首页 > 最新文献

Physiological reviews最新文献

英文 中文
Is Notch1 a neglected vascular mechanosensor? Davis等人的社论。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-11-09 DOI: 10.1152/physrev.00033.2023
Brooke R Shepley, Anthony R Bain
{"title":"Is Notch1 a neglected vascular mechanosensor?","authors":"Brooke R Shepley, Anthony R Bain","doi":"10.1152/physrev.00033.2023","DOIUrl":"10.1152/physrev.00033.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"655-658"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase in heart and vessels: from physiology to diseases. 心脏和血管中的磷酸二酯酶——从生理学到疾病。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-11-16 DOI: 10.1152/physrev.00015.2023
Qin Fu, Ying Wang, Chen Yan, Yang K Xiang

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.

磷酸二酯酶(PDEs)是一个水解环核苷酸的超家族酶,包括环腺苷单磷酸(cAMP)和环鸟苷单磷酸(cGMP),是心血管系统中神经激素调节的关键次级信使。PDEs以细胞和组织特异性的方式精确控制环核苷酸的时空亚细胞分布,在心脏和血管对激素刺激的生理反应中发挥关键作用。PDEs的失调与几种心血管疾病的发生有关,如高血压、动脉瘤、动脉粥样硬化、心律失常和心力衰竭(HF)。以这些酶为靶点治疗心血管疾病已被证明是有效的,是开发新药的一种有吸引力和前景的策略。在这篇综述中,我们将讨论目前对PDE异构体在心血管功能中的复杂调控的理解,强调PDE异构体在不同发病机制中的不同甚至相反的作用。
{"title":"Phosphodiesterase in heart and vessels: from physiology to diseases.","authors":"Qin Fu, Ying Wang, Chen Yan, Yang K Xiang","doi":"10.1152/physrev.00015.2023","DOIUrl":"10.1152/physrev.00015.2023","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"765-834"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. 微生物群:在免疫稳态和呼吸道炎症中起着不可或缺的作用。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-12-07 DOI: 10.1152/physrev.00020.2023
Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland

The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.

近十年来,微生物组研究强调了其在全身免疫和代谢稳态中的基本作用。当母亲的生活方式因素影响新生儿的免疫发育时,微生物组在妊娠期和生命早期起着突出的作用。母乳进一步塑造肠道定植,支持对共生细菌和无害抗原的耐受性的发展,同时防止病原体的生长。破坏这一过程的环境微生物和生活方式因素可使免疫稳态失调,使婴儿易患特应性疾病和儿童哮喘。在健康方面,低生物量的肺微生物组与吸入的环境微生物成分一起,建立了维持肺免疫防御所必需的免疫设定值。然而,在疾病中,对免疫和生理过程的扰动使上呼吸道成为致病细菌的储存库,这些细菌可以在患病的肺部定植并引起严重的炎症。研究这些宿主-微生物在呼吸系统疾病中的相互作用,对患者进行分层,以获得合适的治疗方案和发现生物标志物,以预测疾病进展具有很大的希望。临床前研究表明,共生肠道微生物处于细胞分裂和死亡的不断变化中,释放微生物成分、代谢副产物和囊泡,这些微生物成分、代谢副产物和囊泡塑造了免疫系统,可以预防呼吸道疾病。下一个重大进展可能来自于测试和利用这些微生物因素的临床效益,并通过采用多组学分析方法来开发微生物组的预测能力。
{"title":"The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract.","authors":"Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland","doi":"10.1152/physrev.00020.2023","DOIUrl":"10.1152/physrev.00020.2023","url":null,"abstract":"<p><p>The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"835-879"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung endothelium, tau, and amyloids in health and disease. 健康和疾病中的肺内皮、tau 和淀粉样蛋白。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-08-10 DOI: 10.1152/physrev.00006.2023
Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.

动脉、毛细血管和静脉中的肺内皮在结构和功能上各不相同。尤其是肺毛细血管,它代表了一种独特的血管龛位,具有薄而限制性强的肺泡-毛细血管屏障,可优化气体交换。毛细血管内皮在检测血液的同时,还能解读由肺泡内部发出并通过紧邻的 I 型和 II 型上皮细胞、成纤维细胞和周细胞传递的信号。这种细胞间的交流是协调对下呼吸道感染的免疫反应所必需的。最近的研究发现,肺毛细血管内皮细胞中表达的微管相关蛋白 tau 在宿主与病原体的相互作用中扮演着重要角色。这种内皮 tau 能稳定屏障完整性所需的微管,但感染会促使细胞毒性 tau 变体的产生,这些变体被释放到呼吸道和血液循环中,导致内脏器官功能障碍。同样,β-淀粉样蛋白也会在感染过程中产生。β-淀粉样蛋白具有抗菌活性,但在感染过程中会产生细胞毒性,对宿主造成危害。这些细胞毒性 tau 和淀粉样蛋白变体的产生和功能是本综述的主题。肺源性细胞毒性 tau 和淀粉样蛋白变体是最近发现的一种在感染期间和感染后导致包括神经认知功能障碍在内的终末器官功能障碍的机制。
{"title":"Lung endothelium, tau, and amyloids in health and disease.","authors":"Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens","doi":"10.1152/physrev.00006.2023","DOIUrl":"10.1152/physrev.00006.2023","url":null,"abstract":"<p><p>Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"533-587"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control 进化论、生物力学和神经生物学共同解释手指运动控制的选择性
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-02-22 DOI: 10.1152/physrev.00030.2023
Jing Xu, Firas Mawase, Marc H. Schieber
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"Evolution, biomechanics, and neurobiology converge to explain selective finger motor control","authors":"Jing Xu, Firas Mawase, Marc H. Schieber","doi":"10.1152/physrev.00030.2023","DOIUrl":"https://doi.org/10.1152/physrev.00030.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"259 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Community-acquired bacterial coinfections and COVID-19. 社区——获得性细菌感染和新冠肺炎。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-17 DOI: 10.1152/physrev.00010.2023
Michael John Patton, Amit Gaggar, Matthew Might, Nathaniel Erdmann, Carlos J Orihuela, Kevin S Harrod
{"title":"Community-acquired bacterial coinfections and COVID-19.","authors":"Michael John Patton,&nbsp;Amit Gaggar,&nbsp;Matthew Might,&nbsp;Nathaniel Erdmann,&nbsp;Carlos J Orihuela,&nbsp;Kevin S Harrod","doi":"10.1152/physrev.00010.2023","DOIUrl":"10.1152/physrev.00010.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1-21"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. 组织转谷氨酰胺酶:健康和疾病中的多功能和多位点调节因子。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-15 DOI: 10.1152/physrev.00003.2023
Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia

Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.

组织转谷氨酰胺酶(TG2)是一种广泛分布的多功能蛋白,在多种细胞区室中参与广泛的细胞和代谢功能。除转酰胺作用外,TG2还作为Gα信号蛋白、蛋白二硫异构酶(PDI)、蛋白激酶和支架蛋白发挥作用。在细胞核中,TG2修饰组蛋白和转录因子。PDI功能催化核内热休克因子-1的三聚化和活化,调节几种线粒体复合物的氧化状态。胞质TG2通过添加5 -羟色胺或其他初级胺来修饰蛋白质,并以这种方式影响细胞信号传导。蛋白质结合谷氨酰胺的修饰减少泛素依赖的蛋白酶体降解。在细胞膜上,TG2与G蛋白偶联受体(gpcr)相关,在跨膜信号传导中起作用。TG2也存在于细胞外空间,它在蛋白质交联和细胞外基质稳定中起作用。最近关于TG2在基因表达、蛋白稳态、细胞信号、自身免疫、炎症和缺氧中的作用的发现,在转谷氨酰胺酶研究中具有特别重要的意义。因此,TG2在多个细胞区室中发挥多种功能,使其成为最通用的细胞蛋白之一。其他证据表明TG2与多种人类疾病有关,包括先兆子痫、高血压、心血管疾病、器官纤维化、癌症、神经退行性疾病和乳糜泻。综上所述,TG2对生理应激提供了多功能、多位点的反应。
{"title":"Tissue transglutaminase: a multifunctional and multisite regulator in health and disease.","authors":"Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia","doi":"10.1152/physrev.00003.2023","DOIUrl":"10.1152/physrev.00003.2023","url":null,"abstract":"<p><p>Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"281-325"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. 糖皮质激素,它们的用途,性畸形和疾病:新概念,机制和发现。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-21 DOI: 10.1152/physrev.00021.2023
Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds

The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.

人类的正常应激反应由下丘脑-垂体-肾上腺(HPA)轴通过应激过程中的强化机制控制,从而提高血液中糖皮质激素皮质醇的水平。糖皮质激素是平衡哺乳动物体内许多系统正常功能的典型化合物。它们也是合成的,是治疗炎症性疾病的卓越药物。它们通过与核受体转录因子糖皮质激素受体(GR)结合而发挥作用,该受体具有两种主要的亚型(GRα和GRβ)。我们对糖皮质激素信号传导的经典理解来自GRα亚型,它与激素结合,而GRβ没有已知的配体。由于糖皮质激素参与了许多生理和细胞过程,即使它们通过HPA轴释放的微小干扰,或GR亚型表达的变化,也可能对健康产生可怕的影响。长期的慢性糖皮质激素治疗会导致糖皮质激素抵抗状态,我们仔细研究了这对疾病治疗的影响。慢性糖皮质激素治疗会导致明显的副作用,如体重增加、肥胖、糖尿病和我们详细讨论的其他副作用。对糖皮质激素存在性二型反应,女性的HPA轴往往比男性反应更高。这篇综述总结了我们对糖皮质激素的理解,批判性地分析了GR亚型及其有益和有害机制,以及导致反应二分法的性别差异。我们还讨论了糖皮质激素治疗的未来,提出了双GR亚型激动剂的新概念,并推测了为什么激活两种亚型可以预防糖皮质激素耐药性。
{"title":"Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries.","authors":"Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds","doi":"10.1152/physrev.00021.2023","DOIUrl":"10.1152/physrev.00021.2023","url":null,"abstract":"<p><p>The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"473-532"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. 血压调节与高血压的性别差异:肾脏、血液动力学和激素机制。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-07-21 DOI: 10.1152/physrev.00041.2022
Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le

The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.

性别差异的目的论至少早在公元前300多年亚里士多德的《动物的一代》中就有人提出过。尽管“为什么性别不同”这个问题在当今的形而上学中仍然是一个争论的话题,但最近研究中对性别比较的强调导致了健康科学中通过对健康和疾病易感性(包括血压调节和高血压)的大量观察性研究来解决“性别如何不同”的问题。这些努力使人们在分子水平上更好地了解了男性和女性的差异,这部分解释了他们在血管功能和肾钠处理方面的差异,从而解释了血压以及由此产生的高血压心血管和肾脏疾病风险。这篇综述将侧重于比较男性和女性在寿命和对膳食钠反应方面的血压差异的临床研究,并将重点介绍研究肾素-血管紧张素-醛固酮、血管、交感神经和免疫系统、内皮素、主要肾脏钠转运蛋白/交换蛋白、,以及性激素在血压稳态中对这些系统的影响。了解血压调节中性别差异的机制可以指导以性别特异性方式进行新的治疗方法,以降低高血压的心血管风险,并推进个性化药物。
{"title":"Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms.","authors":"Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le","doi":"10.1152/physrev.00041.2022","DOIUrl":"10.1152/physrev.00041.2022","url":null,"abstract":"<p><p>The teleology of sex differences has been argued since at least as early as Aristotle's controversial <i>Generation of Animals</i> more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question \"why are the sexes different\" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question \"how are the sexes different\" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"199-251"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent insights into channelopathies. 最近对通道病的见解。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-10 DOI: 10.1152/physrev.00022.2023
Osama F Harraz, Eric Delpire
{"title":"Recent insights into channelopathies.","authors":"Osama F Harraz, Eric Delpire","doi":"10.1152/physrev.00022.2023","DOIUrl":"10.1152/physrev.00022.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"23-31"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10046282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1