和不全面的。我们确定了疾病传播内在的感染之间的正反馈循环,并从干预措施如何破坏这一循环来评估可控性。流行病增益边际和延迟边际分别定义了在失去稳定性之前,我们能在多大程度上扩大感染规模(这种扩大被称为增益)或延迟对这一循环的干预,它们为可控性提供了严格的衡量标准。裕度越小的疫情爆发越需要更多的控制努力。利用这些边际值,我们量化了无症状传播、监控限制、变异动态和超级传播是如何影响可控性的,并证明只有当干预措施不改变感染之间的时间间隔且无延迟实施时,R 和 r 才能衡量可控性。我们的边际值易于计算和解释,并能反映干预措施、其实施和流行病学动态之间的复杂关系。
{"title":"How to Measure the Controllability of an Infectious Disease?","authors":"Kris V. Parag","doi":"10.1103/physrevx.14.031041","DOIUrl":"https://doi.org/10.1103/physrevx.14.031041","url":null,"abstract":"Quantifying how difficult it is to control an emerging infectious disease is crucial to public health decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation, can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease reproduction number <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or growth rate <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are universally assumed to measure controllability because <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mn>1</mn></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math> define when infections stop growing and hence the state of critical stability. Outbreaks with larger <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> are therefore interpreted as less controllable and requiring more stringent interventions. We prove this common interpretation is impractical and incomplete. We identify a positive feedback loop among infections intrinsically underlying disease transmission and evaluate controllability from how interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant dynamics, and superspreading shape controllability and demonstrate that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> measure controllability only when interventions do not alter timings between the infections and are implemented without delay. Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their implementation, and epidemiological dynamics.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1103/physrevx.14.031040
Nicholas E. Frattini, Rodrigo G. Cortiñas, Jayameenakshi Venkatraman, Xu Xiao, Qile Su, Chan U. Lei, Benjamin J. Chapman, Vidul R. Joshi, S. M. Girvin, Robert J. Schoelkopf, Shruti Puri, Michel H. Devoret
By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.
{"title":"Observation of Pairwise Level Degeneracies and the Quantum Regime of the Arrhenius Law in a Double-Well Parametric Oscillator","authors":"Nicholas E. Frattini, Rodrigo G. Cortiñas, Jayameenakshi Venkatraman, Xu Xiao, Qile Su, Chan U. Lei, Benjamin J. Chapman, Vidul R. Joshi, S. M. Girvin, Robert J. Schoelkopf, Shruti Puri, Michel H. Devoret","doi":"10.1103/physrevx.14.031040","DOIUrl":"https://doi.org/10.1103/physrevx.14.031040","url":null,"abstract":"By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs). Symmetries of three-dimensional periodic (pseudo)vector fields, however, are described by the spin-space groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-space and spin degrees of freedom are unlocked in the sense that an operation could have different spatial and spin rotations. SSGs give a complete symmetry description of magnetic structures and have natural applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit coupling. Altermagnetism, a concept raised recently that belongs to the symmetry-compensated collinear magnetic orders but has nonrelativistic spin plitting, is well described by SSGs. Because of the vast number and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and coplanar magnetic orders, the spin operations can be reduced into lower-dimensional real representations. As the number of SSGs is infinite, we consider only SSGs that describe magnetic unit cells up to 12 times crystal unit cells. We obtain 157 289 noncoplanar, 24 788 coplanar-noncollinear, and 1421 collinear SSGs. The enumerated SSGs are stored in an online database with a user-friendly interface. We develop an algorithm to identify SSGs for realistic materials and find SSGs for 1626 magnetic materials. We also discuss several potential applications of SSGs, including the representation theory, topological states protected by SSGs, structures of spin textures, and refinement of magnetic neutron diffraction patterns using SSGs. Our results serve as a solid starting point for further studies of symmetry and topology in magnetically ordered materials.
{"title":"Enumeration of Spin-Space Groups: Toward a Complete Description of Symmetries of Magnetic Orders","authors":"Yi Jiang, Ziyin Song, Tiannian Zhu, Zhong Fang, Hongming Weng, Zheng-Xin Liu, Jian Yang, Chen Fang","doi":"10.1103/physrevx.14.031039","DOIUrl":"https://doi.org/10.1103/physrevx.14.031039","url":null,"abstract":"Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs). Symmetries of three-dimensional periodic (pseudo)vector fields, however, are described by the spin-space groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-space and spin degrees of freedom are unlocked in the sense that an operation could have different spatial and spin rotations. SSGs give a complete symmetry description of magnetic structures and have natural applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit coupling. <i>Altermagnetism</i>, a concept raised recently that belongs to the symmetry-compensated collinear magnetic orders but has nonrelativistic spin plitting, is well described by SSGs. Because of the vast number and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and coplanar magnetic orders, the spin operations can be reduced into lower-dimensional real representations. As the number of SSGs is infinite, we consider only SSGs that describe magnetic unit cells up to 12 times crystal unit cells. We obtain 157 289 noncoplanar, 24 788 coplanar-noncollinear, and 1421 collinear SSGs. The enumerated SSGs are stored in an online database with a user-friendly interface. We develop an algorithm to identify SSGs for realistic materials and find SSGs for 1626 magnetic materials. We also discuss several potential applications of SSGs, including the representation theory, topological states protected by SSGs, structures of spin textures, and refinement of magnetic neutron diffraction patterns using SSGs. Our results serve as a solid starting point for further studies of symmetry and topology in magnetically ordered materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"13 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1103/physrevx.14.031038
Xiaobing Chen, Jun Ren, Yanzhou Zhu, Yutong Yu, Ao Zhang, Pengfei Liu, Jiayu Li, Yuntian Liu, Caiheng Li, Qihang Liu
Fundamental physical properties, such as phase transitions, electronic structures, and spin excitations, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been developed. In this work, we present a systematic study of the enumeration and the representation theory of the SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order of eight, we establish an extensive collection of over 100 000 SSGs under a four-index nomenclature as well as international notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar, and noncoplanar magnetic configurations. To facilitate the identification of the SSG, we develop an online program that can determine the SSG symmetries of any magnetic ordered crystal. Moreover, we derive the irreducible corepresentations of the little group in momentum space within the SSG framework. Finally, we illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through several representative material examples, including a candidate altermagnet , spiral spin polarization in the coplanar antiferromagnet , and geometric Hall effect in the noncoplanar antiferromagnet . Our work advances the field of group theory in describing magnetic ordered materials, opening up avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials.
{"title":"Enumeration and Representation Theory of Spin Space Groups","authors":"Xiaobing Chen, Jun Ren, Yanzhou Zhu, Yutong Yu, Ao Zhang, Pengfei Liu, Jiayu Li, Yuntian Liu, Caiheng Li, Qihang Liu","doi":"10.1103/physrevx.14.031038","DOIUrl":"https://doi.org/10.1103/physrevx.14.031038","url":null,"abstract":"Fundamental physical properties, such as phase transitions, electronic structures, and spin excitations, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been developed. In this work, we present a systematic study of the enumeration and the representation theory of the SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order of eight, we establish an extensive collection of over 100 000 SSGs under a four-index nomenclature as well as international notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar, and noncoplanar magnetic configurations. To facilitate the identification of the SSG, we develop an online program that can determine the SSG symmetries of any magnetic ordered crystal. Moreover, we derive the irreducible corepresentations of the little group in momentum space within the SSG framework. Finally, we illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through several representative material examples, including a candidate altermagnet <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>RuO</mi></mrow><mn>2</mn></msub></mrow></math>, spiral spin polarization in the coplanar antiferromagnet <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CeAuAl</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>, and geometric Hall effect in the noncoplanar antiferromagnet <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CoNb</mi></mrow><mn>3</mn></msub><msub><mi mathvariant=\"normal\">S</mi><mn>6</mn></msub></mrow></math>. Our work advances the field of group theory in describing magnetic ordered materials, opening up avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1103/physrevx.14.031037
Zhenyu Xiao, Jianzhou Zhao, Yanqi Li, Ryuichi Shindou, Zhi-Da Song
In this work, we exhaust all the spin space symmetries, which fully characterize collinear, noncollinear, and commensurate spiral as well as incommensurate spiral magnetism, etc., and investigate enriched features of electronic bands that respect these symmetries. We achieve this by systematically classifying the so-called spin space groups (SSGs)—joint symmetry groups of spatial and spin operations that leave the magnetic structure unchanged. Generally speaking, they are accurate (approximate) symmetries in systems where spin-orbit coupling (SOC) is negligible (finite but weaker than the energy scale of interest), but we also show that specific SSGs could remain valid even in the presence of strong SOC. In recent years, SSGs have played increasingly pivotal roles in various fields such as altermagnetism, topological electronic states, and topological magnon, etc. However, due to its complexity, a complete SSG classification has not been completed up to now. By representing the SSGs as <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">O</mi><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow></math> representations, we—for the first time—obtain the complete classifications of 1421, 9542, and 56 512 distinct SSGs for collinear (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>1</mn></math>), coplanar (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>2</mn></math>), and noncoplanar (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>3</mn></math>) magnetism, respectively. SSG not only fully characterizes the symmetry of spin degrees of freedom, but also gives rise to exotic electronic states, which, in general, form projective representations of magnetic space groups (MSGs). Surprisingly, electronic bands in SSGs exhibit features never seen in MSGs, such as (i) nonsymmorphic SSG Brillouin zone, where SSG operations behave as a glide or screw when acting on momentum, (ii) effective <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math> flux, where translation operators anticommute with each other and yield duplicate bands, (iii) higher-dimensional representations unexplained by MSGs, and (iv) unconventional spin texture on a Fermi surface, which is completely determined by SSGs, independent of Hamiltonian details. To apply our theory, we identify the SSG for each of the 1595 published magnetic structures in the MAGNDATA database on the Bilbao Crystallographic Server. Material examples exhibiting the novel features (i)–(iv) are discussed with emphasis. We also investigate new types of SSG-protected topological electronic states that are unprecedented in MSGs. In particular, we propose a 3D <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="double-struck">Z</mi><mn>2</mn></msub></math> topological insu
{"title":"Spin Space Groups: Full Classification and Applications","authors":"Zhenyu Xiao, Jianzhou Zhao, Yanqi Li, Ryuichi Shindou, Zhi-Da Song","doi":"10.1103/physrevx.14.031037","DOIUrl":"https://doi.org/10.1103/physrevx.14.031037","url":null,"abstract":"In this work, we exhaust all the spin space symmetries, which fully characterize collinear, noncollinear, and commensurate spiral as well as incommensurate spiral magnetism, etc., and investigate enriched features of electronic bands that respect these symmetries. We achieve this by systematically classifying the so-called spin space groups (SSGs)—joint symmetry groups of spatial and spin operations that leave the magnetic structure unchanged. Generally speaking, they are accurate (approximate) symmetries in systems where spin-orbit coupling (SOC) is negligible (finite but weaker than the energy scale of interest), but we also show that specific SSGs could remain valid even in the presence of strong SOC. In recent years, SSGs have played increasingly pivotal roles in various fields such as altermagnetism, topological electronic states, and topological magnon, etc. However, due to its complexity, a complete SSG classification has not been completed up to now. By representing the SSGs as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">O</mi><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></mrow></math> representations, we—for the first time—obtain the complete classifications of 1421, 9542, and 56 512 distinct SSGs for collinear (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>=</mo><mn>1</mn></math>), coplanar (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>=</mo><mn>2</mn></math>), and noncoplanar (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>=</mo><mn>3</mn></math>) magnetism, respectively. SSG not only fully characterizes the symmetry of spin degrees of freedom, but also gives rise to exotic electronic states, which, in general, form projective representations of magnetic space groups (MSGs). Surprisingly, electronic bands in SSGs exhibit features never seen in MSGs, such as (i) nonsymmorphic SSG Brillouin zone, where SSG operations behave as a glide or screw when acting on momentum, (ii) effective <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> flux, where translation operators anticommute with each other and yield duplicate bands, (iii) higher-dimensional representations unexplained by MSGs, and (iv) unconventional spin texture on a Fermi surface, which is completely determined by SSGs, independent of Hamiltonian details. To apply our theory, we identify the SSG for each of the 1595 published magnetic structures in the MAGNDATA database on the Bilbao Crystallographic Server. Material examples exhibiting the novel features (i)–(iv) are discussed with emphasis. We also investigate new types of SSG-protected topological electronic states that are unprecedented in MSGs. In particular, we propose a 3D <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn></msub></math> topological insu","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"13 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1103/physrevx.14.039901
Gregory L. Eyink
DOI:https://doi.org/10.1103/PhysRevX.14.039901
DOI:https://doi.org/10.1103/PhysRevX.14.039901
{"title":"Erratum: Josephson-Anderson Relation and the Classical D’Alembert Paradox [Phys. Rev. X 11, 031054 (2021)]","authors":"Gregory L. Eyink","doi":"10.1103/physrevx.14.039901","DOIUrl":"https://doi.org/10.1103/physrevx.14.039901","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevX.14.039901</span>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"5 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1103/physrevx.14.031036
Ioannis Karapatzakis, Jeremias Resch, Marcel Schrodin, Philipp Fuchs, Michael Kieschnick, Julia Heupel, Luis Kussi, Christoph Sürgers, Cyril Popov, Jan Meijer, Christoph Becher, Wolfgang Wernsdorfer, David Hunger
Group-IV color centers in diamond are promising candidates for quantum networks due to their dominant zero-phonon line and symmetry-protected optical transitions that connect to coherent spin levels. The negatively charged tin-vacancy (SnV) center possesses long electron spin lifetimes due to its large spin-orbit splitting. However, the magnetic dipole transitions required for microwave spin control are suppressed, and strain is necessary to enable these transitions. Recent work has shown spin control of strained emitters using microwave lines that suffer from Ohmic losses, restricting coherence through heating. We utilize a superconducting coplanar waveguide to measure SnV centers subjected to strain, observing substantial improvement. A detailed analysis of the SnV center electron spin Hamiltonian based on the angle-dependent splitting of the ground and excited states is performed. We demonstrate coherent spin manipulation and obtain a Hahn echo coherence time of up to . With dynamical decoupling, we can prolong coherence to , about a sixfold improvement compared to earlier works. We also observe a nearby coupling spin, which may serve as a quantum memory, thus substantiating the potential of SnV centers in diamond and demonstrates the benefit of superconducting microwave structures.
{"title":"Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide","authors":"Ioannis Karapatzakis, Jeremias Resch, Marcel Schrodin, Philipp Fuchs, Michael Kieschnick, Julia Heupel, Luis Kussi, Christoph Sürgers, Cyril Popov, Jan Meijer, Christoph Becher, Wolfgang Wernsdorfer, David Hunger","doi":"10.1103/physrevx.14.031036","DOIUrl":"https://doi.org/10.1103/physrevx.14.031036","url":null,"abstract":"Group-IV color centers in diamond are promising candidates for quantum networks due to their dominant zero-phonon line and symmetry-protected optical transitions that connect to coherent spin levels. The negatively charged tin-vacancy (SnV) center possesses long electron spin lifetimes due to its large spin-orbit splitting. However, the magnetic dipole transitions required for microwave spin control are suppressed, and strain is necessary to enable these transitions. Recent work has shown spin control of strained emitters using microwave lines that suffer from Ohmic losses, restricting coherence through heating. We utilize a superconducting coplanar waveguide to measure SnV centers subjected to strain, observing substantial improvement. A detailed analysis of the SnV center electron spin Hamiltonian based on the angle-dependent splitting of the ground and excited states is performed. We demonstrate coherent spin manipulation and obtain a Hahn echo coherence time of up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>T</mi></mrow><mn>2</mn></msub><mo>=</mo><mn>430</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi mathvariant=\"normal\">s</mi></mrow></math>. With dynamical decoupling, we can prolong coherence to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>T</mi></mrow><mn>2</mn></msub><mo>=</mo><mn>10</mn><mtext> </mtext><mtext> </mtext><mi>ms</mi></mrow></math>, about a sixfold improvement compared to earlier works. We also observe a nearby coupling <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">C</mi><mprescripts></mprescripts><none></none><mrow><mn>13</mn></mrow></mmultiscripts></math> spin, which may serve as a quantum memory, thus substantiating the potential of SnV centers in diamond and demonstrates the benefit of superconducting microwave structures.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"58 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1103/physrevx.14.031035
Benoît Vermersch, Marko Ljubotina, J. Ignacio Cirac, Peter Zoller, Maksym Serbyn, Lorenzo Piroli
Estimating global properties of many-body quantum systems such as entropy or bipartite entanglement is a notoriously difficult task, typically requiring a number of measurements or classical postprocessing resources growing exponentially in the system size. In this work, we address the problem of estimating global entropies and mixed-state entanglement via partial-transposed (PT) moments and show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite. Focusing on one-dimensional systems, we identify a set of approximate factorization conditions (AFCs) on the system density matrix, which allow us to reconstruct entropies and PT moments from information on local subsystems. This identification yields a simple and efficient strategy for entropy and entanglement estimation. Our method could be implemented in different ways, depending on how information on local subsystems is extracted. Focusing on randomized measurements providing a practical and common measurement scheme, we prove that our protocol requires only polynomially many measurements and postprocessing operations, assuming that the state to be measured satisfies the AFCs. We prove that the AFCs hold for finite-depth quantum-circuit states and translation-invariant matrix-product density operators and provide numerical evidence that they are satisfied in more general, physically interesting cases, including thermal states of local Hamiltonians. We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s quantum platforms.
{"title":"Many-Body Entropies and Entanglement from Polynomially Many Local Measurements","authors":"Benoît Vermersch, Marko Ljubotina, J. Ignacio Cirac, Peter Zoller, Maksym Serbyn, Lorenzo Piroli","doi":"10.1103/physrevx.14.031035","DOIUrl":"https://doi.org/10.1103/physrevx.14.031035","url":null,"abstract":"Estimating global properties of many-body quantum systems such as entropy or bipartite entanglement is a notoriously difficult task, typically requiring a number of measurements or classical postprocessing resources growing exponentially in the system size. In this work, we address the problem of estimating global entropies and mixed-state entanglement via partial-transposed (PT) moments and show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite. Focusing on one-dimensional systems, we identify a set of approximate factorization conditions (AFCs) on the system density matrix, which allow us to reconstruct entropies and PT moments from information on local subsystems. This identification yields a simple and efficient strategy for entropy and entanglement estimation. Our method could be implemented in different ways, depending on how information on local subsystems is extracted. Focusing on randomized measurements providing a practical and common measurement scheme, we prove that our protocol requires only polynomially many measurements and postprocessing operations, assuming that the state to be measured satisfies the AFCs. We prove that the AFCs hold for finite-depth quantum-circuit states and translation-invariant matrix-product density operators and provide numerical evidence that they are satisfied in more general, physically interesting cases, including thermal states of local Hamiltonians. We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s quantum platforms.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"42 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}