Yuankai Chang, Mianmian Shi, Xiao Wang, Hui Cheng, Junli Zhang, Hongrui Liu, Huiruo Wu, Xiaobin Ou, Ke Yu, Xuebin Zhang, Brad Day, Chen Miao, Yi Zhao, Kun Jiang
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
{"title":"A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening.","authors":"Yuankai Chang, Mianmian Shi, Xiao Wang, Hui Cheng, Junli Zhang, Hongrui Liu, Huiruo Wu, Xiaobin Ou, Ke Yu, Xuebin Zhang, Brad Day, Chen Miao, Yi Zhao, Kun Jiang","doi":"10.1093/plcell/koaf064","DOIUrl":"10.1093/plcell/koaf064","url":null,"abstract":"<p><p>Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Liu, Jue Wang, Xiaotian Liu, Ting Liao, Hui Ren, Liang Liu, Xi Huang
Ultraviolet-B (UV-B) light-induced stomatal closure requires the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) and nitric oxide (NO). However, the signaling pathways by which UV-B light regulates stomatal closure remain elusive. Here, we reveal that UVR8 signaling in the epidermis mediates stomatal closure in a tissue-specific manner in Arabidopsis (Arabidopsis thaliana). UV-B light promotes PHOSPHOLIPASE 1 (PLIP1)/PLIP3-mediated linoleic acid and α-linolenic acid accumulation and induces LIPOXYGENASE 1 (LOX1) expression. LOX1, which catabolizes linoleic acid and α-linolenic acid to produce oxylipin derivatives, acts downstream of UVR8 and upstream of the salicylic acid (SA) pathway associated with stomatal defense. Photoactivated UVR8 interacts with LOX1 and enhances its activity. Protein crystallography demonstrates that A. thaliana LOX1 and its ortholog in soybean (Glycine max) share overall structural similarity and conserved residues in the oxygen cavity, substrate cavity, and metal-binding site that are required for 9-LOX activity. The disruption of UVR8-LOX1 contact sites near the LOX1 oxygen and substrate cavities prevents UVR8-enhanced LOX1 activity and compromises stomatal closure upon UV-B exposure. Overall, our study uncovers a noncanonical UV-B signaling module, consisting of the UVR8 photoreceptor and the cytoplasmic lipoxygenase, that mediates stomatal responses to UV-B light.
{"title":"The UV-B photoreceptor UVR8 interacts with the LOX1 enzyme to promote stomatal closure through the LOX-derived oxylipin pathway.","authors":"Yan Liu, Jue Wang, Xiaotian Liu, Ting Liao, Hui Ren, Liang Liu, Xi Huang","doi":"10.1093/plcell/koaf060","DOIUrl":"10.1093/plcell/koaf060","url":null,"abstract":"<p><p>Ultraviolet-B (UV-B) light-induced stomatal closure requires the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) and nitric oxide (NO). However, the signaling pathways by which UV-B light regulates stomatal closure remain elusive. Here, we reveal that UVR8 signaling in the epidermis mediates stomatal closure in a tissue-specific manner in Arabidopsis (Arabidopsis thaliana). UV-B light promotes PHOSPHOLIPASE 1 (PLIP1)/PLIP3-mediated linoleic acid and α-linolenic acid accumulation and induces LIPOXYGENASE 1 (LOX1) expression. LOX1, which catabolizes linoleic acid and α-linolenic acid to produce oxylipin derivatives, acts downstream of UVR8 and upstream of the salicylic acid (SA) pathway associated with stomatal defense. Photoactivated UVR8 interacts with LOX1 and enhances its activity. Protein crystallography demonstrates that A. thaliana LOX1 and its ortholog in soybean (Glycine max) share overall structural similarity and conserved residues in the oxygen cavity, substrate cavity, and metal-binding site that are required for 9-LOX activity. The disruption of UVR8-LOX1 contact sites near the LOX1 oxygen and substrate cavities prevents UVR8-enhanced LOX1 activity and compromises stomatal closure upon UV-B exposure. Overall, our study uncovers a noncanonical UV-B signaling module, consisting of the UVR8 photoreceptor and the cytoplasmic lipoxygenase, that mediates stomatal responses to UV-B light.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiao Wang, Qian Luo, Jingjing Deng, Xiao Liang, Yimei Li, Anran Wang, Teng Lin, Hua Liu, Xuanbo Zhang, Zhaoyu Liu, Zhangjian Hu, Shuting Ding, Changtian Pan, Jingquan Yu, Qifei Gao, Christine H Foyer, Kai Shi
The shoot apex is a critical determinant of plant growth, development, morphology, and yield. The G-protein β subunit (Gβ) is an essential regulator of apical meristem dynamics, yet its precise mechanism of action remains unclear, with notable interspecific variation. This study reveals that in the dicot tomato (Solanum lycopersicum), Gβ subunit mutants (Slgb1) display abnormal shoot morphogenesis and, in severe cases, shoot apex death. Such a phenotype has also been observed in monocot species, like maize (Zea mays) and rice (Oryza sativa), but not in the model dicot Arabidopsis (Arabidopsis thaliana). Using integrated multiomics and liquid chromatography-mass spectrometry, we identified a significant upregulation in tyramine-derived phenolamides in Slgb1 mutants, particularly N-p-trans-coumaroyltyramine (N-P-CT) and N-trans-feruloyltyramine (N-FT). Biochemical and genetic assays pinpointed tyramine hydroxycinnamoyl transferases (THTs) as the enzymes catalyzing N-P-CT and N-FT biosynthesis, with THT8 overexpression inducing shoot apex death. Comparative genomic analysis revealed the presence of a THT-mediated tyramine-derived phenolamide metabolic pathway in species exhibiting gb1 mutant-associated apex death, which is notably absent in Arabidopsis. Protein interaction assays showed that SlGB1 interacts with bHLH79 at the cell membrane and cytoplasm, thereby attenuating the bHLH79-MYB10 interaction within the nucleus, leading to altered THT expression and phenolamide biosynthesis. This study unravels the molecular mechanisms by which SlGB1 governs tomato shoot apex growth and development, highlighting interspecific differences critical for developing breeding strategies aimed at optimizing shoot apex architecture.
{"title":"The G-protein β subunit SlGB1 regulates tyramine-derived phenolamide metabolism for shoot apex growth and development in tomato.","authors":"Jiao Wang, Qian Luo, Jingjing Deng, Xiao Liang, Yimei Li, Anran Wang, Teng Lin, Hua Liu, Xuanbo Zhang, Zhaoyu Liu, Zhangjian Hu, Shuting Ding, Changtian Pan, Jingquan Yu, Qifei Gao, Christine H Foyer, Kai Shi","doi":"10.1093/plcell/koaf070","DOIUrl":"10.1093/plcell/koaf070","url":null,"abstract":"<p><p>The shoot apex is a critical determinant of plant growth, development, morphology, and yield. The G-protein β subunit (Gβ) is an essential regulator of apical meristem dynamics, yet its precise mechanism of action remains unclear, with notable interspecific variation. This study reveals that in the dicot tomato (Solanum lycopersicum), Gβ subunit mutants (Slgb1) display abnormal shoot morphogenesis and, in severe cases, shoot apex death. Such a phenotype has also been observed in monocot species, like maize (Zea mays) and rice (Oryza sativa), but not in the model dicot Arabidopsis (Arabidopsis thaliana). Using integrated multiomics and liquid chromatography-mass spectrometry, we identified a significant upregulation in tyramine-derived phenolamides in Slgb1 mutants, particularly N-p-trans-coumaroyltyramine (N-P-CT) and N-trans-feruloyltyramine (N-FT). Biochemical and genetic assays pinpointed tyramine hydroxycinnamoyl transferases (THTs) as the enzymes catalyzing N-P-CT and N-FT biosynthesis, with THT8 overexpression inducing shoot apex death. Comparative genomic analysis revealed the presence of a THT-mediated tyramine-derived phenolamide metabolic pathway in species exhibiting gb1 mutant-associated apex death, which is notably absent in Arabidopsis. Protein interaction assays showed that SlGB1 interacts with bHLH79 at the cell membrane and cytoplasm, thereby attenuating the bHLH79-MYB10 interaction within the nucleus, leading to altered THT expression and phenolamide biosynthesis. This study unravels the molecular mechanisms by which SlGB1 governs tomato shoot apex growth and development, highlighting interspecific differences critical for developing breeding strategies aimed at optimizing shoot apex architecture.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Like Alice in Wonderland, ROOT-ExM enlarges root tips for a closer look.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koaf078","DOIUrl":"https://doi.org/10.1093/plcell/koaf078","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 4","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Living off the fat of the plant: Powdery mildew fungi thrive on host thylakoid lipids.","authors":"Jan Wilhelm Hübbers","doi":"10.1093/plcell/koaf044","DOIUrl":"10.1093/plcell/koaf044","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 4","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flipping the sex switch: Genetic insights into sex determination factor in Ceratopteris richardii.","authors":"Sonhita Chakraborty","doi":"10.1093/plcell/koaf079","DOIUrl":"10.1093/plcell/koaf079","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How UV-B-activated UVR8 triggers LOX1 to close stomata: Unveiling a mechanism of photoreceptor-regulated enzyme activity in the cytoplasm.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf076","DOIUrl":"10.1093/plcell/koaf076","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seeing is believing: Whole-cell electron tomography models of vacuole morphology and formation in the early-stage root cortex of Arabidopsis.","authors":"Yong Cui, Jiayang Gao, Yanbin Li, Hai Zhang, Xiaohui Zheng, Qing Qi, Shengqi Zhang, Byung-Ho Kang, Liwen Jiang","doi":"10.1093/plcell/koaf057","DOIUrl":"10.1093/plcell/koaf057","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}