Pub Date : 2024-04-01Epub Date: 2023-11-09DOI: 10.1152/physrev.00033.2023
Brooke R Shepley, Anthony R Bain
{"title":"Is Notch1 a neglected vascular mechanosensor?","authors":"Brooke R Shepley, Anthony R Bain","doi":"10.1152/physrev.00033.2023","DOIUrl":"10.1152/physrev.00033.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"655-658"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-11-16DOI: 10.1152/physrev.00015.2023
Qin Fu, Ying Wang, Chen Yan, Yang K Xiang
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
{"title":"Phosphodiesterase in heart and vessels: from physiology to diseases.","authors":"Qin Fu, Ying Wang, Chen Yan, Yang K Xiang","doi":"10.1152/physrev.00015.2023","DOIUrl":"10.1152/physrev.00015.2023","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"765-834"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-12-07DOI: 10.1152/physrev.00020.2023
Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
{"title":"The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract.","authors":"Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland","doi":"10.1152/physrev.00020.2023","DOIUrl":"10.1152/physrev.00020.2023","url":null,"abstract":"<p><p>The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"835-879"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-08-10DOI: 10.1152/physrev.00006.2023
Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
动脉、毛细血管和静脉中的肺内皮在结构和功能上各不相同。尤其是肺毛细血管,它代表了一种独特的血管龛位,具有薄而限制性强的肺泡-毛细血管屏障,可优化气体交换。毛细血管内皮在检测血液的同时,还能解读由肺泡内部发出并通过紧邻的 I 型和 II 型上皮细胞、成纤维细胞和周细胞传递的信号。这种细胞间的交流是协调对下呼吸道感染的免疫反应所必需的。最近的研究发现,肺毛细血管内皮细胞中表达的微管相关蛋白 tau 在宿主与病原体的相互作用中扮演着重要角色。这种内皮 tau 能稳定屏障完整性所需的微管,但感染会促使细胞毒性 tau 变体的产生,这些变体被释放到呼吸道和血液循环中,导致内脏器官功能障碍。同样,β-淀粉样蛋白也会在感染过程中产生。β-淀粉样蛋白具有抗菌活性,但在感染过程中会产生细胞毒性,对宿主造成危害。这些细胞毒性 tau 和淀粉样蛋白变体的产生和功能是本综述的主题。肺源性细胞毒性 tau 和淀粉样蛋白变体是最近发现的一种在感染期间和感染后导致包括神经认知功能障碍在内的终末器官功能障碍的机制。
{"title":"Lung endothelium, tau, and amyloids in health and disease.","authors":"Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens","doi":"10.1152/physrev.00006.2023","DOIUrl":"10.1152/physrev.00006.2023","url":null,"abstract":"<p><p>Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"533-587"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1152/physrev.00030.2023
Jing Xu, Firas Mawase, Marc H. Schieber
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"Evolution, biomechanics, and neurobiology converge to explain selective finger motor control","authors":"Jing Xu, Firas Mawase, Marc H. Schieber","doi":"10.1152/physrev.00030.2023","DOIUrl":"https://doi.org/10.1152/physrev.00030.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"259 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-09-15DOI: 10.1152/physrev.00003.2023
Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
{"title":"Tissue transglutaminase: a multifunctional and multisite regulator in health and disease.","authors":"Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia","doi":"10.1152/physrev.00003.2023","DOIUrl":"10.1152/physrev.00003.2023","url":null,"abstract":"<p><p>Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"281-325"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-09-21DOI: 10.1152/physrev.00021.2023
Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
{"title":"Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries.","authors":"Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds","doi":"10.1152/physrev.00021.2023","DOIUrl":"10.1152/physrev.00021.2023","url":null,"abstract":"<p><p>The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"473-532"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-07-21DOI: 10.1152/physrev.00041.2022
Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
{"title":"Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms.","authors":"Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le","doi":"10.1152/physrev.00041.2022","DOIUrl":"10.1152/physrev.00041.2022","url":null,"abstract":"<p><p>The teleology of sex differences has been argued since at least as early as Aristotle's controversial <i>Generation of Animals</i> more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question \"why are the sexes different\" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question \"how are the sexes different\" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"199-251"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-08-10DOI: 10.1152/physrev.00022.2023
Osama F Harraz, Eric Delpire
{"title":"Recent insights into channelopathies.","authors":"Osama F Harraz, Eric Delpire","doi":"10.1152/physrev.00022.2023","DOIUrl":"10.1152/physrev.00022.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"23-31"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10046282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}