首页 > 最新文献

Physiological reviews最新文献

英文 中文
Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. 神经退行性变中的氧化损伤:在阿尔茨海默病发病机制和进展中的作用。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 DOI: 10.1152/physrev.00030.2022
Marzia Perluigi, Fabio Di Domenico, D Allan Butterfield

Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.

阿尔茨海默病(AD)与多种病因和病理机制有关,其中氧化应激(OS)是主要的决定因素。有趣的是,OS出现在调节大脑功能的各种途径中,它似乎高保真地将AD神经病理学的不同假设和机制联系起来。大脑特别容易受到氧化损伤,主要是因为其独特的脂质成分,导致针对几种细胞成分/功能的氧化还原反应级联放大,最终导致神经退行性变。本综述强调了“AD的OS假说”,包括淀粉样蛋白β肽相关机制、氧化还原蛋白质组学揭示的脂质和蛋白质氧化的作用,以及已研究的调节AD进展的抗氧化策略。我们小组和其他人收集的研究通过阐明可能参与AD发病机制和进展的氧化还原调节事件,有助于揭示大脑氧化还原稳态紊乱与AD神经病理学之间的密切关系。然而,AD病理机制的复杂性需要深入了解影响氧化还原稳态并与大脑功能相关的几种主要细胞内途径。这一认识对于开发针对OS介导的毒性的药理学策略至关重要,这些毒性可能有助于减缓AD的进展,并提高这种严重痴呆症患者的生活质量。
{"title":"Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease.","authors":"Marzia Perluigi, Fabio Di Domenico, D Allan Butterfield","doi":"10.1152/physrev.00030.2022","DOIUrl":"10.1152/physrev.00030.2022","url":null,"abstract":"<p><p>Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the \"OS hypothesis of AD,\" including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"104 1","pages":"103-197"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41237823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. 非典型钠泄漏通道NALCN的生理学和病理生理学新见解。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-24 DOI: 10.1152/physrev.00014.2022
Arnaud Monteil, Nathalie C Guérineau, Antonio Gil-Nagel, Paloma Parra-Diaz, Philippe Lory, Adriano Senatore

Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.

细胞兴奋性及其由激素和神经递质的调节涉及大量膜蛋白,特别是离子通道的协同作用。在不同的可兴奋细胞类型中,共同表达的离子通道的独特补体彼此之间精确地平衡,建立独特的电特性,为不同的生理贡献量身定制,任何成分的功能障碍都可能诱发疾病状态。控制细胞兴奋性的一个关键参数是静息膜电位(RMP),这是由细胞外和细胞内离子浓度决定的,主要是Na+、K+和Cl-,以及它们通过泄漏离子通道在细胞膜上的被动渗透。事实上,RMP失调会对细胞兴奋性产生显著影响。本文综述了Na+泄漏通道NALCN及其附属亚基UNC-79、UNC-80和NLF-1/FAM155在各种可兴奋细胞类型,特别是神经元中传导去极化背景Na+电流的分子和生理特性。动物模型研究清楚地表明,NALCN参与神经系统的基本生理过程,包括呼吸节律、昼夜节律、睡眠和运动行为的控制。此外,NALCN及其亚基的功能障碍与人类严重的病理状态有关。NALCN在生理上的重要作用现在已经得到了很好的证实,但由于缺乏特异性药物可以在体外和体内阻断或抑制NALCN电流,其研究一直受到阻碍。分子工具和动物模型现在可以加速我们对NALCN如何促进关键生理功能的理解,并开发针对NALCN通道病变的新疗法。
{"title":"New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN.","authors":"Arnaud Monteil, Nathalie C Guérineau, Antonio Gil-Nagel, Paloma Parra-Diaz, Philippe Lory, Adriano Senatore","doi":"10.1152/physrev.00014.2022","DOIUrl":"10.1152/physrev.00014.2022","url":null,"abstract":"<p><p>Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na<sup>+</sup>, K<sup>+</sup>, and Cl<sup>-</sup>, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na<sup>+</sup> leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na<sup>+</sup> currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"399-472"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The conducted vasomotor response and the principles of electrical communication in resistance arteries. 传导的血管舒缩反应和阻力动脉中的电通讯原理。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-07-06 DOI: 10.1152/physrev.00035.2022
Galina Yu Mironova, Paulina M Kowalewska, Mohammed El-Lakany, Cam Ha T Tran, Maria Sancho, Anil Zechariah, William F Jackson, Donald G Welsh

Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The "conducted vasomotor response" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.

生物组织由动脉网络供给,其任务是根据能量需求设置血流输送。协调数百个相邻节段之间的血管舒缩活动是一个重要的过程,它依赖于平滑肌和内皮细胞之间的电信息传播。“传导血管舒缩反应”是电传播的一种功能性表达,正是这个过程是这篇关键综述的核心。这篇综述以叙述的形式撰写,首先突出了历史手稿,然后描述了一系列准备工作中的反应。趋势被强调并用于指导后续章节,重点是细胞基础、生物物理基础以及健康和疾病的监管。关键信息已制成表格;这些数字强化了基础概念,并揭示了一个框架,在这个框架内,理论和实验工作可以合理化。这篇总结性综述强调,尽管进行了30年的协同实验,但所进行的反应的关键方面仍然定义不清。值得注意的是,需要合理化病理生物学环境中传导的调节和恶化。讨论了新的定量工具,以及转基因技术,作为推动这一研究领域向前发展的一种手段。
{"title":"The conducted vasomotor response and the principles of electrical communication in resistance arteries.","authors":"Galina Yu Mironova,&nbsp;Paulina M Kowalewska,&nbsp;Mohammed El-Lakany,&nbsp;Cam Ha T Tran,&nbsp;Maria Sancho,&nbsp;Anil Zechariah,&nbsp;William F Jackson,&nbsp;Donald G Welsh","doi":"10.1152/physrev.00035.2022","DOIUrl":"10.1152/physrev.00035.2022","url":null,"abstract":"<p><p>Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The \"conducted vasomotor response\" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"33-84"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9755683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making a good egg: human oocyte health, aging, and in vitro development. 制造一个好的卵子:人类卵母细胞健康、衰老和体外发育。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-05-12 DOI: 10.1152/physrev.00032.2022
Evelyn E Telfer, Johanne Grosbois, Yvonne L Odey, Roseanne Rosario, Richard A Anderson

Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.

哺乳动物的卵子(卵母细胞)在胎儿期形成,并与体细胞建立联系,形成原始卵泡,形成生殖细胞库(原始池)。该池的大小受到生殖细胞形成过程中的关键事件以及影响卵泡生长后续激活的因素的影响。这些调节途径必须确保人类原始卵泡中的卵母细胞储备持续50 然而,只有大约0.1%的人会排卵,其余的人正在经历变性。这篇综述概述了控制卵母细胞和卵泡形成以及随后在卵巢基质内生长直至排卵过程的机制和调节途径,特别是针对人类卵母细胞/卵泡。此外,还强调了衰老通过卵母细胞数量和质量的变化对女性生殖能力的影响,并讨论了其细胞机制和临床意义。最后,概述了支持卵泡生长各个阶段在体外产生成熟卵母细胞的培养系统的最新发展细节,以及从干细胞中制造新卵母细胞方面的新前景。
{"title":"Making a good egg: human oocyte health, aging, and in vitro development.","authors":"Evelyn E Telfer, Johanne Grosbois, Yvonne L Odey, Roseanne Rosario, Richard A Anderson","doi":"10.1152/physrev.00032.2022","DOIUrl":"10.1152/physrev.00032.2022","url":null,"abstract":"<p><p>Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2623-2677"},"PeriodicalIF":33.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9930226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of quality metrics in the evolution of AI in health care and implications for generative AI. 质量指标在医疗保健人工智能进化中的作用以及对生成人工智能的影响。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-08-10 DOI: 10.1152/physrev.00029.2023
Ryan C Godwin, Ryan L Melvin
{"title":"The role of quality metrics in the evolution of AI in health care and implications for generative AI.","authors":"Ryan C Godwin,&nbsp;Ryan L Melvin","doi":"10.1152/physrev.00029.2023","DOIUrl":"10.1152/physrev.00029.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2873-2875"},"PeriodicalIF":33.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10129293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mechanisms of SARS-CoV-2-associated anosmia. 严重急性呼吸系统综合征冠状病毒2型相关嗅觉缺失的机制。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-06-21 DOI: 10.1152/physrev.00012.2023
Tatsuya Tsukahara, David H Brann, Sandeep Robert Datta

Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.

嗅觉缺失是新冠肺炎的主要神经表现之一。尽管SARS-CoV-2病毒以鼻腔嗅觉上皮为目标,但目前的证据表明,神经元感染在嗅觉周围和大脑中都极为罕见,这促使人们需要能够解释新冠肺炎患者普遍嗅觉缺失的机制模型。从识别嗅觉系统中感染SARS-CoV-2的非神经细胞类型开始,我们回顾了这些支持性细胞在嗅上皮和大脑中的感染影响,并确定了新冠肺炎患者嗅觉受损的下游机制。我们提出,与神经元感染或神经侵入大脑相比,间接机制有助于COVID-19相关嗅觉缺失中嗅觉系统功能的改变。这种间接机制包括组织损伤、通过免疫细胞浸润或细胞因子的全身循环产生的炎症反应,以及嗅觉感觉神经元中气味受体基因对局部和全身信号的下调。我们还强调了最近的调查结果提出的尚未解决的关键问题。
{"title":"Mechanisms of SARS-CoV-2-associated anosmia.","authors":"Tatsuya Tsukahara, David H Brann, Sandeep Robert Datta","doi":"10.1152/physrev.00012.2023","DOIUrl":"10.1152/physrev.00012.2023","url":null,"abstract":"<p><p>Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2759-2766"},"PeriodicalIF":33.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10031889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptic memory and CaMKII. 突触记忆和CaMKII。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-06-08 DOI: 10.1152/physrev.00034.2022
Roger A Nicoll, Howard Schulman

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.

Ca2+/钙调蛋白依赖性蛋白激酶II(CaMKII)和长时程增强(LTP)是在十年内发现的,并且从那时起就密不可分。然而,就像许多婚姻一样,它也有起有落。基于CaMKII独特的生物化学性质,在与LTP形成任何生理连接之前,它被认为是一种记忆分子。然而,正如本文所述,CaMKII与突触生理和行为之间令人信服的联系花了几十年的时间。新技术在这一旅程中至关重要,包括体外脑切片、小鼠遗传学、单细胞分子遗传学、药理学试剂、蛋白质结构和双光子显微镜,以及被这一令人兴奋的挑战吸引的新研究人员。这篇综述追踪了这段旅程,并评估了40年后这段婚姻的状态。集体文献促使我们提出一个相对简单的突触记忆模型,包括以下驱动过程的步骤:1)Ca2+通过N-甲基-d-天冬氨酸(NMDA)受体进入激活CaMKII。2) CaMKII经历自身磷酸化,导致组成型、Ca2+非依赖性活性和NMDA受体亚基Glu22B结合位点的暴露。3) 活性CaMKII易位到突触后密度(PSD)并与GluN2B的细胞质C尾结合。4) CaMKII-GluN2B复合物引发PSD的结构重排,其可能涉及液-液相分离。5) 这种重排涉及PSD-95支架蛋白、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)及其跨膜AMPAR调节蛋白(TARP)辅助亚基,导致AMPAR在PSD中积累,这是突触增强的基础。6) 改性PSD的稳定性通过CaMKII-GluN2B复合物的稳定性来维持。7) 通过亚基交换或全酶间磷酸化的过程,CaMKII在面对CaMKII蛋白转换时保持突触增强。还有许多其他重要的蛋白质参与突触棘的扩大或驱动和维持增强的步骤的调节。在这篇综述中,我们批判性地讨论了每个步骤背后的数据。很明显,其中一些步骤比其他步骤更有根据,我们就如何加强或根据新数据替换支持这些步骤的证据提出了建议。尽管这是一段漫长的旅程,但对学习和记忆有详细的细胞和分子理解的前景就在眼前。
{"title":"Synaptic memory and CaMKII.","authors":"Roger A Nicoll, Howard Schulman","doi":"10.1152/physrev.00034.2022","DOIUrl":"10.1152/physrev.00034.2022","url":null,"abstract":"<p><p>Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: <i>1</i>) Ca<sup>2+</sup> entry through <i>N</i>-methyl-d-aspartate (NMDA) receptors activates CaMKII. <i>2</i>) CaMKII undergoes autophosphorylation resulting in constitutive, Ca<sup>2+</sup>-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. <i>3</i>) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. <i>4</i>) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. <i>5</i>) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. <i>6</i>) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. <i>7</i>) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2877-2925"},"PeriodicalIF":33.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10185704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Mitochondria in health, disease, and aging. 线粒体与健康、疾病和衰老有关。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-04-06 DOI: 10.1152/physrev.00058.2021
John S Harrington, Stefan W Ryter, Maria Plataki, David R Price, Augustine M K Choi

Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.

众所周知,线粒体是通过产生ATP来维持细胞生物能量的细胞器。尽管氧化磷酸化可能是线粒体最重要的功能,但线粒体在代谢前体的合成、钙调节、活性氧的产生、免疫信号传导和细胞凋亡中也是不可或缺的。考虑到线粒体职责的广度,线粒体是细胞代谢和稳态的基础。意识到这一意义,转化医学已经开始研究线粒体功能障碍如何代表疾病的前兆。在这篇综述中,我们提供了线粒体代谢、细胞生物能量学、线粒体动力学、自噬、线粒体损伤相关分子模式、线粒体介导的细胞死亡途径的详细概述,以及这些水平的线粒体功能障碍如何与疾病发病机制相关。线粒体依赖性途径因此可能是改善人类疾病的一个有吸引力的治疗靶点。
{"title":"Mitochondria in health, disease, and aging.","authors":"John S Harrington, Stefan W Ryter, Maria Plataki, David R Price, Augustine M K Choi","doi":"10.1152/physrev.00058.2021","DOIUrl":"10.1152/physrev.00058.2021","url":null,"abstract":"<p><p>Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2349-2422"},"PeriodicalIF":29.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9913543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging physiology and artificial intelligence to deliver advancements in health care. 利用生理学和人工智能在医疗保健领域取得进步。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-04-27 DOI: 10.1152/physrev.00033.2022
Angela Zhang, Zhenqin Wu, Eric Wu, Matthew Wu, Michael P Snyder, James Zou, Joseph C Wu

Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.

在过去的十年里,医疗保健领域的人工智能经历了显著的创新和进步。重大进展可归因于利用人工智能转换生理数据以促进医疗保健。在这篇综述中,我们探讨了过去的工作如何塑造了这个领域,并确定了未来的挑战和方向。我们特别关注三个发展领域。首先,我们概述了人工智能,特别关注最相关的人工智能模型。然后,我们详细介绍了人工智能如何利用生理学数据来推进医疗保健的主要领域:自动化现有的医疗保健任务,增加获得医疗保健的机会,以及增强医疗保健能力。最后,我们讨论了围绕个人生理学数据使用的新问题,并详细说明了该领域日益重要的考虑因素,即部署人工智能模型以实现有意义的临床影响的挑战。
{"title":"Leveraging physiology and artificial intelligence to deliver advancements in health care.","authors":"Angela Zhang, Zhenqin Wu, Eric Wu, Matthew Wu, Michael P Snyder, James Zou, Joseph C Wu","doi":"10.1152/physrev.00033.2022","DOIUrl":"10.1152/physrev.00033.2022","url":null,"abstract":"<p><p>Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2423-2450"},"PeriodicalIF":29.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. 梗阻性肾病与肾间质纤维化的分子病理生理学。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-07-13 DOI: 10.1152/physrev.00027.2022
Rikke Nørregaard, Henricus A M Mutsaers, Jørgen Frøkiær, Tae-Hwan Kwon

The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.

肾脏在维持全身稳态方面起着关键作用。这项任务的复杂性体现在器官独特的结构上。输尿管梗阻通过改变血流动力学、改变肾小球滤过和肾脏代谢、诱发肾实质结构畸形,最重要的是肾纤维化,极大地影响肾脏生理。持续的病理变化会导致慢性肾脏疾病,目前影响全球约10%的人口,是全球死亡的主要原因之一。关于输尿管梗阻后果的研究可以追溯到19世纪。即使在今天,实验性单侧输尿管梗阻(UUO)仍然是肾小管间质纤维化的标准模型。然而,该模型在研究管状损伤和修复方面存在一定的局限性,并且对人类翻译的潜力有限。然而,输尿管梗阻为科学界提供了丰富的肾脏(病理)生理学知识。随着先进的组学技术的引入,经典的UUO模型一直保持着相关性,并在分子、基因组和细胞水平上有助于理解肾纤维化。这篇综述详细介绍了梗阻性肾病的关键概念和最新进展,强调了输尿管梗阻引起的功能和结构变化的病理生理特征,特别强调了肾纤维化。
{"title":"Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis.","authors":"Rikke Nørregaard, Henricus A M Mutsaers, Jørgen Frøkiær, Tae-Hwan Kwon","doi":"10.1152/physrev.00027.2022","DOIUrl":"10.1152/physrev.00027.2022","url":null,"abstract":"<p><p>The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 4","pages":"2827-2872"},"PeriodicalIF":33.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10498781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1